Research on the Potential Use of Grape Seed Flour in the Bakery Industry
Abstract
:1. Introduction
- Lack of gluten and considerably high fiber content in grape seed flour, which lead to a decrease in the final volume of the bread and a decrease in the elasticity of the core;
- A bitter taste and persistence of aroma after chewing and swallowing, elements noticed in the sensory analysis.
2. Materials and Methods
2.1. Flour Mixtures
2.2. Chemical Analysis
2.3. Crude Fiber Content Analysis
- α = mass of the fiber bag (g);
- β = sample mass (g);
- χ = mass of the crucible and the dried fiber bag after digestion (g);
- δ = mass of the crucible and ash (g);
- ζ = blank value of the empty fiber bag (g);
- γ = mass of the crucible and ash of the empty fiber bag (g);
- = mass of the crucible (g).
2.4. Mineral Content Analysis
2.5. Rheological Properties Testing
- C1: Represents the maximum torque during mixing (used to determine water absorption) (Nm);
- C2: Measures the weakening of the protein chain by mechanical and thermal action (Nm);
- C3: Measures starch gelatinization (Nm);
- C4: Measures the stability of the starch gel (Nm);
- C5: Measures the degradation of starch in the cooling phase (Nm);
- TC1: Represents the duration of dough development (min);
- TC2: Represents the duration of weakening of the protein chain under mechanical and thermal action (min);
- TC3: Indicates the gelling time of starch (min);
- TC4: Indicates the stability time of starch gel (min);
- TC5: Indicates the duration of starch downgrading in the cooling phase (min).
- C1-C2: Shows the protein network strength on increasing heat;
- C3-C4: Denotes to starch gelatinization rate;
- C4-C5: Relates to the anti-staling effects (starch retrogradation in the cooling phase); represents the shelf life of the final product;
- α: Represents the strength of the protein chain (Nm/min);
- β: Represents the starch gelatinization rate (Nm/min);
- γ: Indicates the enzymatic downgrade speed (Nm/min).
2.6. Bread Making
2.7. Physicochemical Characteristics of the Experimental Bread
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. Rheological Properties of Flour Mixtures
3.3. Bread Quality
3.4. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sargolzaei, M.; Rustioni, L.; Cola, G.; Ricciardi, V.; Bianco, P.A.; Maghradze, D.; Failla, O.; Quaglino, F.; Toffolatti, S.L.; De Lorenzis, G. Georgian grapevine cultivars: Ancient biodiversity for future viticulture. Front. Plant Sci. 2021, 12, 630122. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. The potential of grape pomace varieties as a dietary source of pectic substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Heuzé, V.; Tran, G. Grape Seeds and Grape Seed Oil Meal. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2017. Available online: https://www.feedipedia.org/node/692 (accessed on 20 May 2022).
- Shi, J.; Yu, J.; Pohorly, J.E.; Kakuda, Y. Polyphenolics in grape seeds—Biochemistry and functionality. J. Med. Food 2003, 6, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Mironeasa, S.; Codină, G.G.; Mironeasa, C. The effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by Mixolab. J. Texture Stud. 2012, 43, 40–48. [Google Scholar] [CrossRef]
- Tița, O.; Lengyel, E.; Stegarus, D.I.; Savescu, P.; Ciubara, A.B.; Constantinescu, M.A.; Tița, M.A.; Rață, D.; Ciubara, A. Identification and Quantification of Valuable Compounds in Red Grape Seeds. Appl. Sci. 2021, 11, 5124. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Chaparro-Mercado, M.C.; García-Armenta, E.; Cornejo-Mazón, M.; Pedroza, R.; Gutiérrez-López, G.F. Nutraceutical and functional properties of grape seeds. In Seeds as Functional Foods and Nutraceuticals; Mora-Escobedo, R., Berrios, J., Eds.; Nova Science: Hauppauge, NY, USA, 2014; Chapter 13; pp. 235–246. [Google Scholar]
