Investigations on Functional and Thermo-Mechanical Properties of Gluten Free Cereal and Pseudocereal Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analyses and Physical Properties
2.3. Solvent Retention Capacity
2.4. Thermo-Mechanical Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate Compositions and Physical Properties of Gluten-Free Flours
3.2. Solvent Retention Capacity of Gluten-Free Flours
3.3. The Thermo-Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, X.; Wen, H.; Li, C.; Gu, Z. Differences in functional properties and biochemical characteristics of congenetic rice proteins. J. Cereal Sci. 2009, 50, 184–189. [Google Scholar] [CrossRef]
- Badiu, E.; Aprodu, I.; Banu, I. Trends in the development of gluten-free bakery products. Nnals Univ. Dunarea De Jos Galati Fasc. VI-Food Technol 2014, 38, 21–36. [Google Scholar]
- Niu, Q.; Pu, Y.; Li, X.; Ma, Z.; Hu, X. Solvent Retention Capacities of Oat Flour. Int. J. Mol. Sci. 2017, 18, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Li, X.; Ma, Z.; Hu, Z. Solvent retention capacity of oat flour: Relationship with oat β-glucan content and molecular weight. Food Hydrocoll. 2019, 93, 19–23. [Google Scholar] [CrossRef]
- Yue, J.; Gu, Z.; Zhu, Z.; Yi, J.; Ohm, J.B.; Chen, B.; Rao, J. Impact of defatting treatment and oat varieties on structural, functional properties, and aromatic profile of oat protein. Food Hydrocoll. 2021, 112, 106368. [Google Scholar] [CrossRef]
- Agrawal, R.S. Quinoa—Supergrain of the future: A Review. Pharma Innov. 2018, 7, 249–251. [Google Scholar]
- Ng, S.C.; Anderson, A.; Coker, J.; Ondrus, M. Characterization of lipid oxidation products in quinoa (Chenopodium quinoa). Food Chem. 2007, 101, 185–192. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa protein: Composition, structure and functional properties. Food Chem. 2019, 299, 125161. [Google Scholar] [CrossRef]
- Joshi, D.C.; Sood, S.; Hosahatti, R.; Kant, L.; Pattanayak, A.; Kumar, A.; Yadav, D.; Stetter, M.G. From zero to hero: The past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018, 131, 1807–1823. [Google Scholar] [CrossRef]
- Narwade, S.; Pinto, S. Amaranth—A Functional Food. Concepts Dairy Vet. Sci. 2018, 1, 000112. [Google Scholar]
- Torbica, A.; Hadnađev, M.; Hadnađev, T.D. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012, 48, 277–283. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Y.; Hu, Y.; Zhao, G.; Tang, Y.; Zou, L. Concise review: Coarse cereals exert multiple beneficial effects on human health. Food Chem. 2020, 325, 126761. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R.; Bugusu, B.A. Overview: Sorghum protein and food quality. Department of Food Science. Purdue University and the INTSORMIL CRSP West Lafayette, Indiana, USA (20 May 2003). In Proceedings of the Afripro-Workshop on the Proteins of Sorghum and Millets: Enhancing Nutritional and Functional Properties for Africa, Indiana, Pretoria, South Africa, 2–4 April 2003. [Google Scholar]
- Sharma, N.; Niranjan, K. Foxtail millet: Properties, processing, health benefits, and uses. Food Rev. Int. 2018, 34, 329–363. [Google Scholar] [CrossRef]
- Sachdev, N.; Goomer, S.; Singh, L.R. Foxtail millet: A potential crop to meet future demand scenario for alternative sustainable protein. J. Sci. Food Agr. 2021, 101, 831–842. [Google Scholar] [CrossRef] [PubMed]
- SR ISO 712:2005; SR ISO 2171/2002. Romanian Standards Catalog for Cereal and Milling Products Analysis; ASRO: Bucharest, Romania, 2008.
