Influence of Sweeteners (Sucrose, Sucralose, and Stevia) on Bioactive Compounds in a Model System Study for Citrus–Maqui Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Fruits and Sweeteners
2.3. Experimental Design
2.4. Quantitative and Qualitative Analysis of Phenolic Compounds
2.5. Extraction and Analysis of Vitamin C
2.6. Statistical Analyses
3. Results
3.1. Flavonoid and Vitamin C Degradation in Control Solutions
3.2. Interaction between Bioactive Compounds and Sweeteners
3.2.1. Interaction between Flavonoids and Sweeteners
3.2.2. Interaction between Vitamin C and Sweeteners
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmboe-Ottesen, G.; Wandel, M. Changes in Dietary Habits after Migration and Consequences for Health: A Focus on South Asians in Europe. Food Nutr. Res. 2012, 56, 18891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Keefe, J.; Gheewala, N.; O’Keefe, J. Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardiovascular Health. J. Am. Coll. Cardiol. 2008, 51, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, V.S.; Hu, F.B. Sweeteners and Risk of Obesity and Type 2 Diabetes: The Role of Sugar-Sweetened Beverages. Curr. Diab. Rep. 2012, 12, 195–203. [Google Scholar] [CrossRef]
- Popkin, B.M. Sugary Beverages Represent a Threat to Global Health. Trends Endocrinol. Metab. 2012, 23, 591–593. [Google Scholar] [CrossRef] [PubMed]
- Hanhineva, K.; Törrönen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkänen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. [Google Scholar] [CrossRef] [PubMed]
- Rubilar, M.; Jara, C.; Poo, Y.; Acevedo, F.; Gutierrez, C.; Sineiro, J.; Shene, C. Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): Sources of Antioxidant Compounds and α-Glucosidase/α-Amylase Inhibitors. J. Agric. Food Chem. 2011, 59, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Villaño, D.; Masoodi, H.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P. Stevia, Sucralose and Sucrose Added to a Maqui-Citrus Beverage and Their Effects on Glycemic Response in Overweight Subjects: A Randomized Clinical Trial. LWT 2021, 144, 111173. [Google Scholar] [CrossRef]
- Zafrilla, P.; Masoodi, H.; Cerdá, B.; García-Viguera, C.; Villano, D. Biological Effects of Stevia, Sucralose and Sucrosa in a Citrus-Maqui Juice in Overweigth Subjets. Food Funct. 2021, 12, 8535–8543. [Google Scholar] [CrossRef] [PubMed]
- Agulló, V.; González-Trujano, M.E.; Hernandez-Leon, A.; Estrada-Camarena, E.; Pellicer, F.; García-Viguera, C. Antinociceptive Effects of Maqui-Berry (Aristotelia chilensis (Mol.) Stuntz). Int. J. Food Sci. Nutr. 2021, 72, 947–955. [Google Scholar] [CrossRef]
- Agulló, V.; González-Trujano, M.E.; Hernandez-Leon, A.; Estrada-Camarena, E.; Pellicer, F.; García-Viguera, C. Synergistic Interaction in the Analgesic-like Effects of Maqui Berry and Citrus Is Antagonized by Sweeteners. Nutrients 2021, 13, 2466. [Google Scholar] [CrossRef] [PubMed]
- Agulló, V.; Domínguez-Perles, R.; Moreno, D.A.; Zafrilla, P.; García-Viguera, C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods 2020, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Agulló, V.; Villaño, D.; García-Viguera, C.; Domínguez-Perles, R. Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules 2020, 25, 371. [Google Scholar] [CrossRef] [Green Version]
- Salar, F.J.; Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. Stevia vs. Sucrose: Influence on the Phytochemical Content of a Citrus–Maqui Beverage—A Shelf Life Study. Foods 2020, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Salar, F.J.; Periago, P.M.; Agulló, V.; García-Viguera, C.; Fernández, P.S. High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods 2021, 10, 2416. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, B.; David, L. Influence of Different Sweeteners on the Stability of Anthocyanins from Cornelian Cherry Juice. Foods 2020, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. The Use of Alternative Sweeteners (Sucralose and Stevia) in Healthy Soft-Drink Beverages, Enhances the Bioavailability of Polyphenols Relative to the Classical Caloric Sucrose. Food Chem. 2022, 370, 131051. [Google Scholar] [CrossRef] [PubMed]