- Bakke, A.; Vickers, Z.M. Consumer Liking of Refined and Whole Wheat Breads. J. Food Sci. 2007, 72, S473–S480. [Google Scholar] [CrossRef]
- Oprea, O.B.; Gaceu, L. Application of multiple criteria decision making (MCDM) in bakery industry. Study Case: Wastes and by-products. Bull. Transilv. Univ. II For. Wood Ind. Agric. Food Eng. 2016, 9, 89–94. [Google Scholar]
- Gaceu, L.; Gruia, R.; Oprea, O.B. Researches regarding the superior valorisation of by-products from the winery industry, and the obtaining of bakery products with functional properties. Ann. Acad. Rom. Sci. Ser. Agric. Silvic. Vet. Med. Sci. 2020, 9, 25–36. [Google Scholar]
- Agustin-Salazar, S.; Medina-Juárez, L.A.; Soto-Valdez, H.; Manzanares-López, F.; Gámez- Meza, N. Influence of the solvent system on the composition of phenolic substances and antioxidant capacity of extracts of grape (Vitis vinifera L.) marc. Aust. J. Grape Wine Res. 2014, 20, 208–213. [Google Scholar] [CrossRef]
- Tița, O. Tehnologia, Utilajul şi Controlul Calității Produselor în Industria Vinului, 1st ed.; Publishing House of Lucian Blaga University: Sibiu, Romania, 2006. [Google Scholar]
- Tița, O. Obținerea Vinurilor Speciale şi a Distilatelor Din Vin; Publishing House of Lucian Blaga University: Sibiu, Romania, 2009. [Google Scholar]
- Mironeasa, S.; Codină, G.G.; Mironeasa, C. Optimization of wheat-grape seed composite flour to improve alpha-amylase activity and dough rheological behavior. Int. J. Food Prop. 2016, 19, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Gauer, P.O.; Silva, M.C.A.; Hoffmann, S. Evaluation of oil and flour for human nutrition obtained from conventional and organic grape seed Bordô from a winery in the South of Brazil. Grasas Aceites 2018, 69, 237. [Google Scholar] [CrossRef]
- Pojic, M.; Dapčević Hadnađev, T.; Hadnađev, M.; Rakita, S.; Brlek, T. Bread supplementation with hemp seed cake: A by-product of hemp oil processing. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Wahyono, A.; Lee, S.B.; Yeo, S.H.; Kang, W.W.; Park, H.D. Effects of concentration of Jerusalem Artichoke powder on the quality of artichoke-enriched bread fermented with mixed cultures of Saccharomyces Cerevisiae, Torulaspora Delbrueckii Jk08 and Pichia Anomala Jk04. Emir. J. Food Agric. 2017, 28, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Verdú, S.; Vásquez, F.; Ivorra, E.; Sánchez, A.J.; Barat, J.M.; Grau, R. Hyperspectral image control of the heat-treatment process of oat flour to model composite bread properties. J. Food Eng. 2017, 192, 45–52. [Google Scholar] [CrossRef]
- Wronkowska, M.; Jeliński, T.; Majkowska, A.; Zieliński, H. Physical properties of buckwheat water biscuits formulated from fermented flours by selected lactic acid bacteria. Polish J. Food Nutr. Sci. 2018, 68, 25–31. [Google Scholar] [CrossRef]
- Bhattarai, S.; Pravin, O.; Krishna, P.R. Study of functional property of bread based on buckwheat and green tea. J. Food Sci. Technol. Nepal 2012, 7, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Frioui, M.; Shamtsyan, M.; Gaceu, L.; Oprea, O.B.; Mnerie, D. Rheological influence of (1-3)(1-6) mushrooms β-Glucan, used as flour substitution in bakery industry. In Proceedings of the 45th International Symposium on Agricultural Engineering, Actual Tasks on Agricultural Engineering, Opatija, Croatia, 21–24 February 2017. [Google Scholar]
- Goswami, D.; Gupta, R.K.; Mridula, D.; Sharma, M.; Tyagi, S.K. Barnyard millet based muffins: Physical, textural and sensory properties. LWT 2015, 64, 374–380. [Google Scholar] [CrossRef]
