Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Cattle and Muscle Collection
2.3. Meat Quality Analysis
2.3.1. pH Measurement
2.3.2. Cooking Loss and Shear Force Measurement
2.3.3. Collagen Measurement
2.3.4. Ribonucleotide Measurement
2.3.5. Fatty Acid Composition Measurement
2.4. Statistical Analysis
3. Results
3.1. Meat Quality
3.2. Collagen Content
3.3. Fatty Acid Composition
3.4. Ribonucleotides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Trade Negotiations. Available online: https://api.dtn.go.th/files/v3/60fa587cef41404be4216b7f/download (accessed on 11 March 2022).
- Department of Livestock Development. Available online: http://docimage.dld.go.th/FILEROOM/CABDLD_BOOKSHELF2/DRAWER26/GENERAL/DATA0000/00000082.PDF (accessed on 1 March 2022).
- Saithong, S.; Chatchawan, T.; Boonyanuwat, K. Thai Indigenous Cattle Production Provide a Sustainable Alternative for the Benefit of Smallscale Farmers, Healthy Food, and the Environment. BAHGI E-J. 2011, 1, 21–26. [Google Scholar]
- Sethakul, J.; Opatpatanakit, Y.; Sivapirunthep, P.; Intrapornudom, P. Beef quality under production systems in Thailand: Preliminary Remarks. In Proceedings of the 13th AAAP Animal Science Congress, Hanoi, Vietnam, 22–26 September 2008. [Google Scholar]
- Kahi, A.K.; Graser, H.U. Indigenous Thai Beef Cattle Breeding Scheme Incorporating Indirect Measures of Adaptation: Sensitivity to Changes in Heritabilities of and Genetic Correlations between Adaptation Traits. Asian-Australas. J. Anim. Sci. 2004, 17, 1039–1046. [Google Scholar] [CrossRef]
- Duanyai, S.; Duanyai, S.; Tanasunthonsut, W.; Suwannee, P. Natural Beef Production; Research Report Project Code RDG5120012; Thailand Research Fund (TRF): Bangkok, Thailand, 2009. [Google Scholar]
- Somboonpanyakul, P. Nutritional value of beef (in Thai). In Value of Thai Beef; Sethakul, J., Sivapirunthep, P., Eds.; Amarin Printing: Bangkok, Thailand, 2009; pp. 35–44. [Google Scholar]
- Hwang, Y.-H.; Joo, S.-T. Fatty Acid Profiles, Meat Quality, and Sensory Palatability of Grain-fed and Grass-fed Beef from Hanwoo, American, and Australian Crossbred Cattle. Korean J. Food Sci. Anim. Resour. 2017, 37, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, N.; Harada, H.; Sakaguchi, E. Evaluation of fermentation and aerobic stability of wet brewers’ grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 2003, 83, 557–563. [Google Scholar] [CrossRef]
- Subepang, S.; Suzuki, T.; Phonbumrung, T.; Sommart, K. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australas. J. Anim. Sci. 2019, 32, 548. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Nishino, N. Lactic acid bacteria in total mixed ration silage containing soybean curd residue: Their isolation, identification and ability to inhibit aerobic deterioration. Asian-Australas. J. Anim. Sci. 2016, 29, 516. [Google Scholar] [CrossRef] [Green Version]
- Gunha, T.; Kongphitee, K.; Sommart, K. Feed intake, digestibility, growth performances and eating behavior of native Thai beef cattle fed diets differing in energy density using cassava pulp with rice straw. In Proceedings of the 1st International Conference on Tropical Animal Science and Production, Bangkok, Thailand, 26–29 July 2016; pp. 112–115. [Google Scholar]
- Kongphitee, K.; Sommart, K. Ensilage quality, digestibility and enteric methane emission of the fermented total mixed ration in Thai native beef cattle. In Proceedings of the 1st International Conference on Tropical Animal Science and Production, Bangkok, Thailand, 26–29 July 2016; pp. 116–120. [Google Scholar]
- Centre for Agricultural Information. Available online: https://api.dtn.go.th/files/v3/5e871694ef4140f16b21b86a/download (accessed on 11 March 2022).
