Influence of Wine pH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fining Agents
2.2. Wine Elaboration and Fining with Grape Seed Protein
2.3. Clarification
2.4. Total Phenolic Contents
2.5. Total Flavanol Content
2.6. Antioxidant Activity
2.6.1. DPPH Free Radical Scavenging Assay
2.6.2. ABTS•+ Radical Cation Decoloration Assay
2.6.3. Ferric Reducing Antioxidant Power (FRAP)
2.6.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.7. Colorimetric Measurements
2.8. Statistical Analysis
3. Results and Discussion
3.1. Experimental Design for Grape Seed Protein Fining
3.1.1. Impact on Clarification
3.1.2. Impact on Total Phenolic and Flavanol Contents
3.1.3. Impact on Antioxidant Activity
3.1.4. Impact on Chromatic Characteristics
3.2. Grape Seed Protein as an Alternative to Commercial Protein Fining Agents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Pavez, C.; Gonzalez-Munoz, B.; O’Brien, J.A.; Felipe Laurie, V.; Osorio, F.; Nunez, E.; Vega, R.E.; Bordeu, E.; Brossard, N. Red wine astringency: Correlations between chemical and sensory features. LWT Food Sci. Technol. 2022, 154, 112656. [Google Scholar] [CrossRef]
- Zanchi, D.; Poulain, C.; Konarev, P.; Tribet, C.; Svergun, D.I. Colloidal stability of tannins: Astringency, wine tasting and beyond. J. Phys. Condens. Matter 2008, 20, 494224. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments; Wiley & Sons: Oxford, UK, 2006. [Google Scholar]
- Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. Phenolic composition and antioxidant activity of red, rose and white wines originating from Romanian grape cultivars. Not. Bot. Horti Agrobot. 2020, 48, 716–734. [Google Scholar] [CrossRef]
- De Souza, J.; De Souza Nascimento, A.; Linhares, M.; Dutra, M.; Dos Santos Lima, M.; Pereira, G. Evolution of phenolic compound profiles and antioxidant activity of syrah red and sparkling moscatel wines stored in bottles of different colors. Beverages 2018, 4, 89. [Google Scholar] [CrossRef] [Green Version]
- Vernhet, A. Red wine clarification and stabilization. In Red Wine Technology; Morata, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–251. [Google Scholar]
- Ghanem, C.; Taillandier, P.; Rizk, M.; Rizk, Z.; Nehme, N.; Souchard, J.P.; El Rayess, Y. Analysis of the impact of fining agents types, oenological tannins and mannoproteins and their concentrations on the phenolic composition of red wine. LWT Food Sci. Technol. 2017, 83, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Neves, G.; Favre, G.; Gil, G. Effect of fining on the colour and pigment composition of young red wines. Food Chem. 2014, 157, 385–392. [Google Scholar] [CrossRef]
- Castillo-Sánchez, J.X.; García-Falcon, M.S.; Garrido, J.; Martínez-Carballo, E.; Martins-Dias, L.R.; Mejuto, X.C. Phenolic compounds and colour stability of vinhao wines: Influence of wine-making protocol and fining agents. Food Chem. 2008, 106, 18–26. [Google Scholar] [CrossRef]
- Oberholster, A.; Carstens, L.M.; du Toit, W.J. Investigation of the effect of gelatine, egg albumin and cross-flow microfiltration on the phenolic composition of Pinotage wine. Food Chem. 2013, 138, 1275–1281. [Google Scholar] [CrossRef]
- Tschiersch, C.; Nikfardjam, M.P.; Schmidt, O.; Schwack, W. Degree of hydrolysis of some vegetable proteins used as fining agents and its influence on polyphenol removal from red wine. Eur. Food Res. Technol. 2010, 231, 65–74. [Google Scholar] [CrossRef]
