Texture Characteristics of Sea Buckthorn (Hippophae rhamnoides) Jelly for the Elderly Based on the Gelling Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Analysis of Fatty Acid Profiles
2.3. Analysis of Mineral Profiles
2.4. Analysis of Antioxidant Effects
2.4.1. Total Polyphenol Content
2.4.2. Total Flavonoid Content
2.4.3. Superoxide Radical Scavenging Activity
2.4.4. DPPH Radical Scavenging Ability
2.4.5. ABTS Radical Scavenging Activity
2.4.6. Ferric Reducing Antioxidant Power
2.4.7. Reducing Power
2.5. Analysis of Antidiabetes Effects
2.5.1. α–Glucosidase Inhibitory Activity
2.5.2. α–Amylase Inhibitory Activity
2.6. Analysis of Texture Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Composition
3.2. Mineral Composition
3.3. Antioxidant Effects
3.3.1. Total Polyphenol Content
3.3.2. Total Flavonoid Content
3.3.3. Superoxide Radical Scavenging Activity
3.3.4. DPPH Radical Scavenging Activity
3.3.5. ABTS Radical Scavenging Activity
3.3.6. Ferric Reducing Antioxidant Power
3.3.7. Reducing Power
3.4. Antidiabetes Effects
3.5. Hardness of Sea Buckthorn Jelly
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Letchamo, W.; Ozturk, M.; Altay, V.; Musayev, M.; Mamedov, N.A.; Hakeem, K.R. An alternative potential natural genetic resource: Sea buckthorn [Elaeagnus rhamnoides (syn.: Hippophae rhamnoides)]. In Global Perspectives on Underutilized Crops; Springer: Cham, Switzerland, 2018; pp. 25–82. [Google Scholar]
- Zeb, A. Chemical and nutritional constituents of sea buckthorn juice. Pak. J. Nutr. 2014, 3, 99–106. [Google Scholar]
- Funami, T. The formulation design of elderly special diets. J. Texture Stud. 2016, 47, 313–322. [Google Scholar] [CrossRef]
- Kim, D.S.; Joo, N.M. Feasibility of elder-friendly food applications of sacha inchi according to cooking method: Focusing on analysis of antioxidative activity and brain neuron cell viability. Foods 2021, 10, 2948. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.P.; Sahoo, M.R.; Kuna, A.; Deb, P.; Dasgupta, M.; Prakash, N. Influence of microwave cooking on proximate, mineral and radical scavenging activities of tree bean seeds and pods. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3909–3917. [Google Scholar] [CrossRef]
- Rana, V.S.; Das, M. Fatty acid and non-fatty acid components of the seed oil of Celastrus paniculatus willd. Int. J. Fruit Sci. 2017, 17, 407–414. [Google Scholar] [CrossRef]
- Bartsch, H.; Nair, J.; Owen, R.W. Dietary polyunsaturated fatty acids and cancers of the breast and colorectum: Emerging evidence for their role as risk modifiers. J. Carcinog. 1999, 20, 2209–2218. [Google Scholar] [CrossRef] [Green Version]
- Dunham, W.R.; Klein, S.B.; Rhodes, L.M.; Marcelo, C.L. Oleic acid and linoleic acid are the major determinants of changes in keratinocyte plasma membrane viscosity. J. Investig. Dermatol. 1996, 107, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Marjanovic-Balaban, Z.; Grujic, S.; Jašić, M.; Vujadinović, D.; Kovačević, D. Testing of chemical composition of wild berries. Chemistry 2012, 154–160. [Google Scholar]
- United States Department of Agriculture (USDA). Nutrition Comparison and Search. 20 April. Available online: https://foodstruct.com/ (accessed on 30 April 2022).
- Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. J. Med. Food 2005, 8, 281–290. [Google Scholar] [CrossRef]
- Hussain, M.; Ali, S.; Awan, S.; Hussain, M.; Hussain, I. Analysis of minerals and vitamins in sea buckthorn (Hippophae rhamnoids) pulp collected from Ghizer and Skardu districts of Gilgit-Baltistan. Int. J. Biosci. 2014, 4, 144–152. [Google Scholar]
- Ho, G.T.T.; Nguyen, T.K.Y.; Kase, E.T.; Tadesse, M. Enhanced glucose uptake in human liver cells and inhibition of carbohydrate hydrolyzing enzymes by Nordic berry extracts. Molecules 2017, 22, 1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, I.G. Polyphenols content and antioxidant activities of taraxacum officinale F.H. wigg (Dandelion) leaves. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 889–893. [Google Scholar]
- Ardestani, A.; Yazdanparast, R. Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chem. 2007, 104, 21–29. [Google Scholar] [CrossRef]
- Neamul Kabir Zihad, S.M.; Uddin, S.J.; Islam, M.T. Nutritional value, micronutrient and antioxidant capacity of some green leafy vegetables commonly used by southern coastal people of Bangladesh. Heliyon 2019, 5, e02768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhuri, D.; Ghate, N.B.; Panja, S.; Das, A.; Mandal, N. Wild edible fruit of Prunus nepalensis Ser. (Steud), a potential source of antioxidants, ameliorates iron overload-induced hepatotoxicity and liver fibrosis in mice. PLoS ONE 2015, 10, e0144280. [Google Scholar] [CrossRef] [Green Version]
- Chaves, V.C.; Boff, L.; Vizzotto, M.; Calvete, E. Berries grown in Brazil: Anthocyanin profiles and biological properties: Chemical composition of berries grown in Brazil. J. Sci. Food Agric. 2018, 98, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Radhakrishnan, J.; Anand, D. Influence of antioxidant rich fresh vegetable juices on starch induced postprandial hyperglycemia in rats. Food Funct. 2011, 2, 521–528. [Google Scholar] [CrossRef]
- Rupasinghe, V.H.P.; Yu, L.J.; Bhullar, K.S.; Bors, B. Short communication: Haskap (Lonicera caerulea): A new berry crop with high antioxidant capacity. Can. J. Plant Sci. 2012, 92, 1311–1317. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Song, S.Y.; Park, D.H.; Seo, S.W.; Park, K.M.; Bae, C.S.; Son, H.S.; Kim, H.G.; Lee, J.H.; Yoon, G.; Shim, J.H.; et al. Effects of harvest time on phytochemical constituents and biological activities of Panax ginseng berry extracts. Molecules 2019, 24, 3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjana, D.K.; Yamini Bhushan Tripathi, J.T.; Tiwari, S. In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug—Shirishadi. J. Adv. Pharm. Technol. Res. 2013, 4, 206–209. [Google Scholar]
- Thouri, A.; Chahdoura, H.; Amira, E.A.; Hichri, A.O. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement. Altern. Med. 2017, 17, 248. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Wojdyło, A.; Oszmiański, J.; Nowicka, P. Nutritional, phytochemical characteristics and in vitro effect on α-amylase, α-glucosidase, lipase, and cholinesterase activities of 12 coloured carrot varieties. Foods 2021, 10, 808. [Google Scholar] [CrossRef]
- Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym. 2018, 180, 128–144. [Google Scholar] [CrossRef] [PubMed]
- Chaisawang, M.; Suphantharika, M. Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch. Carbohydr. Polym. 2005, 61, 288–295. [Google Scholar] [CrossRef]
- Duhan, N.; Barak, S.; Mudgil, D. Chemistry, biological activities, and uses of locust bean gum. Gums Resins Latexes Plant Orig. 2021, 1–16. [Google Scholar]
Composition | Content (mg/100 g) |
---|---|
Saturated fatty acid | 28.049 ± 2.983 |
C(11:0) | 13.126 ± 0.666 |
C(14:0) | 0.131 ± 0.006 |
C(15:0) | 0.117 ± 0.004 |
C(16:0) | 10.233 ± 0.501 |
C(17:0) | 0.067 ± 0.003 |
C(18:0) | 4.148 ± 0.204 |
C(21:0) | 0.083 ± 0.001 |
C(23:0) | 0.080 ± 0.004 |
C(24:0) | 0.064 ± 0.002 |
Unsaturated fatty acid | 71.951 ± 1.967 |
C(18:1t) | 0.226 ± 0.013 |
C(18:1n9c) | 18.911 ± 0.936 |
C(18:1n7c) | 0.525 ± 0.020 |
C(18:2t) | 0.127 ± 0.003 |
C(18:2n6c) | 33.586 ± 1.678 |
C(18:3t) | 0.137 ± 0.005 |
C(18:3n3) | 17.681 ± 0.878 |
C(20:1) | 0.205 ± 0.010 |
C(22:1) | 0.133 ± 0.005 |
C(24:1) | 0.420 ± 0.011 |
Composition | Content (mg/100 g) |
---|---|
Calcium | 169.546 ± 8.334 |
Iron | 31.877 ± 1.435 |
Magnesium | 24.310 ± 1.101 |
Phosphorous | 80.213 ± 3.016 |
Potassium | 600.918 ± 27.887 |
Sodium | 388.066 ± 17.043 |
Zinc | 2.255 ± 0.017 |
Copper | 1.211 ± 0.050 |
Manganese | 2.039 ± 0.201 |
Status | ||
---|---|---|
Antioxidation | Total polyphenol content (g GAE/100 g) | 145.566 ± 4.962 |
Total flavonoid content (mg RE/100 g) | 12.375 ± 1.382 | |
Superoxide radical scavenging activity IC50 (μg/mL) | 211.287 ± 10.844 | |
DPPH radical scavenging activity IC50 (μg/mL) | 48.755 ± 3.000 | |
ABTS radical scavenging activity IC50 (μg/mL) | 9.539 ± 0.071 | |
Ferric reducing antioxidant power IC50 (μg/mL) | 61.107 ± 0.792 | |
Reducing power IC50 (μg/mL) | 15.095 ± 0.660 | |
Antidiabetes | α-glucosidase inhibitory activity IC50 (mg/mL) | 0.972 ± 0.032 |
α-amylase inhibitory activity IC50 (mg/mL) | 0.745 ± 0.024 |
Parameters | Concentration of Gelling Agent (%) | Gelling Agent | F-Value (p-Value) | ||
---|---|---|---|---|---|
Guar Gum | Xanthan Gum | Locust Bean Gum | |||
Hardness (N/m2) | 1 | 3548.000 ± 170.420 | 1194.333 ± 50.589 | N.D. (Viscosity (mPa.s) 336.800 ± 14.681) | 11,593.671 *** (0.000) |
3 | 13,953.667 ± 664.290 | 2878.667 ± 144.922 | 3730.000 ± 72.459 | 729.949 *** (0.000) | |
5 | 44,479.000 ± 1284.075 | 6417.000 ± 298.679 | 9480.667 ± 245.082 | 2233.602 *** (0.000) | |
7 | 54,280.000 ± 990.625 | 12,738.667 ± 204.534 | 28,940.333 ± 1240.829 | 1541.114 *** (0.000) | |
9 | 71,805.667 ± 3142.662 | 15,471.333 ± 761.105 | 45,338.000 ± 2019.845 | 493.037 *** (0.000) | |
Adhesiveness (N·s/m2) | 1 | −1.663 ± 0.026 | −1.762 ± 0.056 | N.D. | 2342.922 *** (0.000) |
3 | −1.383 ± 0.034 | −1.350 ± 0.040 | −2.124 ± 0.068 | 234.536 *** (0.000) | |
5 | −0.436 ± 0.019 | −0.312 ± 0.015 | −1.929 ± 0.091 | 829.669 *** (0.000) | |
