Irrigation of Young Olives Grown on Reclaimed Karst Soil Increases Fruit Size, Weight and Oil Yield and Balances the Sensory Oil Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics and Environmental Conditions
2.2. Experimental Set-Up
2.3. Olive Fruit Sampling
2.4. Olive Fruit and Stone Morphologic Analyses
2.5. Oil Extraction and Oil Yield
2.6. Analyses of Quality Parameters of Olive Oil and Sensory Evaluation
2.7. Analyses of Phenols
2.8. Analyses of Fatty Acid Composition
2.9. Statistical Analysis
3. Results and Discussion
3.1. Influence of Irrigation and Growing Season on Fruit Morphology, Fruit and Oil Yield
3.2. Influence of Irrigation and Growing Season on Quality, Phenols and Sensory Characteristics
3.3. Influence of Irrigation and Growing Season on Fatty Acid Profile
4. Conclusions
- -
- Year 2016 had 356.60 ± 66.14 fruits per kg, oil yield of 14.09 ± 1.17%, balanced VOO of medium to intense bitterness and pungency; by irrigation → increased fruit size characteristics by Irr 100 → increased fruit weight by Irr 100 → increased oil yield for 18% → irregular changes in oleic fatty acid → unchanged phenolics, bitterness and pungency.
- -
- Year 2017 had 617.42 ± 83.69 fruits per kg, the smallest fruit proportions, the lowest oil yield (6.4 ± 0.09%), high phenolic content, unbalanced VOO with intense bitterness and pungency; due to irrigation → increased fruit size characteristics for all irrigation treatments → increased fruit weight for all irrigation treatments → increased oil yield for 35% → decreased oleic fatty acid → decreased phenols → decreased bitterness and pungency → balanced VOO achieved.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sojka, R.E.; Bjorneberg, D.L.; Entry, J.A. Irrigation: Historical Perspective. In Encyclopedia of Soil Science, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 1264–1268. [Google Scholar] [CrossRef]
- López-Gunn, E.; Mayor, B.; Dumont, A. Implications of the Modernization of Irrigation Systems. In Water, Agriculture and the Environment in Spain: Can We Square the Circle? CRC Press: Boca Raton, FL, USA, 2012; pp. 241–255. [Google Scholar] [CrossRef]
- Connor, D.J.; Fereres, E. The Physiology of Adaptation and Yield Expression in Olive. Hortic. Rev. (Am. Soc. Hortic. Sci.) 2010, 31, 155–229. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2021, 11, 56. [Google Scholar] [CrossRef]
- Fregapane, G.; Gómez-Rico, A.; Salvador, M.D. Influence of Irrigation Management and Ripening on Virgin Olive Oil Quality and Composition. In Olives and Olive Oil in Health and Disease Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 51–58. [Google Scholar] [CrossRef]
- Blazakis, K.N.; Kosma, M.; Kostelenos, G.; Baldoni, L.; Bufacchi, M.; Kalaitzis, P. Description of olive morphological parameters by using open access software. Plant Methods 2017, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, Y.; Du, J.; Guo, X.; Wen, W.; Gu, S.; Wang, J.; Fan, J. Crop Phenomics: Current Status and Perspectives. Front. Plant Sci. 2019, 10, 714. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A. Quality attributes of table olives as affected by regulated deficit irrigation. LWT Food Sci. Technol. 2015, 62, 19–26. [Google Scholar] [CrossRef]
- D’Andria, R.; Lavini, A.; Morelli, G.; Sebastiani, L.; Tognetti, R. Physiological and productive responses of Olea europaea L. cultivars Frantoio and Leccino to a regulated deficit irrigation regime. Plant Biosyst. 2009, 143, 222–231. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.; Rapoport, H.F. Productivity of olive trees with different water status and crop load. J. Hortic. Sci. Biotechnol. 2007, 82, 648–656. [Google Scholar] [CrossRef]
- Gomez del Campo, M. Summer Deficit-Irrigation Strategies in a Hedgerow Olive Orchard Cv. ‘Arbequina’: Effect on Fruit Characteristics and Yield. Irrig. Sci. 2005, 96, 29029. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Castro, D.N.; Searles, P.S.; Rousseaux, M.C. Contrasting patterns of fatty acid composition and oil accumulation during fruit growth in several olive varieties and locations in a non-Mediterranean region. Eur. J. Agron. 2014, 52, 237–246. [Google Scholar] [CrossRef]
- Faghim, J.; Mohamed, M.B.; Bagues, M.; Guasmi, F.; Triki, T.; Nagaz, K. Irrigation effects on phenolic profile and extra virgin olive oil quality of “Chemlali” variety grown in South Tunisia. South Afr. J. Bot. 2021, 141, 322–329. [Google Scholar] [CrossRef]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. “Cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Dabbou, S.; Rjiba, I.; Nakbi, A.; Gazzah, N.; Issaoui, M.; Hammami, M. Compositional quality of virgin olive oils from cultivars introduced in Tunisian arid zones in comparison to Chemlali cultivars. Sci. Hortic. 2010, 124, 122–127. [Google Scholar] [CrossRef]
- Spika, M.J.; Liber, Z.; Montemurro, C.; Miazzi, M.M.; Ljubenkov, I.; Soldo, B.; Žanetić, M.; Vitanović, E.; Politeo, O.; Škevin, D. Quantitatively Unraveling Hierarchy of Factors Impacting Virgin Olive Oil Phenolic Profile and Oxidative Stability. Antioxidants 2022, 11, 594. [Google Scholar] [CrossRef]
- Romić, D.; Kontić, J.K.; Preiner, D.; Romić, M.; Lazarević, B.; Maletić, E.; Ondrašek, G.; Andabaka, Ž.; Begić, H.B.; Kovačić, M.B.; et al. Performance of grapevine grown on reclaimed Mediterranean karst land: Appearance and duration of high temperature events and effects of irrigation. Agric. Water Manag. 2020, 236, 106166. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Walter, H.; Lieth, H. Klima-Diagramm Weltatlas; Gustav Fischer Verlag: Jena, Germany, 1967. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. Guidelines for Computing Crop Water Requirements—FAO. FAO Irrig. Drain. Pap. 1998, 300, 1–15. [Google Scholar]
- Fernández, J.E.; Diaz-Espejo, A.; Infante, J.M.; Durán, P.; Palomo, M.J.; Chamorro, V.; Girón, I.; Villagarcía, L. Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying. Plant Soil 2006, 284, 273–291. [Google Scholar] [CrossRef]
- Uceda, M.; Frias, L. Harvest Dates. Evolution of the Fruit Oil Content, Oil Composition and Oil Quality. In Proceedings of the Del Segundo Seminario Oleicola Internacional—COI, Cordoba, Spain, 6 October 1975; pp. 125–128. [Google Scholar]
- Špika, M.J.; Perica, S.; Žanetić, M.; Škevin, D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- EEC. Characteristics of Olive Oil and Olive-Residue Oil and the Relevant Methods of Analysis. Regulation EEC/2568/91 and Later Modifications. Off. J. Eur. Community 1991, L24, 1–83. [Google Scholar]
- COI/T.20/Doc.15/Rev. 2; Organoleptic Assessment of Virgin Olive Oil. IOC: Madrid, Spain, 2007.