- Cosme, F.; Ricardo-Da-Silva, J.M.; Laureano, O. Protein fining agents: Characterization and red wine fining assays. Ital. J. Food Sci. 2007, 19, 39–56. [Google Scholar]
- Maury, C.; Sarni-Manchado, P.; Cheynier, V. Highlighting protein fining residues in a model red wine. Food Chem. 2019, 279, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Cosme, F.; Capão, I.; Filipe-Ribeiro, L.; Bennett, R.N.; Mendes-Faia, A. Evaluating potential alternatives to potassium caseinate for white wine fining: Effects on physicochemical and sensory characteristics. LWT Food Sci. Technol. 2012, 46, 382–387. [Google Scholar] [CrossRef]
- Gambuti, A.; Rinaldi, A.; Romano, R.; Manzo, N.; Moio, L. Performance of a protein extracted from potatoes for fining of white musts. Food Chem. 2016, 190, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granato, T.M.; Nasi, A.; Ferranti, P.; Iametti, S.; Bonomi, F. Fining white wine with plant proteins: Effects of fining on proanthocyanidins and aroma components. Eur. Food Res. Technol. 2014, 238, 265–274. [Google Scholar] [CrossRef]
- Iturmendi, N.; Duran, D.; Marin-Arroyo, M.R. Fining of red wines with gluten or yeast extract protein. Int. J. Food Sci. Technol. 2010, 45, 200–207. [Google Scholar] [CrossRef]
- Marangon, M.; Vincenzi, S.; Curioni, A. Wine fining with plant proteins. Molecules 2019, 24, 2186. [Google Scholar] [CrossRef] [Green Version]
- Marchal, R.; Marchal-Delahaut, L.; Lallement, A.; Jeandet, P. Wheat gluten used as a clarifying agent of red wines. J. Agric. Food Chem. 2002, 50, 177–184. [Google Scholar] [CrossRef]
- Bautista-Ortín, A.B.; Cano-Lechuga, M.; Ruiz-García, Y.; Gómez-Plaza, E. Interactions between grape skin cell wall material and commercial enological tannins. Practical implications. Food Chem. 2014, 152, 558–565. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Bautista-Ortin, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Fining with purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic composition. Food Chem. 2019, 271, 570–576. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Gómez-Plaza, E.; Molero, N.; Bautista-Ortín, A.B. Fining of red wines with pomace cell wall material: Effect on wine phenolic composition. Food Bioprocess Technol. 2017, 10, 1531–1539. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Marangon, M.; Pasini, G.; Curioni, A. Grape seed extract: The first protein-based fining agent endogenous to grapes. Aust. J. Grape Wine Res. 2017, 23, 215–225. [Google Scholar] [CrossRef]
- Gordillo, B.; Chamizo-Gonzalez, F.; Gonzalez-Miret, M.L.; Heredia, F.J. Impact of alternative protein fining agents on the phenolic composition and color of Syrah red wines from warm climate. Food Chem. 2021, 342, 128297. [Google Scholar] [CrossRef] [PubMed]
- Vincenzi, S.; Dinnella, C.; Recchia, A.; Monteleone, E.; Gazzola, D.; Pasini, G.; Curioni, A. Grape seed proteins: A new fining agent for astringency reduction in red wine. Aust. J. Grape Wine Res. 2013, 19, 153–160. [Google Scholar] [CrossRef]
- Kang, W.; Muhlack, R.A.; Bindon, K.A.; Smith, P.A.; Niimi, J.; Bastian, S.E.P. Potato protein fining of phenolic compounds in red wine: A study of the kinetics and the impact of wine matrix components and physical factors. Molecules 2019, 24, 4578. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Lapuente, L.; Guadalupe, Z.; Ayestaran, B. Effect of egg albumin fining, progressive clarification and cross-flow microfiltration on the polysaccharide and proanthocyanidin composition of red varietal wines. Food Res. Int. 2017, 96, 235–243. [Google Scholar] [CrossRef]