- Keaokliang, O.; Kawashima, T.; Angthong, W.; Suzuki, T.; Narmseelee, R. Chemical composition and nutritive values of cassava pulp for cattle. Anim. Sci. J. 2018, 89, 1120–1128. [Google Scholar] [CrossRef]
- Sriroth, K.; Chollakup, R.; Chotineeranat, S.; Piyachomkwan, K.; Oates, C.G. Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 2000, 71, 63–69. [Google Scholar] [CrossRef]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- Sommart, K.; Parker, D.S.; Rowlinson, P.; Wanapat, M. Fermentation Characteristics and Microbial Protein Synthesis in an In Vitro System Using Cassava, Rice Straw and Dried Ruzi Grass as Substrates. Asian-Australas. J. Anim. Sci. 2000, 13, 1084–1093. [Google Scholar] [CrossRef]
- Kim, M.; Choe, J.; Lee, H.J.; Yoon, Y.; Yoon, S.; Jo, C. Effects of Aging and Aging Method on Physicochemical and Sensory Traits of Different Beef Cuts. Korean J. Food Sci. Anim. Resour. 2019, 39, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Stromer, M.H.; Robson, R.M. Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie 1994, 76, 369–375. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Geesink, G. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, Z.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of calpain system in meat tenderness: A review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Nishimura, T. Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Sci. 2015, 109, 48–55. [Google Scholar] [CrossRef]
- Light, N.; Champion, A.E.; Voyle, C.; Bailey, A.J. The role of epimysial, perimysial and endomysial collagen in determining texture in six bovine muscles. Meat Sci. 1985, 13, 137–149. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Nogalski, Z.; Kwiatkowska, A. The influence of crossbreeding on collagen solubility and tenderness of Infraspinatus and Semimembranosus muscles of semi-intensively reared young bulls. Anim. Sci. J. 2016, 87, 1312–1321. [Google Scholar] [CrossRef]
- Purslow, P.P. New developments on the role of intramuscular connective tissue in meat toughness. Annu. Rev. Food Sci. Technol. 2014, 5, 133–153. [Google Scholar] [CrossRef]
- Tikk, M.; Tikk, K.; Tørngren, M.; Meinert, L.; Aaslyng, M.; Karlsson, A.; Andersen, H. Development of Inosine Monophosphate and Its Degradation Products during Aging of Pork of Different Qualities in Relation to Basic Taste and Retronasal Flavor Perception of the Meat. J. Agric. Food Chem. 2006, 54, 7769–7777. [Google Scholar] [CrossRef]
- Mandell, I.B.; Gullett, E.A.; Wilton, J.W.; Kemp, R.A.; Allen, O.B. Effects of gender and breed on carcass traits, chemical composition, and palatability attributes in Hereford and Simmental bulls and steers. Livest. Prod. Sci. 1997, 49, 235–248. [Google Scholar] [CrossRef]
- Muroya, S.; Oe, M.; Ojima, K.; Watanabe, A. Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle. Asian-Australas. J. Anim. Sci. 2019, 32, 1172–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilmore, L.A.; Walzem, R.L.; Crouse, S.F.; Smith, D.R.; Adams, T.H.; Vaidyanathan, V.; Cao, X.; Smith, S.B. Consumption of high-oleic acid ground beef increases HDL-cholesterol concentration but both high- and low-oleic acid ground beef decrease HDL particle diameter in normocholesterolemic men. J. Nutr. 2011, 141, 1188–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, S.; Goswami, S.; Mondal, S.A.; Dutta, D. Dietary fat, salt, and sugar: A clinical perspective of the social catastrophe. In Dietary Sugar, Salt and Fat in Human Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–91. [Google Scholar]