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- ISO 5508; Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 1990.
- ISO 12966-2; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2011.
- Marcelić, Š.; Vidovi, N.; Pasković, I.; Lukić, M.; Špika, M.J.; Palčić, I.; Lukić, I.; Petek, M.; Pecina, M.; Ćustić, M.H.; et al. Combined Sulfur and Nitrogen Foliar Application Increases Extra Virgin Olive Oil Quantity without Affecting Its Nutritional Quality. Horticulturae 2022, 8, 203. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; García, J.M.; Torres-Ruiz, J.M.; Montero, A.; Sánchez-Ortiz, A.; Fernández, J.E. Is the productive performance of olive trees under localized irrigation affected by leaving some roots in drying soil? Agric. Water Manag. 2013, 123, 79–92. [Google Scholar] [CrossRef]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield Responses of a Mature Olive Orchard to Water Deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; Moriana, A.; Perez-Lopez, D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem. 2007, 100, 568–578. [Google Scholar] [CrossRef]
- Lavee, S.; Hanoch, E.; Wodner, M.; Abramowitch, H. The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci. Hortic. 2007, 112, 156–163. [Google Scholar] [CrossRef]
- Caruso, G.; Rapoport, H.F.; Gucci, R. Long-term evaluation of yield components of young olive trees during the onset of fruit production under different irrigation regimes. Irrig. Sci. 2013, 31, 37–47. [Google Scholar] [CrossRef]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Perez-Lopez, D.; Ribas, F.; Moriana, A.; Olmedilla, N.; de Juan, A. The effect of irrigation schedules on the water relations and growth of a young olive (Olea europaea L.) orchard. Agric. Water Manag. 2007, 89, 297–304. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation Effects on Quality, Phenolic Composition, and Selected Volatiles of Virgin Olive Oils Cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Chehab, H.; Faten, B.; Dabbou, S.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M.; Montedoro, G.F.; Hammami, M. Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agric. Water Manag. 2010, 97, 763–768. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; Jiménez, R.; Fernández, J.E.; Troncoso, A.; Beltrán, G. Influence of Fertigation in ‘Manzanilla de Sevilla’ Olive Oil Quality. HortScience 2007, 42, 1157–1162. [Google Scholar] [CrossRef]
- Patumi, M.; D’Andria, R.; Marsilio, V.; Fontanazza, G.; Morelli, G.; Lanza, B. Olive and olive oil quality after intensive monocone olive growing (Olea europaea L., cv. Kalamata) in different irrigation regimes. Food Chem. 2002, 77, 27–34. [Google Scholar] [CrossRef]
- García, J.M.; Cuevas, M.V.; Fernández, J.E. Production and oil quality in ‘Arbequina’ olive (Olea europaea L.) trees under two deficit irrigation strategies. Irrig. Sci. 2013, 31, 359–370. [Google Scholar] [CrossRef]
- Špika, M.J.; Žanetić, M.; Kraljic, K.; Pasković, I.; Škevin, D. Changes in olive fruit characteristics and oil accumulation in ‘Oblica’ and ‘Leccino’ during ripening. Acta Hortic. 2018, 1199, 543–548. [Google Scholar] [CrossRef]
- Ramos, A.F.; Santos, F.L. Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes. Agric. Water Manag. 2010, 97, 363–373. [Google Scholar] [CrossRef]
- Dag, A.; Kerem, Z.; Yogev, N.; Zipori, I.; Lavee, S.; Ben-David, E. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 2011, 127, 358–366. [Google Scholar] [CrossRef]
- Berenguer, M.J.; Vossen, P.M.; Grattan, S.R.; Connell, J.H.; Polito, V.S. Tree Irrigation Levels for Optimum Chemical and Sensory Properties of Olive Oil. HortScience 2006, 41, 427–432. [Google Scholar] [CrossRef]