- Cardone, G.; Rumler, R.; Speranza, S.; Marti, A.; Schönlechner, R. Sprouting time affects sorghum (Sorghum bicolor [L.] Moench) functionality and bread-baking performance. Foods 2021, 10, 2285. [Google Scholar] [CrossRef]
- Calderón de la Barca, A.M.; Mercado-Gómez, L.E.; Heredia-Sandoval, N.G.; Luna-Alcocer, V.; Porras Loaiza, P.M.A.; González-Ríos, H.; Islas-Rubio, A.R. Highly nutritional bread with partial replacement of wheat by amaranth and orange sweet potato. Foods 2022, 11, 1473. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Impact of different amaranth particle sizes addition level on wheat flour dough rheology and bread features. Foods 2021, 10, 1539. [Google Scholar] [CrossRef]
- Aguiar, E.V.; Santos, F.G.; Centeno, A.C.L.S.; Capriles, V.D. Defining amaranth, buckwheat and quinoa flour levels in gluten-free bread: A simultaneous improvement on physical properties, acceptability and nutrient composition through mixture design. Foods 2022, 11, 848. [Google Scholar] [CrossRef]
- Man, S.; Pauceanu, A.; Muste, S.; Pop, A.M.; Sturza, A.; Muresan, V.; Salanta, L.C. Effect of incorporation of sunflower seed flour on the chemical and sensory characteristics of cracker biscuits. Bull. Univ. Agri. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2017, 74, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Codină, G.G.; Istrate, A.M.; Gontariu, I.; Mironeasa, S. Rheological properties of wheat–flaxseed composite flours assessed by mixolab and their relation to quality features. Foods 2019, 8, 333. [Google Scholar] [CrossRef] [Green Version]
- Apostol, L.; Berca, L.; Mosoiu, C.; Badea, M.; Bungau, S.; Oprea, O.B.; Cioca, G. Partially defatted pumpkin (Cucurbita maxima) seeds—A rich source of nutrients for use in food products. Rev. Chim. 2018, 69, 70–75. [Google Scholar] [CrossRef]
- Jayasena, R.V.; James, A. Total phenolic and phytosterol compounds and the radical scavenging activity of germinated australian sweet lupine flour. Plant Foods Hum. Nutr. 2013, 68, 352–357. [Google Scholar]
- Adamczyk, G.; Ivanišová, E.; Kaszuba, J.; Bobel, I.; Khvostenko, K.; Chmiel, M.; Falendysh, N. Quality assessment of wheat bread incorporating chia seeds. Foods 2021, 10, 2376. [Google Scholar] [CrossRef]
- Fahmi, R.; Blewett, H.; Stebbing, J.-A.; Olson, N.; Ryland, D.; Aliani, M. Acute effects of split pea-enriched white pan bread on postprandial glycemic and satiety responses in healthy volunteers—A randomized crossover trial. Foods 2022, 11, 1002. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, G.; Harsa, S.; Casiraghi, M.C.; Lucisano, M.; Cappa, C. Impact of raw, roasted and dehulled chickpea flours on technological and nutritional characteristics of gluten-free bread. Foods 2022, 11, 199. [Google Scholar] [CrossRef] [PubMed]
- Jarpa-Parra, M. Lentil protein: A review of functional properties and food application. An overview of lentil protein functionality. Int. J. Food Sci. Technol. 2018, 53, 892–903. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Paciulli, M.; Caligiani, A.; Scazzina, F.; Chiavaro, E. Sourdough fermentation and chestnut flour in gluten-free bread: A shelf-life evaluation. Food Chem. 2017, 224, 144–152. [Google Scholar] [CrossRef]
- Carcea, M. Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 2020, 9, 1298. [Google Scholar] [CrossRef]
- Laganà, V.; Giuffrè, A.M.; De Bruno, A.; Poiana, M. Formulation of biscuits fortified with a flour obtained from bergamot by-products (Citrus bergamia, Risso). Foods 2022, 11, 1137. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Caracciolo, M.; Capocasale, M.; Zappia, C.; Poiana, M. Effects of shortening replacement with extra virgin olive oil on the physical–chemical–sensory properties of italian cantuccini biscuits. Foods 2022, 11, 299. [Google Scholar] [CrossRef]