- Sommart, K.; Tangjitwattanachai, N.; Nitipot, P.; Tumdee, A.; Chokcharoen, S. Feed Innovation and Feeding for High Quality Beef Cattle; Research report project code RDG5820025; Thailand Research Fund (TRF): Bangkok, Thailand, 2017. [Google Scholar]
- The Working Committee of Thai Feeding Standard for Ruminant. Nutrient Requirement of Beef Cattle in Indochinese Peninsula; Klungnanavithaya Press: Khon Kaen, Thailand, 2010. [Google Scholar]
- Hill, F. The solubility of intramuscular collagen in meat animals of various ages. J. Food Sci. 1966, 31, 161–166. [Google Scholar] [CrossRef]
- Chaosap, C.; Sivapirunthep, P.; Sitthigripong, R.; Tavitchasri, P.; Maduae, S.; Kusee, T.; Setakul, J.; Adeyemi, K. Meat quality, post-mortem proteolytic enzymes, and myosin heavy chain isoforms of different Thai native cattle muscles. Anim. Biosci. 2021, 34, 1514–1524. [Google Scholar] [CrossRef]
- Chaosap, C.; Sivapirunthep, P.; Takeungwongtrakul, S.; Zulkifli, R.B.M.; Sazili, A.Q. Effects of Zn-L-Selenomethionine on Carcass Composition, Meat Characteristics, Fatty Acid Composition, Glutathione Peroxidase Activity, and Ribonucleotide Content in Broiler Chickens. Food Sci. Anim. Resour. 2020, 40, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Raes, K.; De Smet, S.; Demeyer, D. Effect of double-muscling in Belgian Blue young bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid and polyunsaturated fatty acids. Anim. Sci. 2001, 73, 253–260. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Immonen, K.; Ruusunen, M.; Hissa, K.; Puolanne, E. Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Sci. 2000, 55, 25–31. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechnol. 2014, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Behan, A.A.; Akhtar, M.T.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Muhamad, A.; Samsudin, A.A. Meat quality, fatty acid content and NMR metabolic profile of dorper sheep supplemented with bypass fats. Foods 2021, 10, 1133. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate pH on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Fan, Y.; Han, Z.; Arbab, A.A.I.; Yang, Y.; Yang, Z. Effect of Aging Time on Meat Quality of Longissimus Dorsi from Yunling Cattle: A New Hybrid Beef Cattle. Animals 2020, 10, 1897. [Google Scholar] [CrossRef] [PubMed]
- Schönfeldt, H.C.; Strydom, P.E. Effect of age and cut on cooking loss, juiciness and flavour of South African beef. Meat Sci. 2011, 87, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Ha, M.; Naqvi, Z.B.; White, J.D.; Warner, R.D. Muscle, ageing and temperature influence the changes in texture, cooking loss and shrinkage of cooked beef. Foods 2020, 9, 1289. [Google Scholar] [CrossRef]
- Vieira, C.; Cerdeño, A.; Serrano, E.; Lavín, P.; Mantecón, A. Breed and ageing extent on carcass and meat quality of beef from adult steers (oxen). Livest. Sci. 2007, 107, 62–69. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Torley, P.J.; D’Arcy, B.R.; Bhandari, B.R. Effect of high power ultrasound and ageing on the physical properties of bovine Semitendinosus and Longissimus muscles. Meat Sci. 2007, 75, 628–639. [Google Scholar] [CrossRef]
- Kristensen, L.; Purslow, P.P. The effect of ageing on the water-holding capacity of pork: Role of cytoskeletal proteins. Meat Sci. 2001, 58, 17–23. [Google Scholar] [CrossRef]
- Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Tenderness classification of beef: I. Evaluation of beef longissimus shear force at 1 or 2 days postmortem as a predictor of aged beef tenderness. J. Anim. Sci. 1997, 75, 2417–2422. [Google Scholar] [CrossRef] [Green Version]