- Ben-Gal, A.; Yermiyahu, U.; Zipori, I.; Presnov, E.; Hanoch, E.; Dag, A. The influence of bearing cycles on olive oil production response to irrigation. Irrig. Sci. 2011, 29, 253–263. [Google Scholar] [CrossRef]
- Baccouri, O.; Guerfel, M.; Bonoli-Carbognin, M.; Cerretani, L.; Bendini, A.; Zarrouk, M.; Daoud, D. Influence of Irrigation and Site of Cultivation on Qualitative and Sensory Characteristics of a Tunisian Minor Olive Variety (Cv. Marsaline). Riv. Ital. Sostaze Grasse 2009, 86, 173–180. [Google Scholar]
- Inglese, P.; Barone, E.; Gullo, G. The Effect of Complementary Irrigation on Fruit Growth, Ripening Pattern and Oil Characteristics of Olive (Olea Europaea L.) Cv. Carolea. J. Hortic. Sci. Biotechnol. 1996, 71, 257–263. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Jesus Tovar, M.; Paz Romero, M.; Girona, J.; Jos Motilva, M. L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L cv Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 2002, 82, 892–898. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2011, 44, 629–635. [Google Scholar] [CrossRef]
- Romero-Segura, C.; García-Rodríguez, R.; Sánchez-Ortiz, A.; Sanz, C.; Pérez, A.G. The role of olive β-glucosidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 2012, 45, 191–196. [Google Scholar] [CrossRef]
- Ilyasoğlu, H.; Ozcelik, B.; Van Hoed, V.; Verhé, R. Characterization of Aegean Olive Oils by Their Minor Compounds. J. Am. Oil Chem. Soc. 2010, 87, 627–636. [Google Scholar] [CrossRef]
- Bedbabis, S.; Ferrara, G. Effects of long-term irrigation with treated wastewater on leaf mineral element contents and oil quality in Olive cv. Chemlali. J. Hortic. Sci. Biotechnol. 2018, 93, 216–223. [Google Scholar] [CrossRef]
- El Riachy, M.; Priego-Capote, F.; León, L.; Rallo, L.; Luque de Castro, M.D. Hydrophilic antioxidants of virgin olive oil. Part 2: Biosynthesis and biotransformation of phenolic compounds in virgin olive oil as affected by agronomic and processing factors. Eur. J. Lipid Sci. Technol. 2011, 113, 692–707. [Google Scholar] [CrossRef]
- Diamantakos, P.; Ioannidis, K.; Papanikolaou, C.; Tsolakou, A.; Rigakou, A.; Melliou, E.; Magiatis, P. A New Definition of the Term “High-Phenolic Olive Oil” Based on Large Scale Statistical Data of Greek Olive Oils Analyzed by qNMR. Molecules 2021, 26, 1115. [Google Scholar] [CrossRef]
- Panel, E.; Nda, A. Scientific Opinion on the Substantiation of Health Claims Related to Polyphenols in Olive and Protection of LDL Particles from Oxidative Damage (ID 1333, 1638, 1639, 1696, 2865), Maintenance of Normal Blood HDL Cholesterol Concentrations (ID 1639), Mainte. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G.; Simal-Gandara, J. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin Olive Oil Volatile Compounds: Composition, Sensory Characteristics, Analytical Approaches, Quality Control, and Authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- European Union Commission. Commission Delegated Regulation No. 2016/2095 of 26 September 2016 Amending Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Union 2016, L326, 1–6. [Google Scholar]
- Žanetić, M.; Špika, M.J.; Ožić, M.M.; Bubola, K.B. Comparative Study of Volatile Compounds and Sensory Characteristics of Dalmatian Monovarietal Virgin Olive Oils. Plants 2021, 10, 1995. [Google Scholar] [CrossRef]
- Bubola, K.B.; Kolega, Š.; Marcelić, Š.; Šikić, G.; Pinto, A.G.; Zorica, M.; Klisović, D.; Novoselić, A.; Špika, M.J.; Kos, T. Effect of Different Watering Regimes on Olive Oil Quality and Composition of Coratina Cultivar Olives Grown on Karst Soil in Croatia. Foods 2022, 11, 1767. [Google Scholar] [CrossRef]