- Agulló, V.; Domínguez-Perles, R.; García-Viguera, C. Sweetener Influences Plasma Concentration of Flavonoids in Humans after an Acute Intake of a New (Poly)Phenol-Rich Beverage. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 930–938. [Google Scholar] [CrossRef]
- Gironés-Vilaplana, A.; Mena, P.; García-Viguera, C.; Moreno, D.A. A Novel Beverage Rich in Antioxidant Phenolics: Maqui Berry (Aristotelia chilensis) and Lemon Juice. LWT-Food Sci. Technol. 2012, 47, 279–286. [Google Scholar] [CrossRef]
- Baenas, N.; Salar, F.J.; Domínguez-Perles, R.; García-Viguera, C. New UHPLC-QQQ-MS/MS Method for the Rapid and Sensitive Analysis of Ascorbic and Dehydroascorbic Acids in Plant Foods. Molecules 2019, 24, 1632. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Liu, L.; Lu, Q.; Xu, Y.; Pan, S.; Wang, K. Integrated Effects of Ascorbic Acid, Flavonoids and Sugars on Thermal Degradation of Anthocyanins in Blood Orange Juice. Eur. Food Res. Technol. 2009, 228, 975–983. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Laleh, G.H.; Frydoonfar, H.; Heidary, R.; Jameei, R.; Zare, S. The Effect of Light, Temperature, PH and Species on Stability of Anthocyanin Pigments in Four Berberis Species. Pak. J. Nutr. 2006, 5, 90–92. [Google Scholar] [CrossRef]
- Martí, N.; Pérez-Vicente, A.; García-Viguera, C. Influence of Storage Temperature and Ascorbic Acid Addition on Pomegranate Juice. J. Sci. Food Agric. 2002, 82, 217–221. [Google Scholar] [CrossRef]
- Herbig, A.L.; Renard, C.M.G.C. Factors That Impact the Stability of Vitamin C at Intermediate Temperatures in a Food Matrix. Food Chem. 2017, 220, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Sapei, L.; Hwa, L. Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Procedia Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Salar, F.J.; Domínguez-Perles, R.; García-Viguera, C.; Fernández, P.S. Ifs and Buts of Non-Thermal Processing Technologies for Plant-Based Drinks’ Bioactive Compounds. Food Sci. Technol. Int. 2022, 1–35. [Google Scholar] [CrossRef]
- El-Ishaq, A. Effect of Temperature and Storage on Vitamin C Content in Fruits Juice. Int. J. Chem. Biomol. Sci. 2015, 1, 17–21. [Google Scholar]
- Munyaka, A.W.; Makule, E.E.; Oey, I.; Van Loey, A.; Hendrickx, M. Thermal Stability of L-Ascorbic Acid and Ascorbic Acid Oxidase in Broccoli (Brassica Oleracea Var. Italica). J. Food Sci. 2010, 75, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-Thermal Stabilization Mechanisms of Anthocyanins in Model and Food Systems-An Overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Chung, C.; Rojanasasithara, T.; Mutilangi, W.; McClements, D.J. Stabilization of Natural Colors and Nutraceuticals: Inhibition of Anthocyanin Degradation in Model Beverages Using Polyphenols. Food Chem. 2016, 212, 596–603. [Google Scholar] [CrossRef]
- De Rosso, V.V.; Mercadante, A.Z. The High Ascorbic Acid Content Is the Main Cause of the Low Stability of Anthocyanin Extracts from Acerola. Food Chem. 2007, 103, 935–943. [Google Scholar] [CrossRef]
- García-Viguera, C.; Bridle, P. Influence of Structure on Colour Stability of Anthocyanins and Flavylium Salts with Ascorbic Acid. Food Chem. 1999, 64, 21–26. [Google Scholar] [CrossRef]
- Criado, M.N.; Barba, F.J.; Frígola, A.; Rodrigo, D. Effect of Stevia Rebaudiana on Oxidative Enzyme Activity and Its Correlation with Antioxidant Capacity and Bioactive Compounds. Food Bioprocess Technol. 2014, 7, 1518–1525. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Elizalde, B.E.; Pitotti, A.; Lerici, C.R. Effect of Sugars and Maillard Reaction Products on Polyphenol Oxidase and Peroxidase Activity in Food. J. Food Biochem. 1991, 15, 169–184. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Marszałek, K.; Skapska, S. Influence of Steviol Glycosides on the Stability of Vitamin C and Anthocyanins. J. Agric. Food Chem. 2014, 62, 11264–11269. [Google Scholar] [CrossRef]