- Aberle, E.; Reeves, E.; Judge, M.; Hunsley, R.; Perry, T. Palatability and muscle characteristics of cattle with controlled weight gain: Time on a high energy diet. J. Anim. Sci. 1981, 52, 757–763. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wu, F.; Qiu, X.; Yu, Z.; Niu, W.; He, Y.; Su, H.; Cao, B. Effects of dietary energy on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Animals 2019, 9, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.B.; Crouse, J.D. Relative contributions of acetate, lactate and glucose to lipogenesis in bovine intramuscular and subcutaneous adipose tissue. J. Nutr. 1984, 114, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Kastner, C.L.; Hunt, M.C.; Kropf, D.H.; Allen, D.M. Nutritional Effects on Beef Collagen Characteristics and Palatability. J. Anim. Sci. 1981, 53, 1256–1261. [Google Scholar] [CrossRef]
- Mikołajczak, B.; Iwańska, E.; Spychaj, A.; Danyluk, B.; Montowska, M.; Grześ, B.; Banach, J.K.; Żywica, R.; Pospiech, E. An analysis of the influence of various tenderising treatments on the tenderness of meat from Polish Holstein-Friesian bulls and the course of changes in collagen. Meat Sci. 2019, 158, 107906. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zuo, S.; Peng, S.; Wang, Z.; Zhang, Y.; Luo, H. Untargeted and Targeted Metabolomics Profiling of Muscle Reveals Enhanced Meat Quality in Artificial Pasture Grazing Tan Lambs via Rescheduling the Rumen Bacterial Community. J. Agric. Food Chem. 2021, 69, 846–858. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Bi, Y.; Zeng, S.; Zhang, R.; Diao, Q.; Tu, Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018, 18, 69. [Google Scholar] [CrossRef]
- Chaosap, C.; Sahatsanon, K.; Sitthigripong, R.; Sawanon, S.; Setakul, J. The Effects of Using Pineapple Stem Starch as an Alternative Starch Source and Ageing Period on Meat Quality, Texture Profile, Ribonucleotide Content, and Fatty Acid Composition of Longissimus Thoracis of Fattening Dairy Steers. Foods 2021, 10, 2319. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Norkeaw, R.; Vearasilp, T.; Wicke, M.; Kreuzer, M. Carcass and meat quality of Thai native cattle fattened on Guinea grass (Panicum maxima) or Guinea grass-legume (Stylosanthes guianensis) pastures. Meat Sci. 2009, 81, 155–162. [Google Scholar] [CrossRef]
- Chaiwang, N.; Jaturasitha, S.; Sringam, K.; Wicke, M.; Kreuzer, M. Comparison of the fatty acid profiles of the meat of crossbreds with 75 percent Charolais blood proportion and Thai indigenous upland cattle. Chiang Mai Univ. J. Nat. Sci. 2015, 14, 119–205. [Google Scholar]
- Nogoy, K.M.C.; Sun, B.; Shin, S.; Lee, Y.; Li, X.Z.; Choi, S.H.; Park, S. Fatty Acid Composition of Grain-and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci. Anim. Resour. 2022, 42, 18. [Google Scholar] [CrossRef] [PubMed]
- EFSA. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Wagner, K.-H.; Plasser, E.; Proell, C.; Kanzler, S. Comprehensive studies on the trans fatty acid content of Austrian foods: Convenience products, fast food and fats. Food Chem. 2008, 108, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, M.; Ramos-Morales, E.; Wallace, R. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 2010, 4, 1008–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griinari, J.; Corl, B.; Lacy, S.; Chouinard, P.; Nurmela, K.; Bauman, D. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Δ9-desaturase. J. Nutr. 2000, 130, 2285–2291. [Google Scholar] [CrossRef]