- Tovar, M.J.; Motilva, M.J.; Romero, M.P. Changes in the Phenolic Composition of Virgin Olive Oil from Young Trees (Olea europaea L. cv. Arbequina) Grown under Linear Irrigation Strategies. J. Agric. Food Chem. 2001, 49, 5502–5508. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Brahmi, F.; Selvaggini, R.; Chehab, H.; Taticchi, A.; Servili, M.; Hammami, M. Contribution of irrigation and cultivars to volatile profile and sensory attributes of selected virgin olive oils produced in Tunisia. Int. J. Food Sci. Technol. 2011, 46, 1964–1976. [Google Scholar] [CrossRef]
- Fernandes-Silva, A.A.; Falco, V.; Correia, C.; Villalobos, F. Sensory analysis and volatile compounds of olive oil (cv. Cobrançosa) from different irrigation regimes. Grasas Aceites 2013, 64, 59–67. [Google Scholar] [CrossRef]
- Recchia, A.; Monteleone, E.; Tuorila, H. Responses to extra virgin olive oils in consumers with varying commitment to oils. Food Qual. Prefer. 2012, 24, 153–161. [Google Scholar] [CrossRef]
- El Riachy, M.; Haber, A.; Daya, S.A.; Jebbawi, G.; Al Hawi, G.; Talej, V.; Houssein, M.; El Hajj, A. Influence of Irrigation Regimes on Quality Attributes of Olive Oils from Two Varieties Growing in Lebanon. Int. J. Environ. Agric. Biotechnol. 2017, 2, 895–904. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero-Fabregat, M.-P.; Alegre, S.M.; Girona, J.; Motilva, M.J. Composition and organoleptic characteristics of oil fromArbequina olive (Olea europaea L.) trees under deficit irrigation. J. Sci. Food Agric. 2002, 82, 1755–1763. [Google Scholar] [CrossRef]
- Salas, J.J.; Sánchez, J.; Ramli, U.S.; Manaf, A.M.; Williams, M.; Harwood, J.L. Biochemistry of lipid metabolism in olive and other oil fruits. Prog. Lipid Res. 2000, 39, 151–180. [Google Scholar] [CrossRef]
- Beltrán, G.; del Rio, C.; Sánchez, S.; Martínez, L. Influence of Harvest Date and Crop Yield on the Fatty Acid Composition of Virgin Olive Oils from Cv. Picual. J. Agric. Food Chem. 2004, 52, 3434–3440. [Google Scholar] [CrossRef]
- Sánchez, J.; Harwood, J.L. Biosynthesis of triacylglycerols and volatiles in olives. Eur. J. Lipid Sci. Technol. 2002, 104, 564–573. [Google Scholar] [CrossRef]
Treatment | Abbreviation |
---|---|
Rain-fed as a control | C |
Irrigation corresponding to 50% ETc | Irr 50 |
Irrigation corresponding to 75% ETc | Irr 75 |
Irrigation corresponding to 100% ETc | Irr 100 |
Factor | Area (cm2) | Width (cm) | Length (cm) | Aspect Ratio (W/L) | Perimeter (cm) | Shape | Volume | |
---|---|---|---|---|---|---|---|---|
2016 | C | 3.25 ± 0.85 b | 1.95 ± 0.19 b | 2.08 ± 0.35 b | 0.95 ± 0.08 a | 6.72 ± 0.89 b | 0.9 ± 0.06 a | 4.65 ± 2.19 b |
Irr 50 | 3.11 ± 0.62 b | 1.91 ± 0.19 bc | 2.06 ± 0.25 b | 0.93 ± 0.07 b | 6.79 ± 0.9 b | 0.86 ± 0.09 b | 4.36 ± 1.35 b | |
Irr 75 | 3.07 ± 0.52 b | 1.89 ± 0.17 c | 2.06 ± 0.2 b | 0.92 ± 0.05 b | 6.89 ± 0.76 b | 0.83 ± 0.13 bc | 4.28 ± 1.10 b | |
Irr 100 | 3.94 ± 0.85 a | 2.11 ± 0.23 a | 2.36 ± 0.27 a | 0.90 ± 0.1 c | 7.86 ± 1.3 a | 0.82 ± 0.12 c | 6.33 ± 2.12 a | |
2017 | C | 1.86 ± 0.41 d | 1.49 ± 0.16 d | 1.58 ± 0.2 d | 0.95 ± 0.05 a | 4.96 ± 0.59 d | 0.95 ± 0.03 a | 2.01 ± 0.71 d |
Irr 50 | 3.26 ± 0.72 c | 1.96 ± 0.19 c | 2.12 ± 0.27 c | 0.93 ± 0.05 b | 6.64 ± 0.75 c | 0.93 ± 0.05 b | 4.74 ± 1.67 c | |
Irr 75 | 3.88 ± 0.64 b | 2.09 ± 0.17 b | 2.38 ± 0.24 b | 0.88 ± 0.05 c | 7.29 ± 0.65 b | 0.92 ± 0.05 bc | 6.28 ± 1.63 b | |
Irr 100 | 4.19 ± 0.59 a | 2.15 ± 0.16 a | 2.50 ± 0.2 a | 0.87 ± 0.05 d | 7.64 ± 0.62 a | 0.91 ± 0.06 c | 7.13 ± 1.52 a | |
IRR | C | 2.55 ± 0.96 d | 1.72 ± 0.29 d | 1.83 ± 0.38 d | 0.95 ± 0.07 a | 5.84 ± 1.16 d | 0.92 ± 0.05 a | 3.33 ± 2.1 d |
Irr 50 | 3.19 ± 0.67 c | 1.93 ± 0.19 c | 2.09 ± 0.26 c | 0.93 ± 0.06 b | 6.71 ± 0.83 c | 0.89 ± 0.08 b | 4.55 ± 1.53 c | |