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Multescu, M.; Marinas, I.C.; Susman, I.E.; Belc, N. Byproducts (flour, meals, and groats) from the vegetable oil industry as a potential source of antioxidants. Foods 2022, 11, 253. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Blázquez-Duff, J.M.; del Castillo, M.D.; Miguel, E. Nutritional quality, sensory analysis and shelf life stability of yogurts containing inulin-type fructans and winery byproducts for sustainable health. Foods 2020, 9, 1199. [Google Scholar] [CrossRef]
- Libera, J.; Latoch, A.; Wójciak, K.M. Utilization of grape seed extract as a natural antioxidant in the technology of meat products inoculated with a probiotic strain of LAB. Foods 2020, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Amoah, I.; Taarji, N.; Johnson, P.N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-based food by-products: Prospects for valorisation in functional bread development. Sustainability 2020, 12, 7785. [Google Scholar] [CrossRef]
- Tremlova, B.; Havlova, L.; Benes, P.; Zemancova, J.; Buchtova, H.; Tesikova, K.; Dordevic, S.; Dordevic, D. Vegetarian “sausages” with the sddition of grape flour. Appl. Sci. 2022, 12, 2189. [Google Scholar] [CrossRef]
- Král, O.; Javůrková, Z.; Dordevic, D.; Pospiech, M.; Jančíková, S.; Fursova, K.; Tremlová, B. Biscuits polyphenol content fortification through herbs and grape seed flour addition. Processes 2021, 9, 1455. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Grape seeds effect on refined wheat flour dough rheology: Optimal amount and particle size. Food Technol. 2019, 8, 799–814. [Google Scholar] [CrossRef]
- Sporin, M.; Avbelj, M.; Kovac, B.; Mozina, S.S. Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Sci. Technol. Int. 2017, 24, 1–13. [Google Scholar]
- ICC Standard Method No. 110/1; Determination of Moisture Content of Cereals and Cereal Products (Practical Method). International Association for Cereal Science and Technology: Vienna, Austria, 1976.
- ICC Standard Method No. 104/1; Determination of Ash in Cereals and Cereal Products. International Association for Cereal Science and Technology: Vienna, Austria, 1990.
- SR EN ISO 20483:2014; Cereale şi Leguminoase. Determinarea Conţinutului de Azot şi Calculul Conţinutului de Proteină Brută. Metoda Kjeldhal. ASRO Publisher House: Bucharest, Romania, 2014.
- SR 91:2007; Pâine şi Produse Proaspete de Patiserie. Metode de Analiză. ASRO Publisher House: Bucharest, Romania, 2007.
- European Directorate for the Quality of Medicines and Health Care. European Pharmacopoeia, 10th ed.; EDQM, Council of Europe: Strasbourg, France, 2020. [Google Scholar]
- ICC Standard No. 173; Determination of Rheological Behaviour as a Fuction of Mixing and Temperature Increase. International Association for Cereal Sciences and Technology: Vienna, Austria, 2010.
- Mixolab Applications Handbook. Available online: http://concereal.net/wp-content/uploads/2017/03/2012-CHOPIN-Mixolab-Applications-Handbook-EN-SPAIN-3.pdf (accessed on 18 March 2022).
- AACC International. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC International: St. Paul, MN, USA, 2000. [Google Scholar]
- Ogunsakin, A.; Sanni, A.; Banwo, K. Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT 2020, 118, 108769. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ogunsakin, O.A.; Banwo, K.; Ogunremi, O.R.; Sanni, A.I. Microbiological and physicochemical properties of sourdough bread from sorghum flour. Int. Food Res. J. 2015, 22, 2610–2618. [Google Scholar]
- Food and Drug Administration (FDA). Available online: https://www.fda.gov/food/food-labeling-nutrition/nutrition-education-resources-materials (accessed on 23 March 2022).