- Rio-Segade, S.; Paissoni, M.A.; Vilanova, M.; Gerbi, V.; Rolle, L.; Giacosa, S. Phenolic composition influences the effectiveness of fining agents in vegan-friendly red wine production. Molecules 2020, 25, 120. [Google Scholar] [CrossRef] [Green Version]
- Baca-Bocanegra, B.; Nogales-Bueno, J.; Hernandez-Hierro, J.M.; Heredia, F.J. Optimization of protein extraction of oenological interest from grape seed meal using design of experiments and response surface methodology. Foods 2021, 10, 79. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Vivas, N.; Glories, Y.; Lagune, L.; Saucier, C.; Augustin, M. Estimation du degré de polymérisation des procyanidines du raisin et du vin par la méthode au p-dimethylaminocinnamaldéhyde. J. Int. Sci. Vigne Vin 1994, 28, 319–336. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espin, J.C.; Wichers, H.J. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochem. Anal. 2000, 11, 330–338. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2007, 2, 867–870. [Google Scholar] [CrossRef]
- CIE. Technical Report: Colorimetry, 3rd ed.; Commission Internationale de l’Eclairage Central Bureau: Vienna, Austria, 2004. [Google Scholar]
- Goncalves, S.; Mansinhos, I.; Rodriguez-Solana, R.; Perez-Santin, E.; Coelho, N.; Romano, A. Elicitation improves rosmarinic acid content and antioxidant activity in Thymus lotocephalus shoot cultures. Ind. Crop. Prod. 2019, 137, 214–220. [Google Scholar] [CrossRef]
- Goncalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentao, P.; Romano, A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol. 2017, 54, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Jara-Palacios, M.J.; Gordillo, B.; Lourdes Gonzalez-Miret, M.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Comparative study of the enological potential of different winemaking byproducts: Implications in the antioxidant activity and color expression of red wine anthocyanins in a model solution. J. Agric. Food Chem. 2014, 62, 6975–6983. [Google Scholar] [CrossRef]
- Dumitriu, G.D.; Lopez de Lerma, N.; Cotea, V.V.; Peinado, R.A. Antioxidant activity, phenolic compounds and colour of red wines treated with new fining agents. Vitis 2018, 57, 61–68. [Google Scholar] [CrossRef]
- Gordillo, B.; Rodriguez-Pulido, F.J.; Escudero-Gilete, M.L.; Gonzalez-Miret, M.L.; Heredia, F.J. Comprehensive colorimetric study of anthocyanic copigmentation in model solutions. Effects of pH and molar ratio. J. Agric. Food Chem. 2012, 60, 2896–2905. [Google Scholar] [CrossRef]
Coded Factors | Uncoded Factors | |||
---|---|---|---|---|
Sample | x1 (pH) | x2 (Ethanol Content) | x1 (pH) | x2 (Ethanol Content) |
GSP_11_3.3 | −1 | −1 | 3.3 | 11 |
GSP_11_3.9 | 1 | −1 | 3.9 | 11 |
GSP_13_3.3 | −1 | 0 | 3.3 | 13 |
GSP_11_3.6 | 0 | −1 | 3.6 | 11 |
GSP_13_3.9 | 1 | 0 | 3.9 | 13 |
GSP_15_3.6 | 0 | 1 | 3.6 | 15 |
GSP_13_3.6 | 0 | 0 | 3.6 | 13 |
GSP_15_3.3 | −1 | 1 | 3.3 | 15 |
GSP_15_3.6 | 1 | 1 | 3.6 | 15 |
pH | Ethanol Content (% v/v) | Reducing Sugars (g/L) | Total Acidity (g/L as Tartaric Acid) | Volatile Acidity (g/L as Acetic Acid) |
---|---|---|---|---|
3.45 ± 0.03 | 12.85 ± 0.16 | 1.27 ± 0.11 | 5.43 ± 0.09 | 0.52 ± 0.04 |
Antioxidant Activity | Colorimetric Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clarification | Adsorption of Total Phenolics | Adsorption of Total Flavanols | ΔABTS | ΔDPPH | ΔFRAP | ΔORAC | ΔL* | Δa* | Δb* | ΔC*ab | Δhab | |