Irr 75 | 3.49 ± 0.71 b | 1.99 ± 0.19 b | 2.22 ± 0.27 b | 0.9 ± 0.06 c | 7.1 ± 0.73 b | 0.87 ± 0.11 c | 5.31 ± 1.72 b | |
Irr 100 | 4.07 ± 0.74 a | 2.13 ± 0.2 a | 2.43 ± 0.25 a | 0.88 ± 0.05 d | 7.75 ± 1.02 a | 0.86 ± 0.1 c | 6.74 ± 1.88 a | |
F | 268.76 | 274.60 | 307.43 | 92.10 | 275.70 | 35.90 | 234.39 | |
p | *** | *** | *** | *** | *** | *** | *** | |
GS | 2016 | 3.34 ± 0.8 | 1.97 ± 0.21 a | 2.14 ± 0.3 | 0.93 ± 0.07 a | 7.06 ± 1.08 a | 0.85 ± 0.11 b | 4.9 ± 1.94 |
2017 | 3.3 ± 1.08 | 1.92 ± 0.31 b | 2.15 ± 0.42 | 0.91 ± 0.06 b | 6.63 ± 1.22 b | 0.92 ± 0.05 a | 5.04 ± 2.42 | |
F | 1.44 | 18.1 | 0.07 | 38.8 | 80.20 | 278.9 | 2.16 | |
p | ns | *** | ns | *** | *** | *** | ns | |
IRR × GS | F | 149.62 | 191.1 | 152.44 | 12.1 | 93.11 | 5.2 | 113.53 |
p | *** | *** | *** | ** | *** | ** | *** |
Factor | Area (cm2) | Width (cm) | Length (cm) | Aspect Ratio (W/L) | Perimeter (cm) | Shape | Volume | |
---|---|---|---|---|---|---|---|---|
2016 | C | 0.74 ± 0.18 b | 0.87 ± 0.1 b | 1.14 ± 0.16 b | 0.77 ± 0.08 ab | 3.14 ± 0.42 b | 0.93 ± 0.04 b | 0.62 ± 0.22 b |
Irr 50 | 0.74 ± 0.19 b | 0.87 ± 0.11 b | 1.13 ± 0.16 b | 0.78 ± 0.07 a | 3.11 ± 0.45 b | 0.95 ± 0.05 a | 0.61 ± 0.23 b | |
Irr 75 | 0.76 ± 0.18 b | 0.88 ± 0.1 b | 1.15 ± 0.15 b | 0.77 ± 0.07 a | 3.19 ± 0.42 b | 0.93 ± 0.05 bc | 0.63 ± 0.22 b | |
Irr 100 | 0.88 ± 0.12 a | 0.94 ± 0.07 a | 1.26 ± 0.11 a | 0.75 ± 0.06 b | 3.47 ± 0.27 a | 0.92 ± 0.04 c | 0.79 ± 0.16 a | |
2017 | C | 0.55 ± 0.12 d | 0.74 ± 0.07 d | 1.01 ± 0.14 c | 0.75 ± 0.07 a | 2.9 ± 0.44 c | 0.84 ± 0.13 a | 0.41 ± 0.13 d |
Irr 50 | 0.88 ± 0.17 c | 0.9 ± 0.08 c | 1.34 ± 0.17 b | 0.68 ± 0.07 b | 3.69 ± 0.46 b | 0.81 ± 0.09 a | 0.87 ± 0.09 c | |
Irr 75 | 1.04 ± 0.12 b | 0.96 ± 0.06 b | 1.49 ± 0.11 a | 0.65 ± 0.05 c | 4.3 ± 0.63 a | 0.73 ± 0.13 b | 1.12 ± 0.13 b | |
Irr 100 | 1.09 ± 0.13 a | 0.98 ± 0.06 a | 1.53 ± 0.13 a | 0.65 ± 0.05 c | 4.3 ± 0.54 a | 0.76 ± 0.11 b | 1.21 ± 0.11 a | |
IRR | C | 0.65 ± 0.18 d | 0.81 ± 0.11 d | 1.08 ± 0.17 d | 0.76 ± 0.07 a | 3.02 ± 0.45 d | 0.89 ± 0.11 a | 0.51 ± 0.11 d |
Irr 50 | 0.81 ± 0.19 c | 0.88 ± 0.1 c | 1.24 ± 0.2 c | 0.73 ± 0.08 b | 3.4 ± 0.54 c | 0.88 ± 0.1 a | 0.74 ± 0.1 c | |
Irr 75 | 0.9 ± 0.21 b | 0.92 ± 0.09 b | 1.32 ± 0.22 b | 0.71 ± 0.09 c | 3.74 ± 0.77 b | 0.83 ± 0.14 b | 0.87 ± 0.14 b | |
Irr 100 | 0.99 ± 0.17 a | 0.96 ± 0.07 a | 1.4 ± 0.18 a | 0.7 ± 0.08 c | 3.89 ± 0.6 a | 0.84 ± 0.12 b | 1 ± 0.12 a | |
F | 278.28 | 200.4 | 290.64 | 54.5 | 207.81 | 33.5 | 289.08 | |
p | *** | *** | *** | *** | *** | *** | *** | |
GS | 2016 | 0.78 ± 0.18 b | 0.89 ± 0.1 | 1.17 ± 0.16 b | 0.77 ± 0.07 a | 3.23 ± 0.42 b | 0.93 ± 0.05 a | 0.66 ± 0.05 b |
2017 | 0.89 ± 0.25 a | 0.9 ± 0.12 | 1.34 ± 0.25 a | 0.68 ± 0.07 b | 3.8 ± 0.78 a | 0.79 ± 0.12 b | 0.90 ± 0.12 a | |
F | 167.71 | 2.7 | 448.33 | 623.6 | 450.85 | 868.1 | 388.44 | |
p | *** | ns | *** | *** | *** | *** | *** | |
IRR × GS | F | 144.27 | 93.4 | 171.02 | 42.3 | 117.93 | 17.8 | 164.93 |
p | *** | *** | *** | *** | *** | *** | *** |
Factor | Fruit Yield (kg tree−1) | No Fruit kg−1 | Fruit Weight (g) | Pulp Weight (g) | Stone Weight (g) | Pulp to Pit Ratio | Oil Yield % | |
---|---|---|---|---|---|---|---|---|
2016 | C | 2.12 ± 1.43 | 356.60 ± 66.1 | 2.63 ± 0.53 b | 2.41 ± 0.49 b | 0.22 ± 0.09 b | 10.02 ± 2.33 a | 14.09 ± 1.17 b |
Irr 50 | 1.53 ± 0.98 | 369.52 ± 79.1 | 2.76 ± 0.52 b | 2.50 ± 0.4 b | 0.26 ± 0.11 b | 8.68 ± 1.9 ab | 14.91 ± 1.62 ab | |
Irr 75 | 2.25 ± 1.39 | 373.26 ± 84.9 | 2.85 ± 0.54 b | 2.58 ± 0.48 b | 0.28 ± 0.11 b | 8.17 ± 1.5 ab | 17.11 ± 1.13 a | |
Irr 100 | 2.3 ± 1.70 | 267.11 ± 25.8 | 3.79 ± 0.38 a | 3.41 ± 0.38 a | 0.38 ± 0.07 a | 8.11 ± 0.8 b | 16.97 ± 1.88 a | |