- Apostol, L.; Belc, N.; Gaceu, L.; Vladut, V.; Oprea, O.B. Chemical composition and rheological parametrs of Helianthus Tuberosus flour used as a sources of bioactive compounds in bakery. Rev. Chim. 2019, 70, 2048–2053. [Google Scholar] [CrossRef]
- Baranzelli, J.; Hüttner Kringel, D.; Colussi, R.; Fernandes Paiva, F.; Camargo Aranha, B.; Zavariz de Miranda, M.; da Zavareze, E.R.; Guerra Diasa, A.R. Changes in enzymatic activity, technological quality and gamma-aminobutyric acid (GABA) content of wheat flour as affected by germination. LWT 2018, 90, 483–490. [Google Scholar] [CrossRef]
- Boita, E.R.F.; Oro, T.; Santetti, G.S.; Bertolin, T.E.; Gutkoski, L.C. Rheological properties of wheat flour dough and pan bread with wheat bran. J. Cereal Sci. 2016, 71, 177–182. [Google Scholar] [CrossRef]
- Bordei, D. Tehnologia Modernă a Panificației; Agir Publishing House: Bucharest, Romania, 2004. [Google Scholar]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Gorecka, D. White grape pomace as a source of dietary fibre and polyphenols and its effect on physical and nutraceutical characteristics of wheat biscuits. J. Sci. Food Agric. 2013, 93, 389–395. [Google Scholar] [CrossRef]
- Samohvalova, O.; Grevtseva, N.; Brykova, T.; Grigorenko, A. The effect of grape seed powder on the quality of butter biscuits. East.-Eur. J. Enterp. Technol. 2016, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Kuchtova, V.; Kohajdova, Z.; Karovičova, J.; Laukova, M. Physical, textural and sensory properties of cookies incorporated with grape skin and seed preparations. Polish J. Food Nutr. Sci. 2018, 68, 309–317. [Google Scholar]
- Aghamirzaei, M.; Peighambardoust, S.H.; Azadmard-Damirchi, S.; Majzoobi, M. Effects of grape seed powder as a functional ingredient on flour physicochemical characteristics and dough rheological properties. J. Agric. Sci. Technol. 2015, 17, 365–373. [Google Scholar]
- Valková, V.; Ďúranová, H.; Štefániková, J.; Miškeje, M.; Tokár, M.; Gabríny, L.; Kowalczewski, P.L.; Kačániová, M. Wheat bread with grape seeds micropowder: Impact on dough rheology and bread properties. Appl. Rheol. 2020, 30, 138–150. [Google Scholar] [CrossRef]
- Singh, N.; Singh Gujral, H.; Katyal, M.; Sharma, B. Relationship of Mixolab characteristics with protein, pasting, dynamic and empirical rheological characteristics of flours from Indian wheat varieties with diverse grain hardness. J. Food Sci. Technol. 2019, 56, 2679–2686. [Google Scholar] [CrossRef]
- SR 878:1996; Pâine de Faina de Grâu. ASRO Publisher House: Bucharest, Romania, 1996.
Samples | Sample Composition (w/w) |
---|---|
P0 | Sample 0–100% wheat flour type 480 |
P1 | Sample 1–97% wheat flour type 480 + 3% defatted grape seed flour |
P2 | Sample 2–95% wheat flour type 480 + 5% defatted grape seed flour |
P3 | Sample 3–93% wheat flour type 480 + 7% defatted grape seed flour |