GSP_11_3.3 | 11.47 e | 171.04 a | 37.41 c | −411.00 d | −163.54 c | −110.43 b | −744.46 g | −0.814 a | 1.813 a | −0.709 a | 1.825 a | −2.117 a |
GSP_11_3.6 | 9.19 d | 154.96 a | 22.31 a,b | −288.29 c | −92.07 a,b | −90.16 a,b | −679.79 f | 0.516 c | −0.296 b | 0.130 c | 0.451 b | −0.211 e,f |
GSP_11_3.9 | 7.53 c | 111.46 d,e | 23.72 b | −195.17 a,b | −99.42 a,b,c | −81.68 a,b | −558.88 e | 0.057 b | 0.072 d,e | −0.088 b,c | 0.065 e,f | −0.253 f |
GSP_13_3.3 | 8.65 c,d | 162.34 a | 32.37 c | −301.57 c | −145.08 b,c | −92.41 a,b | −473.42 d | 0.533 c | −0.075 c,d | −0.058 b,c | 0.022 c,e | −0.046 d,e |
GSP_13_3.6 | 7.14 b,c | 146.43 a | 20.59 a,b | −263.68 b,c | −125.85 a,b,c | −79.38 a | −432.97 d | 0.109 b | 0.118 e | −0.038 c | 0.150 f | −0.092 d,e,f |
GSP_13_3.9 | 5.87 a,b | 99.04 c,d | 19.87 a,b | −194.04 a,b | −66.35 a | −72.07 a | −217.59 a,b | 0.546 c | 0.110 d,e | −0.365b | 0.108 e,f | −0.913 b |
GSP_15_3.3 | 5.60 a,b | 72.16 b,c,d | 16.02 a | −164.8 a | −98.65 a,b,c | −68.99 a | −258.94 b,c | 0.356 c | 0.118 e | −0.030 c | 0.158 f | −0.014 c,d |
GSP_15_3.6 | 5.16 a | 63.52 b,c | 16.36 a | 165.56 a | −85.31 a,b | −67.54 a | −290.20 c | 0.044 b | −0.023 c,d,e | −0.003 c | −0.056 c,d | 0.149 c |
GSP_15_3.9 | 5.04 a | 36.57 b | 6.67 a | −137.86 a | −93.91 a,b,c | −64.27 a | −204.85 a | 0.381 c | −0.127 b,c | −0.024 c | −0.143 d | −0.131 d,e,f |
pH (L) | *** | ** | ns | ** | ns | ** | * | ns | ns | ns | ns | ns |
pH (Q) | ns | * | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Ethanol (L) | *** | *** | * | *** | ns | *** | ** | ns | ns | ns | ns | ns |
Ethanol (Q) | ns | ** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
pH*ethanol | ** | ns | ns | * | ns | * | ns | ns | ns | ns | ns | ns |
Control Wine | Grape Seed Protein | Potato Protein | Pea Protein | |
---|---|---|---|---|
Clarification | - | 11.47 ± 0.71 a | 13.40 ± 0.37 b | 1.42 ± 0.48 c |
L* | 78.62 ± 0.19 a | 77.80 ± 0.20 b | 78.52 ± 0.11 a | 78.76 ± 011 a |
a* | 20.80 ± 0.04 a | 22.62 ± 0.14 b | 22.17 ± 0.06 c | 21.71 ± 0.05 d |
b* | 1.88 ± 0.12 a | 1.17 ± 0.06 b | 1.12 ± 0.06 b | 0.89 ± 0.03 b |
C*ab | 20.89 ± 0.05 a | 22.71 ± 0.14 b | 22.23 ± 0.06 c | 21.73 ± 0.05 d |
hab | 5.11 ± 0.31 a | 2.99 ± 0.31 b | 2.83 ± 0.14 b | 2.34 ± 0.09 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baca-Bocanegra, B.; Gonçalves, S.; Nogales-Bueno, J.; Mansinhos, I.; Heredia, F.J.; Hernández-Hierro, J.M.; Romano, A. Influence of Wine pH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking By-Products. Foods 2022, 11, 1688. https://doi.org/10.3390/foods11121688
Baca-Bocanegra B, Gonçalves S, Nogales-Bueno J, Mansinhos I, Heredia FJ, Hernández-Hierro JM, Romano A. Influence of Wine pH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking By-Products. Foods. 2022; 11(12):1688. https://doi.org/10.3390/foods11121688
Chicago/Turabian StyleBaca-Bocanegra, Berta, Sandra Gonçalves, Julio Nogales-Bueno, Inês Mansinhos, Francisco José Heredia, José Miguel Hernández-Hierro, and Anabela Romano. 2022. "Influence of Wine pH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking By-Products" Foods 11, no. 12: 1688. https://doi.org/10.3390/foods11121688
APA StyleBaca-Bocanegra, B., Gonçalves, S., Nogales-Bueno, J., Mansinhos, I., Heredia, F. J., Hernández-Hierro, J. M., & Romano, A. (2022). Influence of Wine pH and Ethanol Content on the Fining Efficacy of Proteins from Winemaking By-Products. Foods, 11(12), 1688. https://doi.org/10.3390/foods11121688