- Bassett, C.M.; Edel, A.L.; Patenaude, A.F.; McCullough, R.S.; Blackwood, D.P.; Chouinard, P.Y.; Paquin, P.; Lamarche, B.; Pierce, G.N. Dietary vaccenic acid has antiatherogenic effects in LDLr−/− mice. J. Nutr. 2010, 140, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Roopashree, P.; Shetty, S.S.; Kumari, N.S. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Su, M.; Chen, D.; Zhou, J.; Shen, Q. Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals 2022, 12, 1136. [Google Scholar] [CrossRef]
Item | Dietary Treatment 1 | Cassava Pulp | Rice Straw | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Ingredients, %DM | |||||
Rice straw | 50 | 30 | 10 | ||
Cassava pulp | 10 | 30 | 50 | ||
Cassava chip | 7 | 7 | 7 | ||
Palm meal | 12 | 12 | 12 | ||
Soybean meal | 14 | 14 | 14 | ||
Rice bran | 5 | 5 | 5 | ||
Urea | 0.7 | 0.7 | 0.7 | ||
Mineral 2 | 0.8 | 0.8 | 0.8 | ||
Limestone | 0.5 | 0.5 | 0.5 | ||
Total | 100 | 100 | 100 | ||
Analyzed chemical composition, %DM | |||||
Dry matter | 46.2 | 41.1 | 33.2 | 23.8 | 92.8 |
Organic matter | 88.4 | 90.8 | 93.6 | 98.2 | 88.0 |
Crude protein | 13.8 | 14.3 | 15.0 | 2.2 | 2.7 |
Ether extract | 3.5 | 3.3 | 3.4 | 0.8 | 0.9 |
Neutral detergent fiber | 51.1 | 44.3 | 38.1 | 32.8 | 77.0 |
Acid detergent fiber | 36.8 | 34.0 | 25.4 | 20.0 | 51.6 |
Energy density, MJ/kg DM | |||||
Gross energy | 17.0 | 17.4 | 17.6 | 16.4 | 16.2 |
Metabolizable energy (calculated) | 8.9 | 9.7 | 10.5 | 9.6 | 6.5 |
Cost, Baht/kg FM | 4.96 | 4.74 | 3.95 | 0.42 | 2.31 |
Cost, Baht/kg DM | 13.19 | 12.61 | 10.51 | 1.74 | 2.49 |
Trait | Treatment (T) 1 | Aging (A) | RMSE 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | 2 Days | 14 Days | T | A | T*As | ||
pH | 5.65 | 5.56 | 5.59 | 5.56 | 5.63 | 0.18 | 0.543 | 0.349 | 0.969 |
Cooking loss (%) | 20.81 | 20.78 | 23.87 | 19.95 b | 23.68 a | 2.91 | 0.051 | 0.002 | 0.066 |
WBSF (kg) | 8.91 a | 7.26 b | 7.74 b | 9.40 a | 6.34 b | 1.42 | 0.024 | <0.0001 | 0.802 |
Collagen | Treatment (T) 1 | Aging Time | RMSE 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | 2 Days | 14 Days | T | A | T*A | ||
Soluble | 0.17 | 0.20 | 0.18 | 0.18 | 0.19 | 0.06 | 0.537 | 0.372 | 0.574 |
Insoluble | 2.58 | 3.00 | 2.76 | 2.96 a | 2.61 b | 0.42 | 0.095 | 0.023 | 0.468 |
Total | 2.75 | 3.20 | 2.95 | 3.14 a | 2.80 b | 0.43 | 0.077 | 0.037 | 0.462 |
% solubility | 6.32 | 6.34 | 6.32 | 5.68 | 6.97 | 2.19 | 0.999 | 0.110 | 0.585 |
Trait | Treatment 1 | RMSE 2 | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Fatty acid composition | g/100 g total fatty acids (mg/100 g fresh meat) | ||||
Decanoic acid (C10:0) | 0.33 a (14.82) | 0.12 b (7.79) | 0.14 b (5.46) | 0.11 | 0.024 |
Lauric acid (C12:0) | 0.11 (5.01) | 0.11 (5.99) | 0.08 (3.26) | 0.05 | 0.549 |
Tridecanoic acid (C13:0) | 0.07 (2.77) | 0.06 (3.69) | 0.06 (2.53) | 0.03 | 0.987 |
Myristic acid (C14:0) | 2.73 (116.90) | 3.02 (174.41) | 2.52 (107.25) | 0.76 | 0.636 |
Myristoleic acid (C14:1) | 0.89 (38.82) | 1.10 (62.70) | 1.18 (49.60) | 0.36 | 0.449 |
Pentadecanoic acid (C15:0) | 0.26 (10.71) | 0.19 (10.86) | 0.20 (8.45) | 0.06 | 0.162 |
Ginkgolic acid (C15:1) | 0.12 (5.60) | 0.10 (6.21) | 0.13 (5.13) | 0.03 | 0.510 |
Palmitic acid (C16:0) | 20.08 (836.20) | 20.67 (1209.13) | 18.35 (789.84) | 1.83 | 0.201 |
Palmitoleic acid (C16:1) | 3.31 (140.01) | 3.73 (215.27) | 3.98 (169.45) | 0.52 | 0.160 |
Margaric acid (C17:0) | 0.69 (29.99) | 0.70 (39.99) | 0.69 (29.90) | 0.10 | 0.998 |