P4 | Sample 4–91% wheat flour type 480 + 9% defatted grape seed flour |
Parameter | Calculation Method | Significance |
---|---|---|
Water Absorption (%) | Quantity of water required to obtain C1 = 1.1 Nm +/− 0.05 | Amount of water taken up by flour to achieve the desired consistency and create a quality end-product. |
Time for C1 (min) | Time required to obtain C1 | Dough formation time: The stronger the flour, the longer it takes. |
Stability (min) | Time during which torque is > C1–11% (constant T° phase) | Dough resistance to kneading: The longer it takes, the “stronger” the dough. |
Amplitude (Nm) | Curve width at C1 | Dough elasticity: The higher the value, the greater the dough elasticity. |
Control Sample (P0) |
---|
Direct Method Recipe |
Kneading: 7 min. slowly and then 5 min. quickly in the mixer. Fermentation: 45 min in a fermenter (controlled atmosphere: 32 °C, relative humidity 70%). Portioning into 850 g pieces. Round format modeling; intermediate fermentation for 15 min; final form modeling. Final fermentation for 45 min (controlled atmosphere: 32 °C, relative humidity 70%). Baking in the oven for 35 min at 230 °C, with steam treatment in the first 10 s. Cooling to room temperature (minimum 2 h). |
Parameter | Grape Seed Flour | CV (%) | Wheat Flour | CV (%) | p-Value (t-Test) |
---|---|---|---|---|---|
Moisture content (g/100 g) | 9.2 ± 0.10 a | 0.714 | 12.6 ± 0.09 b | 1.087 | <0.0001 |
Ash (g/100 g) | 3.03 ± 0.13 a | 0.330 | 0.48 ± 0.01 b | 2.083 | <0.0001 |
Protein (g/100 g) | 16.32 ± 0.21 a | 0.429 | 12.01 ± 0.12 b | 0.999 | <0.0001 |
Fat (g/100 g) | 5.92 ± 0.19 a | 0.337 | 1.03 ± 0.05 b | 4.854 | <0.0001 |
Raw fiber (g/100 g) | 83.01 ± 0.78 a | 0.096 | 1.98 ± 0.12 b | 6.061 | <0.0001 |
Sugars (g/100 g) | 11.31 ± 0.11 a | 6.454 | 1.02 ± 0.13 b | 12.750 | <0.0001 |
Potassium (mg/100 g d.m.) | 360.23 ± 0.89 a | 0.247 | 187.13 ± 0.75 b | 0.401 | <0.0001 |
Magnesium (mg/100 g d.m.) | 397.81 ± 0.97 a | 0.243 | 47.73 ± 0.55 b | 1.152 | <0.0001 |
Calcium (mg/100 g d.m.) | 405.89 ± 1.17 a | 0.288 | 43.81 ± 0.59 b | 1.347 | <0.0001 |
Iron (mg/100 g d.m.) | 0.78 ± 0.02 a | 2.564 | 1.11 ± 0.02 b | 1.802 | 0.0132 |
Zinc (mg/100 g d.m.) | 0.73 ± 0.07 a | 9.589 | 5.43 ± 0.22 b | 4.052 | <0.0001 |
Copper (mg/100 g d.m.) | 0.96 ± 0.1 a | 10.420 | 0.18 ± 0.02 b | 11.110 | <0.0001 |
Constituents | RDI (FDA 2011) mg |
---|---|
Potassium | 4700 |
Calcium | 1000 |
Magnesium | 400 |
Iron | 18 |
Sodium | 2400 |
Zinc | 15 |
Manganese | 4 |
Copper | 2 |
Parameter/Sample | P0 (0% GSF) | P1 (3% GSF) | P2 (5% GSF) | P3 (7% GSF) | P4 (9% GSF) |
---|---|---|---|---|---|
Ash (% d.m.) | 0.48 ± 0.01 | 0.56 ± 0.01 | 0.61 ± 0.01 | 0.66 ± 0.02 | 0.71 ± 0.02 |
Protein (% d.m.) | 12.01 ± 0.12 | 12.16 ± 0.1 | 12.22 ± 0.09 | 12.31 ± 0.01 | 12.47 ± 0.09 |
Fat (% d.m.) | 1.03 ± 0.05 | 1.20 ± 0.06 | 1.31 ± 0.07 | 1.43 ± 0.06 | 1.55 ± 0.07 |