2017 | C | 0.62 ± 0.42 b | 617.42 ± 83.69 a | 1.38 ± 0.34 c | 1.15 ± 0.31 c | 0.24 ± 0.06 d | 4.94 ± 1.1 b | 6.40 ± 0.1 b |
Irr 50 | 1.86 ± 0.92 ab | 362.91 ± 97.21 b | 2.95 ± 0.87 b | 2.54 ± 0.77 b | 0.41 ± 0.11 c | 6.17 ± 0.6 a | 10.61 ± 1.49 a | |
Irr 75 | 2.81 ± 2.42 a | 243.7 ± 22.6 c | 3.94 ± 0.66 a | 3.42 ± 0.57 a | 0.53 ± 0.1 b | 6.59 ± 0.5 a | 10.32 ± 1.94 a | |
Irr 100 | 0.84 ± 0.72 b | 229.64 ± 28.99 c | 4.41 ± 0.53 a | 3.78 ± 0.48 a | 0.64 ± 0.06 a | 5.98 ± 0.4 a | 9.48 ± 0.2 a | |
IRR | C | 1.37 ± 1.29 b | 431.12 ± 142.41 a | 1.92 ± 0.76 d | 1.69 ± 0.75 d | 0.23 ± 0.07 d | 7.12 ± 3.0 | 10.25 ± 4.13 b |
Irr 50 | 1.69 ± 0.95 ab | 366.21 ± 83.66 ab | 2.85 ± 0.71 c | 2.52 ± 0.62 c | 0.34 ± 0.13 c | 7.42 ± 1.9 | 12.76 ± 2.7 a | |
Irr 75 | 2.53 ± 1.96 a | 308.48 ± 89.98 bc | 3.40 ± 0.8 b | 3.00 ± 0.67 b | 0.40 ± 0.1 b | 7.38 ± 1.3 | 13.72 ± 3.88 a | |
Irr 100 | 1.57 ± 1.48 b | 248.37 ± 32.55 c | 4.10 ± 0.5 a | 3.60 ± 0.4 a | 0.51 ± 0.15 a | 7.04 ± 1.2 | 13.64 ± 4.17 a | |
F | 4.1365 | 17.4060 | 60.078 | 56.443 | 45.380 | 0.670 | 12.413 | |
p | *** | *** | *** | *** | *** | ns | *** | |
GS | 2016 | 2.05 ± 1.40 a | 341.62 ± 76.73 | 3.05 ± 0.67 | 2.76 ± 0.6 | 0.29 ± 0.11 b | 8.6 ± 1.7 a | 15.77 ± 1.91 a |
2017 | 1.53 ± 1.59 b | 318.59 ± 138.35 | 3.27 ± 1.29 | 2.81 ± 1.13 | 0.47 ± 0.17 a | 5.97 ± 0.9 b | 9.19 ± 2.1 b | |
F | 4.1825 | 0.9335 | 2.358 | 0.000 | 101.844 | 133.863 | 219.620 | |
p | ** | ns | ns | ns | *** | *** | *** | |
IRR × GS | F | 4.9211 | 11.0714 | 18.338 | 18.384 | 9.332 | 8.545 | 3.152 |
p | *** | *** | *** | *** | *** | *** | ** |
Factor | FFA (%) | PV (meq O2 kg−1) | K232 | K270 | Phenols (mg kg−1) | Fruitiness | Bitterness | Pungency | |
---|---|---|---|---|---|---|---|---|---|
2015 | C | 0.50 ± 0.01 a | 4.06 ± 0.16 bc | 2.40 ± 0.01 a | 0.22 ± 0.01 a | 641.9 ± 10.2 a | 6.17 ± 0.3 a | 5.91 ± 0.8 | 6.47 ± 0.5 |
Irr 50 | 0.46 ± 0.01 b | 3.89 ± 0.19 c | 2.34 ± 0.05 a | 0.22 ± 0.01 a | 610.1 ± 12.5 b | 4.50 ± 0.2 c | 6.84 ± 0.3 | 6.50 ± 0.5 | |
Irr 75 | 0.47 ± 0.01 b | 4.53 ± 0.29 b | 2.22 ± 0.01 b | 0.19 ± 0.01 b | 515.5 ± 12.8 d | 5.67 ± 0.3 ab | 6.00 ± 0.5 | 5.67 ± 0.3 | |
Irr 100 | 0.43 ± 0.02 c | 5.26 ± 0.09 a | 2.35 ± 0.01 a | 0.21 ± 0.01 a | 580.9 ± 7.5 c | 4.84 ± 0.8 bc | 5.50 ± 0.5 | 5.67 ± 0.6 | |
2016 | C | 0.30 ± 0.07 | 5.79 ± 1.72 | 2.17 ± 0.21 | 0.20 ± 0.02 | 569.2 ± 148.4 | 4.94 ± 0.3 | 6.10 ± 0.9 | 6.54 ± 0.3 |
Irr 50 | 0.33 ± 0.05 | 6.17 ± 2.01 | 2.14 ± 0.24 | 0.18 ± 0.03 | 578.0 ± 122.4 | 4.72 ± 0.8 | 6.04 ± 1.5 | 6.62 ± 0.8 | |
Irr 75 | 0.34 ± 0.05 | 6.16 ± 1.76 | 2.16 ± 0.15 | 0.20 ± 0.03 | 578.20 ± 113.2 | 4.56 ± 0.9 | 6.28 ± 0.9 | 6.58 ± 0.9 | |
Irr 100 | 0.35 ± 0.06 | 6.24 ± 1.39 | 2.06 ± 0.16 | 0.19 ± 0.03 | 570.8 ± 74.8 | 4.78 ± 0.7 | 6.68 ± 1.7 | 6.92 ± 0.5 | |
2017 | C | 0.34 ± 0.02 a | 6.75 ± 0.5 a | 2.59 ± 0.07 a | 0.29 ± 0.03 a | 1099.9 ± 152.2 a | 5.45 ± 0.6 a | 8.49 ± 0.6 a | 7.4 ± 0.4 a |
Irr 50 | 0.31 ± 0.04 a | 3.86 ± 1.14 b | 2.38 ± 0.10 b | 0.22 ± 0.04 b | 940.4 ± 124.9 ab | 4.70 ± 0.5 a | 8.15 ± 0.6 a | 7.7 ± 0.6 a | |
Irr 75 | 0.31 ± 0.04 a | 5.48 ± 1.49 ab | 2.20 ± 0.16 c | 0.20 ± 0.04 b | 801.3 ± 109.8 b | 4.90 ± 0.7 a | 6.02 ± 0.5 b | 6.58 ± 0.8 ab | |
Irr 100 | 0.23 ± 0.02 b | 6.86 ± 2.37 a | 2.35 ± 0.16 bc | 0.21 ± 0.02 b | 393.7 ± 114.9 c | 4.33 ± 0.9 b | 4.07 ± 0.5 c | 5.57 ± 0.7 b | |
IRR | C | 0.36 ± 0.09 a | 5.99 ± 1.38 a | 2.43 ± 0.22 a | 0.25 ± 0.05 a | 779.5 ± 276.1 a | 5.45 ± 0.6 a | 6.81 ± 1.3 a | 6.76 ± 0.5 ab |
Irr 50 | 0.35 ± 0.07 ab | 4.59 ± 1.70 b | 2.30 ± 0.18 b | 0.21 ± 0.04 b | 731.5 ± 203.0 ab | 4.70 ± 0.5 b | 7.04 ± 1.4 a | 7.01 ± 0.8 a | |
Irr 75 | 0.35 ± 0.07 ab | 5.51 ± 1.49 ab | 2.19 ± 0.14 b | 0.20 ± 0.03 b | 675.8 ± 160.9 b | 4.84 ± 0.8 ab | 6.13 ± 0.7 ab | 6.35 ± 0.8 ab | |