Heptadecenoic acid (C17:1) | 0.51 (21.97) | 0.51 (29.23) | 0.62 (26.37) | 0.08 | 0.139 |
Stearic acid (C18:0) | 7.95 (328.81) | 7.21 (424.02) | 6.41 (275.35) | 1.50 | 0.310 |
Vaccenic acid (C18:1n9t) | 0.52 a (21.75) | 0.15 b (8.82) | 0.24 b (10.18) | 0.12 | 0.003 |
Oleic acid (C18:1n9c) | 58.28 (2444.18) | 59.27 (3443.02) | 61.75 (2710.62) | 4.58 | 0.498 |
Trans-Linolelaidic acid (C18:2n6t) | 0.49 a (20.50) | 0.20 b (11.49) | 0.20 b (8.09) | 0.15 | 0.022 |
Linoleic acid (C18:2n6c) | 1.44 (57.41) | 0.80 (46.81) | 0.92 (37.25) | 0.43 | 0.082 |
γ-Linolenic acid (C18:3n6) | 0.14 (6.01) | 0.66 (40.80) | 0.75 (27.58) | 0.49 | 0.148 |
∝-Linolenic acid (C18:3n3) | 0.03 (1.61) | 0.04 (2.24) | 0.04 (1.64) | 0.01 | 0.947 |
Arachidic (C20:0) | 0.19 (8.07) | 0.17 (10.24) | 0.17 (7.64) | 0.04 | 0.498 |
Erucic acid (C20:1n9) | 0.18 (7.37) | 0.15 (8.69) | 0.17 (7.06) | 0.03 | 0.502 |
Heneicosanoic Acid (C21:0) | 0.12 (4.87) | 0.14 (8.52) | 0.17 (8.06) | 0.04 | 0.116 |
Eicosatrienoic acid (C20:3n6) | 0.31 a (13.09) | 0.09 b (5.23) | 0.18 b (6.63) | 0.10 | 0.022 |
Docosanoic Acid (C22:0) | 0.10 (3.96) | 0.06 (4.06) | 0.09 (3.47) | 0.05 | 0.623 |
Eicosatrienoic acid (C20:3n3) + Arachidonic acid (C20:4n6) | 0.55 (22.16) | 0.31 (18.61) | 0.41 (15.52) | 0.23 | 0.295 |
Docosadienoic acid (C22:2) | 0.07 a (2.97) | 0.03 b (1.87) | 0.04 b (1.30) | 0.02 | 0.044 |
Nervonic acid (C24:1) | 0.13 (5.52) | 0.08 (4.70) | 0.09 (3.48) | 0.05 | 0.176 |
Docosahexaenoic acid (C22:6n3) | 0.37 (15.77) | 0.30 (18.22) | 0.41 (17.35) | 0.09 | 0.274 |
Total fatty acid (g/100 g) | 4.19 | 5.82 | 4.34 | 1.38 | 0.188 |
SFA (saturated fatty acid) | 32.63 | 32.46 | 28.90 | 3.77 | 0.282 |
MUFA (monounsaturated fatty acid) | 63.96 | 65.11 | 68.15 | 4.49 | 0.359 |
PUFA (polyunsaturated fatty acid) | 3.41 | 2.43 | 2.95 | 1.06 | 0.369 |
UFA (unsaturated fatty acid) | 78.73 | 77.17 | 80.45 | 3.77 | 0.282 |
UFA:SFA | 2.12 | 2.11 | 2.46 | 0.37 | 0.326 |
PUFA:SFA | 0.10 | 0.07 | 0.10 | 0.03 | 0.274 |
Ribonucleotides (mg/100 g) | Treatment 1 | RMSE 2 | p-Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Hypoxanthine | 5.04 | 4.21 | 5.31 | 1.17 | 0.424 |
Inosine | 19.85 | 21.08 | 21.41 | 6.69 | 0.927 |
Inosine monophosphate | 219.04 | 211.29 | 213.95 | 15.07 | 0.707 |
Guanosine monophosphate | 2.86 | 2.78 | 3.04 | 0.20 | 0.277 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaosap, C.; Lukkananukool, A.; Polyorach, S.; Sommart, K.; Sivapirunthep, P.; Limsupavanich, R. Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle. Foods 2022, 11, 2046. https://doi.org/10.3390/foods11142046
Chaosap C, Lukkananukool A, Polyorach S, Sommart K, Sivapirunthep P, Limsupavanich R. Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle. Foods. 2022; 11(14):2046. https://doi.org/10.3390/foods11142046
Chicago/Turabian StyleChaosap, Chanporn, Achara Lukkananukool, Sineenart Polyorach, Kritapon Sommart, Panneepa Sivapirunthep, and Rutcharin Limsupavanich. 2022. "Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle" Foods 11, no. 14: 2046. https://doi.org/10.3390/foods11142046
APA StyleChaosap, C., Lukkananukool, A., Polyorach, S., Sommart, K., Sivapirunthep, P., & Limsupavanich, R. (2022). Effects of Dietary Energy Density in a Fermented Total Mixed Ration Formulated with Different Ratios of Rice Straw and Cassava Pulp on 2- or 14-Day-Aged Meat Quality, Collagen, Fatty Acids, and Ribonucleotides of Native Thai Cattle Longissimus Muscle. Foods, 11(14), 2046. https://doi.org/10.3390/foods11142046