- Delcour, J.A.; Vanhamel, S.; De Geest, C. Physico-Chemical and Functional Properties of Rye Nonstarch Polysaccharides. I. Colorimetric Analysis of Pentosans and Their Relative Monosaccharide Compositions in Fractionated (Milled) Rye Products. Cereal Chem. 1989, 66, 107–111. [Google Scholar]
- AACC International. Approved Methods of Analysis, 11th ed.; Methods 56-11.02 and 76-31.01; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Godon, B.; Wilhm, C. Primary Cereal Processing A Comprehensive Sourcebook; VCH: New York, NY, USA, 1994; pp. 129–130. [Google Scholar]
- Dubat, A.; Boinot, N. Mixolab Applications Handbook. Rheological and Enzymes Analyses; Chopin Technology: Villenueve, France, 2012; p. 14. [Google Scholar]
- Hadnadev, T.D.; Torbica, A.; Hadnadev, M. Rheological properties of wheat flour substitutes/alternative crops assessed by Mixolab. Procedia Food Sci. 2011, 1, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Barrera, G.; Perez, G.; Ribotta, P.; Leon, A. Influence of damaged starch on cookie and bread-making quality. Eur. Food Res. Technol. 2007, 225, 1–7. [Google Scholar] [CrossRef]
- Topin, V.; Radjai, F.; Dellene, J.Y.; Sadoudi, A.; Mabille, F. Wheat endosperm as a cohesive granular material. J. Cereal Sci. 2008, 47, 347–356. [Google Scholar] [CrossRef]
- Collar, C.; Angioloni, A. Pseudocereals and teff in complex breadmaking matrices: Impact on lipid dynamics. J. Cereal Sci. 2014, 59, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, M.; Lucisano, M.; Pagani, M.A.; Ng, P.K.W. Effects of dispersing media and heating rates on pasting profiles of wheat and gluten-free samples in relation to their solvent retention capacities and mixing properties. LWT Food Sci. Technol. 2016, 66, 201–210. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Kweon, M.; Lee, B. Effects of particle size on the properties of whole-grain soft wheat flour and its cracker baking performance. J. Cereal Sci. 2016, 69, 187–193. [Google Scholar] [CrossRef]
- Guo, X.; Hu, G.; Liu, S. Anti-nutritive role of oat β-glucan and application of oat β-glucanase in feed. Jiangxi Feed 2001, 2, 11–13. [Google Scholar]
- Yamazaki, E.; Murakami, K.; Kurita, O. Easy preparation of dietary fiber with the high water-holding capacity from food sources. Plant Foods Hum. Nutr. 2005, 60, 17–23. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Mariotti, M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohyd. Polym. 2013, 98, 1657–1666. [Google Scholar] [CrossRef]