Irr 100 | 0.32 ± 0.09 b | 6.3 ± 1.78 a | 2.25 ± 0.20 b | 0.20 ± 0.03 b | 502.6 ± 121.7 c | 4.33 ± 0.9 b | 5.52 ± 1.6 b | 6.16 ± 0.9 b | |
F | 3.944 | 2.459 | 4.740 | 7.111 | 15.630 | 9.622 | 7.684 | 5.408 | |
p | ** | ns | *** | *** | *** | *** | *** | ** | |
GS | 2015 | 0.47 ± 0.03 a | 4.44 ± 0.58 b | 2.33 ± 0.08 a | 0.21 ± 0.01 b | 587.1 ± 49.1 b | 5.3 ± 0.8 a | 6.18 ± 0.7 | 6.08 ± 0.5 b |
2016 | 0.33 ± 0.06 b | 6.09 ± 1.60 a | 2.13 ± 0.18 b | 0.19 ± 0.03 b | 574.1 ± 108.1 b | 4.75 ± 0.6 b | 6.03 ± 1.2 | 6.67 ± 0.6 a | |
2017 | 0.31 ± 0.05 b | 5.69 ± 1.82 a | 2.38 ± 0.19 a | 0.23 ± 0.05 a | 796.7 ± 275.08 a | 4.58 ± 0.8 b | 6.66 ± 1.9 | 6.83 ± 1.1 a | |
F | 98.235 | 5.3684 | 20.790 | 19.514 | 34.686 | 5.310 | 0.991 | 5.217 | |
p | *** | *** | *** | *** | *** | *** | ns | ** | |
IRR × GS | F | 5.768 | 1.9371 | 2.290 | 5.097 | 13.695 | 4.044 | 6.416 | 3.687 |
p | *** | ns | * | *** | *** | *** | *** | ** |
Factor | Palmitic (C 16:0) | Palmitoleic (C 16:1) | Stearic (C 18:0) | Oleic (C 18:1) | Linoleic (C 18:2) | Linolenic (C 18:3) | Gadoleic (C 20:1) | |
---|---|---|---|---|---|---|---|---|
2015 | C | 14.86 ± 0.37 | 1.13 ± 0.26 | 2.29 ± 0.04 | 67.37 ± 0.21 b | 12.44 ± 0.07 b | 0.81 ± 0.01 | 0.30 ± 0.01 |
Irr 50 | 14.45 ± 0.35 | 1.01 ± 0.22 | 2.3 ± 0.05 | 68.53 ± 0.23 a | 11.82 ± 0.09 c | 0.81 ± 0.01 | 0.31 ± 0.01 | |
Irr 75 | 14.41 ± 0.39 | 1.01 ± 0.23 | 2.23 ± 0.05 | 66.60 ± 0.21 c | 13.82 ± 0.08 a | 0.81 ± 0.01 | 0.31 ± 0.01 | |
Irr 100 | 14.27 ± 0.38 | 1.02 ± 0.23 | 2.22 ± 0.05 | 68.46 ± 0.21 a | 12.30 ± 0.06 b | 0.81 ± 0.01 | 0.31 ± 0.01 | |
2016 | C | 11.56 ± 0.55 b | 0.74 ± 0.09 | 2.64 ± 0.34 | 71.54 ± 1.85 a | 11.80 ± 0.81 b | 0.64 ± 0.09 | 0.32 ± 0.05 |
Irr 50 | 11.76 ± 0.38 ab | 0.70 ± 0.08 | 2.30 ± 0.08 | 70.26 ± 1.06 ab | 13.32 ± 0.78 ab | 0.66 ± 0.06 | 0.32 ± 0.05 | |
Irr 75 | 12.24 ± 0.24 a | 0.72 ± 0.05 | 2.52 ± 0.32 | 68.64 ± 1.35 b | 14.24 ± 1.00 a | 0.66 ± 0.06 | 0.34 ± 0.06 | |
Irr 100 | 12.10 ± 0.20 ab | 0.70 ± 0.08 | 2.26 ± 0.22 | 69.38 ± 1.16 ab | 13.84 ± 1.20 a | 0.66 ± 0.06 | 0.32 ± 0.05 | |
2017 | C | 12.25 ± 0.22 | 1.00 ± 0.00 a | 2.10 ± 0.00 b | 73.80 ± 0.99 a | 8.90 ± 0.71 b | 0.80 ± 0.00 a | 0.30 ± 0.00 |
Irr 50 | 13.00 ± 0.25 | 0.94 ± 0.12 a | 2.22 ± 0.05 ab | 70.64 ± 0.46 b | 11.44 ± 0.49 a | 0.68 ± 0.05 b | 0.30 ± 0.00 | |
Irr 75 | 12.76 ± 0.27 | 0.80 ± 0.00 b | 2.26 ± 0.06 a | 70.22 ± 0.71 b | 12.16 ± 0.58 a | 0.70 ± 0.00 b | 0.34 ± 0.06 | |
Irr 100 | 12.37 ± 0.47 | 0.77 ± 0.06 b | 2.30 ± 0.10 a | 70.64 ± 0.87 b | 12.07 ± 0.52 a | 0.70 ± 0.00 b | 0.34 ± 0.06 | |
IRR | C | 12.69 ± 1.58 | 0.91 ± 0.23 | 2.43 ± 0.33 | 70.74 ± 2.81 a | 11.42 ± 1.48 c | 0.73 ± 0.11 | 0.31 ± 0.04 |
Irr 50 | 12.86 ± 1.11 | 0.87 ± 0.19 | 2.27 ± 0.07 | 70.01 ± 1.09 ab | 12.25 ± 1.04 b | 0.71 ± 0.08 | 0.31 ± 0.03 | |
Irr 75 | 12.94 ± 0.91 | 0.82 ± 0.15 | 2.36 ± 0.24 | 68.78 ± 1.69 c | 13.35 ± 1.19 a | 0.71 ± 0.07 | 0.34 ± 0.05 | |
Irr 100 | 12.77 ± 1.02 | 0.81 ± 0.18 | 2.26 ± 0.16 | 69.48 ± 1.19 bc | 12.94 ± 1.18 ab | 0.72 ± 0.08 | 0.32 ± 0.05 | |
F | 1.280 | 1.983 | 0.607 | 9.910 | 19.410 | 0.950 | 0.770 | |
p | ns | ns | ns | *** | *** | ns | ns | |
GS | 2015 | 14.50 ± 0.39 a | 1.05 ± 0.21 a | 2.26 ± 0.06 b | 67.74 ± 0.87 c | 12.60 ± 0.78 b | 0.81 ± 0.01 a | 0.31 ± 0.01 |
2016 | 11.92 ± 0.44 c | 0.72 ± 0.07 c | 2.43 ± 0.29 a | 69.96 ± 1.69 b | 13.30 ± 1.30 a | 0.66 ± 0.07 c | 0.33 ± 0.05 | |
2017 | 12.70 ± 0.40 b | 0.87 ± 0.12 b | 2.24 ± 0.09 b | 70.92 ± 1.34 a | 11.47 ± 1.20 c | 0.71 ± 0.05 b | 0.32 ± 0.05 | |
F | 211.231 | 25.281 | 6.618 | 39.301 | 35.761 | 38.220 | 1.391 | |
p | *** | *** | *** | *** | *** | *** | ns | |
IRR × GS | F | 3.730 | 0.765 | 2.014 | 3.211 | 3.390 | 1.580 | 0.271 |
p | ** | ns | ns | * | ** | ns | ns |