7 | −0.244 ± 0.011 | −0.139 ± 0.007 | −1.109 ± 0.047 | 1130.750 *** (0.000) | |
9 | −0.163 ± 0.007 | −0.086 ± 0.004 | −0.253 ± 0.007 | 536.669 *** (0.000) | |
Springiness (mm) | 1 | 0.657 ± 0.032 | 0.680 ± 0.026 | N.D. | 773.788 *** (0.000) |
3 | 0.900 ± 0.040 | 0.737 ± 0.035 | 0.460 ± 0.020 | 137.701 *** (0.000) | |
5 | 0.990 ± 0.045 | 0.767 ± 0.035 | 0.643 ± 0.029 | 128.262 *** (0.000) | |
7 | 1.310 ± 0.050 | 0.927 ± 0.006 | 0.817 ± 0.038 | 152.176 *** (0.000) | |
9 | 2.253 ± 0.112 | 0.930 ± 0.018 | 0.973 ± 0.006 | 392.135 *** (0.000) | |
Chewiness (N/m2) | 1 | 308.900 ± 15.342 | 238.333 ± 7.086 | N.D. | 4694.143 *** (0.000) |
3 | 851.500 ± 38.431 | 327.000 ± 15.519 | 348.267 ± 5.008 | 455.105 *** (0.000) | |
5 | 1528.967 ± 55.853 | 455.700 ± 10.958 | 830.667 ± 11.172 | 793.636 *** (0.000) | |
7 | 8013.067 ± 371.071 | 578.867 ± 23.412 | 1066.000 ± 34.028 | 1116.567 *** (0.000) | |
9 | 9757.100 ± 270.363 | 632.900 ± 27.022 | 1288.633 ± 37.335 | 3098.811 *** (0.000) | |
Gumminess (N/m2) | 1 | 310.800 ± 15.451 | 102.867 ± 5.046 | N.D. | 8857.172 *** (0.000) |
3 | 960.067 ± 29.122 | 146.300 ± 5.957 | 351.800 ± 4.161 | 1788.929 *** (0.000) | |
5 | 2048.567 ± 111.261 | 256.200 ± 5.803 | 852.800 ± 9.506 | 599.656 *** (0.000) | |
7 | 3927.367 ± 172.903 | 832.333 ± 37.239 | 1614.267 ± 18.657 | 737.005 *** (0.000) | |
9 | 6170.933 ± 309.331 | 1170.067 ± 53.603 | 2486.100 ± 84.926 | 571.778 *** (0.000) | |
Cohesiveness | 1 | 0.593 ± 0.021 | 0.737 ± 0.032 | N.D. | 936.068 *** (0.000) |
3 | 0.737 ± 0.012 | 0.743 ± 0.035 | 0.547 ± 0.025 | 56.117 *** (0.000) | |
5 | 0.750 ± 0.010 | 0.753 ± 0.035 | 0.637 ± 0.021 | 22.472 *** (0.002) | |
7 | 0.797 ± 0.031 | 0.877 ± 0.023 | 0.687 ± 0.006 | 54.600 *** (0.000) | |
9 | 0.860 ± 0.042 | 0.923 ± 0.006 | 0.890 ± 0.010 | 38.714 *** (0.000) | |
Resilience | 1 | 0.097 ± 0.006 | 0.217 ± 0.006 | N.D. | 1590.500 *** (0.000) |
3 | 0.130 ± 0.005 | 0.223 ± 0.006 | 0.090 ± 0.000 | 316.000 *** (0.000) | |
5 | 0.240 ± 0.010 | 0.250 ± 0.010 | 0.097 ± 0.006 | 283.857 *** (0.000) | |
7 | 0.483 ± 0.021 | 0.360 ± 0.017 | 0.120 ± 0.001 | 417.942 *** (0.000) | |
9 | 0.520 ± 0.026 | 0.457 ± 0.021 | 0.123 ± 0.006 | 349.841 *** (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-S.; Iida, F. Texture Characteristics of Sea Buckthorn (Hippophae rhamnoides) Jelly for the Elderly Based on the Gelling Agent. Foods 2022, 11, 1892. https://doi.org/10.3390/foods11131892
Kim D-S, Iida F. Texture Characteristics of Sea Buckthorn (Hippophae rhamnoides) Jelly for the Elderly Based on the Gelling Agent. Foods. 2022; 11(13):1892. https://doi.org/10.3390/foods11131892
Chicago/Turabian StyleKim, Dah-Sol, and Fumiko Iida. 2022. "Texture Characteristics of Sea Buckthorn (Hippophae rhamnoides) Jelly for the Elderly Based on the Gelling Agent" Foods 11, no. 13: 1892. https://doi.org/10.3390/foods11131892
APA StyleKim, D.-S., & Iida, F. (2022). Texture Characteristics of Sea Buckthorn (Hippophae rhamnoides) Jelly for the Elderly Based on the Gelling Agent. Foods, 11(13), 1892. https://doi.org/10.3390/foods11131892