- Nikkhah, E.; Khayamy, M.; Heidari, R.; Jamee, R. Effect of Sugar Treatment on Stability of Anthocyanin Pigments in Berries. J. Biol. Sci. 2007, 7, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Scrob, T.; Hosu, A.; Cimpoiu, C. Sweeteners from Different Lingonberry Jams Influence on Bioaccessibility of Vitamin C, Anthocyanins and Antioxidant Capacity under In Vitro Gastrointestinal Digestion. Antioxidants 2022, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Šic Žlabur, J.Š.; Dobričević, N.; Galić, A.; Pliestić, S.; Voća, S. The Influence of Natural Sweetener (Stevia rebaudiana Bertoni) on Bioactive Compounds Content in Chokeberry Juice. J. Food Process. Preserv. 2018, 42, e13406. [Google Scholar] [CrossRef]
- Cvetkovic, B.; Jokanovic, M. Effect of Preservation Method and Storage Condition on Ascorbic Acid Loss in Beverages. Acta Period. Technol. 2009, 220, 1–7. [Google Scholar] [CrossRef]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. Aronia-Enriched Lemon Juice: A New Highly Antioxidant Beverage. J. Agric. Food Chem. 2008, 56, 11327–11333. [Google Scholar] [CrossRef]
- Albusta, N.; Ali, M. The Effect of Different Storage Conditions and Sugar Additives on the Vitamin C Concentration of Fresh Orange Juice. Eur. J. Sci. Res. 2017, 1, 68–86. [Google Scholar]
- Kroyer, G. Stevioside and Stevia-Sweetener in Food: Application, Stability and Interaction with Food Ingredients. J. Verbrauch. Leb. 2010, 5, 225–229. [Google Scholar] [CrossRef]
Code | Sample |
---|---|
Citrus control | Citrus juice without sweeteners added |
Citrus control + ST | Citrus juice sweetened with stevia |
Citrus control + SU | Citrus juice sweetened with sucralose |
Citrus control + SA | Citrus juice sweetened with sucrose |
Maqui control | Maqui solution without sweeteners added |
Maqui control + ST | Maqui solution sweetened with stevia |
Maqui control + SU | Maqui solution sweetened with sucralose |
Maqui control + SA | Maqui solution sweetened with sucrose |
Vitamin C control | Ascorbic acid solution without sweeteners added |
Vitamin C control + ST | Ascorbic acid solution sweetened with stevia |
Vitamin C control + SU | Ascorbic acid solution sweetened with sucralose |
Vitamin C control + SA | Ascorbic acid solution sweetened with sucrose |
Citrus–maqui control | Citrus–maqui sample (base drink) without sweeteners added |
Citrus–maqui control + ST | Citrus–maqui sample (base drink) sweetened with stevia |
Citrus–maqui control + SU | Citrus–maqui sample (base drink) sweetened with sucralose |
Citrus–maqui control + SA | Citrus–maqui sample (base drink) sweetened with sucrose |
Flavanones | Eriodictyol 7-O-Rutinoside (Eriocitrin) | Naringenin 7-O-Rutinoside (Narirutin) | Hesperetin 7-O-Rutinoside (Hesperidin) | Total | |||
2.81 ± 0.05 | 2.44 ± 0.02 | 4.03 ± 0.06 | 9.28 ± 0.09 | ||||
Anthocyanins z | Dp 3-O-sam-5-O-glc | Dp 3,5-O-diglc | Cy 3,5-O-diglc + Cy 3-O-sam-5-O-glc | Dp 3-O-sam | Dp 3-O-glc | Cy 3-O-sam + Cy 3-O-glc | Total |
4.76 ± 0.02 | 4.66 ± 1.13 | 1.96 ± 0.01 | 1.24 ± 0.00 | 2.81 ± 0.01 | 1.04 ± 0.00 | 16.46 ± 1.11 | |
Vitamin C | Ascorbic acid | Dehydroascorbic acid | Total | ||||
21.39 ± 0.37 | 1.63 ± 0.05 | 23.02 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salar, F.J.; Agulló, V.; Domínguez-Perles, R.; García-Viguera, C. Influence of Sweeteners (Sucrose, Sucralose, and Stevia) on Bioactive Compounds in a Model System Study for Citrus–Maqui Beverages. Foods 2022, 11, 2266. https://doi.org/10.3390/foods11152266
Salar FJ, Agulló V, Domínguez-Perles R, García-Viguera C. Influence of Sweeteners (Sucrose, Sucralose, and Stevia) on Bioactive Compounds in a Model System Study for Citrus–Maqui Beverages. Foods. 2022; 11(15):2266. https://doi.org/10.3390/foods11152266
Chicago/Turabian StyleSalar, Francisco J., Vicente Agulló, Raúl Domínguez-Perles, and Cristina García-Viguera. 2022. "Influence of Sweeteners (Sucrose, Sucralose, and Stevia) on Bioactive Compounds in a Model System Study for Citrus–Maqui Beverages" Foods 11, no. 15: 2266. https://doi.org/10.3390/foods11152266
APA StyleSalar, F. J., Agulló, V., Domínguez-Perles, R., & García-Viguera, C. (2022). Influence of Sweeteners (Sucrose, Sucralose, and Stevia) on Bioactive Compounds in a Model System Study for Citrus–Maqui Beverages. Foods, 11(15), 2266. https://doi.org/10.3390/foods11152266