- Torbica, A.; Belović, M.; Tomić, J. Novel breads of non-wheat flours. Food Chem. 2019, 282, 134–140. [Google Scholar] [CrossRef]
- Alonso-Miravalles, L.; O’Mahony, J. Composition, Protein Profile and Rheological Properties of Pseudocereal-Based Protein-Rich Ingredients. Foods 2018, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Akharume, F.; Santra, D.; Adedeji, A. Physicochemical and functional properties of proso millet storage protein fractions. Food Hydrocoll. 2020, 108, 105497. [Google Scholar] [CrossRef]
- Codină, G.G.; Zaharia, D.; Stroe, S.G.; Ropciuc, S. Influence of calcium ions addition from gluconate and lactate salts on refined wheat flour dough rheological properties. CYTA J. Food 2018, 16, 884–891. [Google Scholar] [CrossRef]
- Sehn, G.A.R.; Nogueira, A.C.; Almeida, E.L.; Chang, Y.K.; Steel, C.J. Fortification of wheat dough with calcium and magnesium ions affects empirical rheological properties. Cereal Chem. 2015, 92, 405–410. [Google Scholar] [CrossRef]
- Inglett, G.E.; Chen, D.; Liu, S.X. Physical properties of gluten-free sugar cookies made from amaranth-oat composites. LWT Food Sci. Technol. 2015, 63, 214–220. [Google Scholar] [CrossRef]
- Aprodu, I.; Banu, I. Milling, functional and thermo-mechanical properties of wheat, rye, triticale, barley and oat. J. Cereal Sci. 2017, 77, 42–48. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Yamauchi, H.; Kim, S.; Hashimotom, N.; Noda, T. RVA study of mixtures of wheat flour and potato starches with different phosphorus contents. Food Chem. 2007, 102, 1105–1111. [Google Scholar] [CrossRef]
- Ekpa, O.; Palacios-Rojas, N.; Rosales, A.; Renzetti, S.; Fogliano, V.; Linnemann, A. Genotype selection influences the quality of gluten-free bread from maize. LWT Food Sci. Technol. 2020, 125, 109214. [Google Scholar] [CrossRef]
Component | Flours | ||||||
---|---|---|---|---|---|---|---|
Rice | Oat | Sorghum | Millet | Buckwheat | Quinoa | Amaranth | |
Moisture, % | 11.28 ± 0.03 b | 10.9 ± 0.05 c | 8.16 ± 0.01 e | 10.91 ± 0.03 c | 11.28 ± 0.02 b | 10.25 ± 0.02 d | 11.69 ± 0.03 a |
Ash, % | 1.51 ± 0.01 f | 1.42 ± 0.01 g | 1.61 ± 0.01 e | 2.68 ± 0.02 b | 1.88 ± 0.01 d | 2.41 ± 0.01 c | 2.94 ± 0.01 a |
Protein, % | 6.21 ± 0.04 f | 10.91 ± 0.07 d | 9.81 ± 0.02 e | 9.85 ± 0.02 e | 11.60 ± 0.03 c | 13.98 ± 0.02 a | 13.59 ± 0.02 b |
Fat, % | 2.14 ± 0.03 g | 3.88 ± 0.03 d | 3.18 ± 0.02 e | 5.72 ± 0.02 b | 2.67 ± 0.03 f | 5.30 ± 0.02 c | 6.00 ± 0.02 a |