Factor | ΣSFA | ΣPUFA | ΣMUFA | Oleic/Linoleic Ratio | MUFA/SFA | MUFA/PUFA | |
---|---|---|---|---|---|---|---|
2015 | C | 17.75 ± 0.43 | 13.25 ± 0.08 b | 68.90 ± 0.47 ab | 5.42 ± 0.02 c | 3.89 ± 0.07 | 5.21 ± 0.02 c |
Irr 50 | 17.34 ± 0.28 | 12.62 ± 0.09 c | 69.95 ± 0.46 a | 5.81 ± 0.03 a | 4.04 ± 0.09 | 5.55 ± 0.01 a | |
Irr 75 | 17.23 ± 0.32 | 14.62 ± 0.07 a | 68.01 ± 0.44 b | 4.83 ± 0.02 d | 3.95 ± 0.10 | 4.66 ± 0.02 d | |
Irr 100 | 17.08 ± 0.32 | 13.11 ± 0.07 b | 69.88 ± 0.43 a | 5.57 ± 0.02 b | 4.10 ± 0.10 | 5.34 ± 0.01 b | |
2016 | C | 14.82 ± 0.94 | 12.44 ± 0.79 b | 72.70 ± 1.80 a | 6.10 ± 0.56 a | 4.93 ± 0.42 | 5.87 ± 0.51 |
Irr 50 | 14.68 ± 0.41 | 13.98 ± 0.74 ab | 71.38 ± 1.11 ab | 5.30 ± 0.40 ab | 4.87 ± 0.21 | 5.13 ± 0.36 | |
Irr 75 | 15.38 ± 0.55 | 14.90 ± 1.04 a | 69.80 ± 1.33 b | 4.85 ± 0.43 b | 4.55 ± 0.23 | 4.71 ± 0.41 | |
Irr 100 | 14.98 ± 0.39 | 14.50 ± 1.26 a | 70.50 ± 1.11 ab | 5.05 ± 0.54 b | 4.71 ± 0.14 | 4.90 ± 0.52 | |
2017 | C | 15.05 ± 0.22 b | 9.70 ± 0.71 b | 75.20 ± 0.99 a | 8.33 ± 0.78 a | 5.00 ± 0.14 a | 7.78 ± 0.67 a |
Irr 50 | 15.84 ± 0.28 a | 12.12 ± 0.47 a | 71.98 ± 0.47 b | 6.19 ± 0.29 b | 4.55 ± 0.09 b | 5.95 ± 0.26 b | |
Irr 75 | 15.64 ± 0.33 ab | 12.86 ± 0.58 a | 71.46 ± 0.71 b | 5.79 ± 0.35 b | 4.58 ± 0.13 b | 5.57 ± 0.32 b | |
Irr 100 | 15.27 ± 0.38 ab | 12.77 ± 0.52 a | 71.84 ± 0.77 b | 5.87 ± 0.33 b | 4.71 ± 0.17 ab | 5.64 ± 0.29 b | |
IRR | C | 15.75 ± 1.54 | 12.14 ± 1.46 c | 72.06 ± 2.72 a | 6.34 ± 1.19 a | 4.63 ± 0.59 | 6.06 ± 1.05 a |
Irr 50 | 15.74 ± 1.10 | 12.95 ± 1.01 bc | 71.28 ± 1.09 ab | 5.76 ± 0.50 b | 4.56 ± 0.36 | 5.54 ± 0.46 b | |
Irr 75 | 15.91 ± 0.86 | 14.06 ± 1.20 a | 70.03 ± 1.64 c | 5.21 ± 0.58 c | 4.42 ± 0.31 | 5.03 ± 0.54 c | |
Irr 100 | 15.63 ± 1.00 | 13.65 ± 1.17 | ab 70.70 ± 1.12 | bc 5.42 ± 0.52 | bc 4.55 ± 0.32 | 5.22 ± 0.48 bc | |
F | 0.850 | 18.631 | 10.600 | 25.014 | 2.780 | 23.670 | |
p | ns | *** | *** | *** | ns | *** | |
GS | 2015 | 17.35 ± 0.39 a | 13.40 ± 0.78 a | 69.19 ± 0.92 c | 5.41 ± 0.38 b | 4.00 ± 0.12 b | 5.19 ± 0.35 b |
2016 | 14.97 ± 0.63 c | 13.96 ± 1.31 a | 71.10 ± 1.68 b | 5.32 ± 0.66 b | 4.77 ± 0.29 a | 5.15 ± 0.62 b | |
2017 | 15.56 ± 0.40 b | 12.18 ± 1.17 b | 72.21 ± 1.38 a | 6.28 ± 0.92 a | 4.65 ± 0.19 a | 6.01 ± 0.80 a | |
F | 97.630 | 33.360 | 35.600 | 43.092 | 63.140 | 41.020 | |
p | *** | *** | *** | *** | *** | *** | |
IRR × GS | F | 1.990 | 3.180 | 3.100 | 6.464 | 2.140 | 5.720 |
p | ns | * | * | *** | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jukić Špika, M.; Romić, D.; Žanetić, M.; Zovko, M.; Klepo, T.; Strikić, F.; Perica, S. Irrigation of Young Olives Grown on Reclaimed Karst Soil Increases Fruit Size, Weight and Oil Yield and Balances the Sensory Oil Profile. Foods 2022, 11, 2923. https://doi.org/10.3390/foods11182923
Jukić Špika M, Romić D, Žanetić M, Zovko M, Klepo T, Strikić F, Perica S. Irrigation of Young Olives Grown on Reclaimed Karst Soil Increases Fruit Size, Weight and Oil Yield and Balances the Sensory Oil Profile. Foods. 2022; 11(18):2923. https://doi.org/10.3390/foods11182923
Chicago/Turabian StyleJukić Špika, Maja, Davor Romić, Mirella Žanetić, Monika Zovko, Tatjana Klepo, Frane Strikić, and Slavko Perica. 2022. "Irrigation of Young Olives Grown on Reclaimed Karst Soil Increases Fruit Size, Weight and Oil Yield and Balances the Sensory Oil Profile" Foods 11, no. 18: 2923. https://doi.org/10.3390/foods11182923
APA StyleJukić Špika, M., Romić, D., Žanetić, M., Zovko, M., Klepo, T., Strikić, F., & Perica, S. (2022). Irrigation of Young Olives Grown on Reclaimed Karst Soil Increases Fruit Size, Weight and Oil Yield and Balances the Sensory Oil Profile. Foods, 11(18), 2923. https://doi.org/10.3390/foods11182923