Crude fiber, % | 6.60 ± 0.02 d | 7.19 ± 0.02 c | 3.72 ± 0.05 f | 16.33 ± 0.06 a | 10.22 ± 0.03 b | 5.31 ± 0.02 e | 6.70 ± 0.03 d |
Pentosans, % | 1.48 ± 0.02 f | 5.13 ± 0.03 a | 3.71 ± 0.02 c | 4.45 ± 0.02 b | 3.56 ± 0.01 d | 2.22 ± 0.03 e | 1.41 ± 0.01 g |
Starch, % | 83.54 ± 0.05 a | 76.60 ± 0.11 c | 81.68 ± 0.08 b | 65.42 ± 0.06 g | 73.63 ± 0.06 d | 73.00 ± 0.06 e | 70.77 ± 0.02 f |
Damaged starch, % | 4.40 ± 0.05 b | 5.29 ± 0.04 a | 3.79 ± 0.03 d | 3.20 ± 0.02 e | 1.58 ± 0.02 g | 2.71 ± 0.02 f | 3.96 ± 0.01 c |
Amylose, % | 31.32 ± 0.30 a | 27.64 ± 0.26 b | 21.79 ± 0.20 d | 12.77 ± 0.25 f | 23.52 ± 0.36 c | 10.92 ± 0.26 g | 17.90 ± 0.35 e |
Fineness module | 2.85 ± 0.05 a | 2.26 ± 0.05 c | 1.55 ± 0.05 e | 1.87 ± 0.03 d | 2.36 ± 0.05 b,c | 2.25 ± 0.05 c | 2.46 ± 0.05 b |
SRC | Flours | ||||||
---|---|---|---|---|---|---|---|
Rice | Oat | Sorghum | Millet | Buckwheat | Quinoa | Amaranth | |
W-SRC, % | 101.96 ± 0.48 e | 115.23 ± 0.50 c | 115.61 ± 0.44 c | 107.28 ± 0.54 d | 121.06 ± 0.41 b | 87.00± 0.36 f | 126.34 ± 0.57 a |
Ca-SRC, % | 142.82 ± 0.20 a | 133.25 ± 0.25 b | 131.06 ± 0.48 c | 118.74 ± 0.25 e | 122.52 ± 0.28 d | 104.16 ± 0.30 g | 117.75 ± 0.31 f |
SC-SRC, % | 116.52 ± 0.50 b | 122.62 ± 0.47 a | 106.28 ± 0.20 d | 96.52 ± 0.30 e | 94.00 ± 0.30 f | 96.56 ± 0.23 e | 109.40 ± 0.36 c |
LA-SRC, % | 132.29 ± 0.26 b | 124.99 ± 0.34 d | 126.40 ± 0.36 c | 119.32 ± 0.20 e | 134.72 ± 0.37 a | 114.81 ± 0.20 f | 131.83 ± 0.32 b |
S-SRC, % | 125.00 ± 0.36 f | 145.41 ± 0.37 a | 136.40 ± 0.36 c | 142.06 ± 0.31 b | 135.11 ± 0.35 d | 130.15 ± 0.22 e | 117.08 ± 0.19 g |
Parameters | Flours | ||||
---|---|---|---|---|---|
Rice | Oat | Quinoa | Amaranth | Millet | |
WA, % | 66.0 | 85.0 | 62.1 | 61.0 | 61.9 |
C1, Nm | 1.08 ± 0.03 b | 1.09 ± 0.01 b | 1.15 ± 0.01 a | 1.08 ± 0.01 b | 1.04 ± 0.01 c |
CS, Nm | 1.06 ± 0.03 a | 1.03 ± 0.01 a | 0.83 ± 0.01 b | 1.06 ± 0.01 a | 0.76 ± 0.01 c |
C2, Nm | 0.68 ± 0.01 a | 0.67 ± 0.01 a | 0.22 ± 0.01 c | 0.41 ± 0.01 b | 0.15 ± 0.01 d |
C3, Nm | 2.31 ± 0.01 a | 2.18 ± 0.01 b | 1.60 ± 0.02 c | 0.51 ± 0.01 d | nd |
C4, Nm | 2.04 ± 0.02 b | 1.17 ± 0.02 d | 1.35 ± 0.01 c | 0.49 ± 0.01 e | 2.67 ± 0.01 a |
C5, Nm | 3.33 ± 0.04 b | 1.73 ± 0.02 d | 1.92 ± 0.01 c | 0.81 ± 0.01 e | 3.54 ± 0.01 a |
MWP, % | 1.85 ± 0.05 c | 5.50 ± 0.05 b | 27.83 ± 0.24 a | 1.85 ± 0.01 c | 26.93 ± 1.43 a |
C1-C2, Nm | 0.40 ± 0.03 c | 0.42 ± 0.02 c | 0.93 ± 0.01 a | 0.67 ± 0.02 b | 0.89 ± 0.02 a |
C3-C2, Nm | 1.63 ± 0.01 a | 1.51 ± 0.01 b | 1.38 ± 0.03 c | 0.10 ± 0.00 d | nd |
C3-C4, Nm | 0.27 ± 0.03 b | 1.01 ± 0.02 a | 0.25 ± 0.03 b | 0.02 ± 0.01 c | nd |
C5-C4, Nm | 1.29 ± 0.04 a | 0.56 ± 0.00 c | 0.57 ± 0.02 c | 0.32 ± 0.02 d | 0.87 ± 0.01 b |
Parameters | Flours | ||||||
---|---|---|---|---|---|---|---|
Rice | Oat | Quinoa | Amaranth | Millet | Sorghum | Buckwheat | |
C1, Nm | 0.11 ± 0.01 f | 1.09 ± 0.01 b | 0.81 ± 0.01 c | 0.14 ± 0.01 f | 0.21 ± 0.02 e | 0.41 ± 0.01 d | 4.19 ± 0.01 a |
CS, Nm | 0.10 ± 0.01 d | 1.03 ± 0.01 b | 0.06 ± 0.01 e | 0.09 ± 0.01 d | 0.04 ± 0.01 e | 0.24 ± 0.01 c | 3.68 ± 0.01 a |
C2, Nm | 0.09 ± 0.01 b | 0.67 ± 0.01 a | 0.01 ± 0.01 d | 0.08 ± 0.01 b,c | 0.01 ± 0.01 d | 0.06 ± 0.01 c | nd |
C3, Nm | 1.64 ± 0.02 c | 2.18 ± 0.01 a | 0.80 ± 0.02 d | 0.28 ± 0.01 e | 1.60 ± 0.02 c | 1.85 ± 0.01 b | nd |
C4, Nm | 1.36 ± 0.01 d | 1.17 ± 0.02 e | 0.43 ± 0.02 f | 0.31 ± 0.01 g | 1.42 ± 0.01 c | 1.87 ± 0.02 a | 1.53 ± 0.01 b |
C5, Nm | 1.98 ± 0.01 d | 1.73 ± 0.01 e | 0.42 ± 0.01 g | 0.51 ± 0.02 f | 2.15 ± 0.00 c | 2.77 ± 0.02 a | 2.28 ± 0.02 b |
MWP, % | 9.14 ± 0.83 e,f | 5.50 ± 0.05 f | 92.60 ± 1.14 a | 35.84 ± 2.57 d | 81.14 ± 2.98 b | 41.48 ± 1.01 c | 12.17 ± 0.45 e |
C1-C2, Nm | 0.02 ± 0.01 e | 0.42 ± 0.02 b | 0.80 ± 0.01 a | 0.06 ± 0.01 e | 0.20 ± 0.03 d | 0.35 ± 0.02 c | nd |
C3-C2, Nm | 1.55 ± 0.02 b,c | 1.51 ± 0.01 c | 0.79 ± 0.03 d | 0.20 ± 0.01 e | 1.59 ± 0.03 b | 1.79 ± 0.00 a | nd |
C3-C4, Nm | 0.28 ± 0.01 c | 1.01 ± 0.02 a | 0.37 ± 0.03 b | −0.03 ± 0.02 e | 0.18 ± 0.01 d | −0.02 ± 0.01 e | nd |
C5-C4, Nm | 0.62 ± 0.00 c | 0.56 ± 0.01 d | −0.01 ± 0.01 f | 0.20 ± 0.03 e | 0.73 ± 0.01 b | 0.90 ± 0.00 a | 0.75 ± 0.01 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, I.; Aprodu, I. Investigations on Functional and Thermo-Mechanical Properties of Gluten Free Cereal and Pseudocereal Flours. Foods 2022, 11, 1857. https://doi.org/10.3390/foods11131857
Banu I, Aprodu I. Investigations on Functional and Thermo-Mechanical Properties of Gluten Free Cereal and Pseudocereal Flours. Foods. 2022; 11(13):1857. https://doi.org/10.3390/foods11131857
Chicago/Turabian StyleBanu, Iuliana, and Iuliana Aprodu. 2022. "Investigations on Functional and Thermo-Mechanical Properties of Gluten Free Cereal and Pseudocereal Flours" Foods 11, no. 13: 1857. https://doi.org/10.3390/foods11131857
APA StyleBanu, I., & Aprodu, I. (2022). Investigations on Functional and Thermo-Mechanical Properties of Gluten Free Cereal and Pseudocereal Flours. Foods, 11(13), 1857. https://doi.org/10.3390/foods11131857