Raw fiber (% d.m.) | 1.02 ± 0.13 | 4.47 ± 0.21 | 6.03 ± 0.32 | 7.65 ± 0.47 | 9.27 ± 0.56 |
Sugars (% d.m.) | 1.98 ± 0.12 | 1.36 ± 0.13 | 1.53 ± 0.14 | 1.74 ± 0.15 | 1.95 ± 0.16 |
Potassium (mg/100 g d.m.) | 187.13 ± 0.75 | 192.32 ± 0.88 | 195.79 ± 0.93 | 199.25 ± 1.02 | 202.71 ± 1.11 |
Magnesium (mg/100 g d.m.) | 47.73 ± 0.55 | 58.23 ± 0.68 | 65.23 ± 0.71 | 72.24 ± 0.78 | 79.24 ± 0.79 |
Calcium (mg/100 g d.m.) | 43.81 ± 0.59 | 54.67 ± 0.89 | 61.91 ± 0.96 | 69.16 ± 1.07 | 76.40 ± 1.29 |
Iron (mg/100 g d.m.) | 1.11 ± 0.02 | 1.10 ± 0.02 | 1.09 ± 0.02 | 1.08 ± 0.02 | 1.07 ± 0.02 |
Zinc (mg/100 g d.m.) | 5.43 ± 0.22 | 5.29 ± 0.20 | 5.20 ± 0.20 | 5.10 ± 0.18 | 5.01 ± 0.16 |
Copper (mg/100 g d.m.) | 0.18 ± 0.09 | 0.20 ± 0.10 | 0.22 ± 0.11 | 0.23 ± 0.12 | 0.25 ± 0.13 |
P0 (100% Wheat Flour) | P1 (97% Wheat Flour + 3% Grape Seed Flour) | P2 (95% Wheat Flour + 5% Grape Seed Flour) | P3 (93% Wheat Flour + 7% Grape Seed Flour) | P4 (91% Wheat Flour + 9% Grape Seed Flour) | |
---|---|---|---|---|---|
Water Absorption (%) | 58.2 ± 0.06 a | 58.0 ± 0.06 a | 56.7 ± 0.1 b | 56.2 ± 0.11 c | 55.8 ± 0.08 d |
Stability (min) | 8.50 ± 0.33 a | 9.10 ± 0.26 a,b | 9.26 ± 0.18 b,c | 9.48 ± 0.13 b,c | 9.83 ± 0.22 b,c,d |
Amplitude (Nm) | 0.100 ± 0.01 a | 0.104 ± 0.01 a | 0.081 ± 0.01 a | 0.078 ± 0.01 a,b | 0.075 ± 0.01 a,b |
α | −0.066 ± 0.003 a | −0.074 ± 0.002 b | −0.086 ± 0.002 c | −0.094 ± 0.003 d | −0.104 ± 0.002 e |
β | 0.576 ± 0.003 a | 0.588 ± 0.004 b | 0.604 ± 0.005 c | 0.618 ± 0.004 d | 0.630 ± 0.005 e |
γ | −0.100 ± 0.002 a | −0.118 ± 0.003 b | −0.136 ± 0.003 c | −0.164 ± 0.010 d | −0.198 ± 0.010 e |
C1 | 1.143 ± 0.01 a | 1.065 ± 0.03 b | 1.074 ± 0.01 b | 1.081 ± 0.02 b | 1.068 ± 0.03 b |
C2 | 0.461 ± 0.02 a | 0.469 ± 0.01 a | 0.468 ± 0.01 a | 0.428 ± 0.02 a | 0.416 ± 0.03 a |
C3 | 2.041 ± 0.01 a | 2.090 ± 0.02 a,b | 2.106 ± 0.01 a,b | 2.129 ± 0.01 a,b | 2.211 ± 0.02 b |
C4 | 1.553 ± 0.01 a | 1.479 ± 0.01 b | 1.458 ± 0.01 b,c | 1.436 ± 0.02 c | 1.429 ± 0.02 c |
C5 | 3.131 ± 0.09 a | 3.083 ± 0.1 a | 3.009 ± 0.12 a | 2.873 ± 0.08 a,b | 2.632 ± 0.11 b |
Mixolab Parameters, Chopin + Protocol | Samples of Flour Mixtures | |||||
---|---|---|---|---|---|---|
P0 | P1 | P2 | P3 | P4 | ||
Phase 1 | C1 (Nm) | 1.143 ± 0.01 a | 1.065 ± 0.03 b | 1.074 ± 0.01 b | 1.081 ± 0.02 b | 1.068 ± 0.03 b |
TC1 (min) | 1.20 ± 0.1 a | 1.22 ± 0.08 a | 1.12 ± 0.07 b | 1.09 ± 0.1 b | 1.05 ± 0.1 c | |
Phase 2 | C2 (Nm) | 0.461 ± 0.02 a | 0.469 ± 0.01 a | 0.468 ± 0.01 a | 0.428 ± 0.02 a | 0.416 ± 0.03 a |
TC2 (min) | 16.62 ± 0.13 a | 16.68 ± 0.11 a | 16.40 ± 0.08 a | 16.63 ± 0.12 a | 17.00 ± 0.08 a | |
C1-C2 (Nm) | 0.682 ± 0.01 a | 0.596 ± 0.02 b | 0.606 ± 0.01 b | 0.653 ± 0.01 a | 0.652 ± 0.02 a | |
Phase 3 | C3 (Nm) | 2.041 ± 0.01 a | 2.090 ± 0.02 a,b | 2.106 ± 0.01 a,b | 2.129 ± 0.01 a,b | 2.211 ± 0.02 b |
TC3 (min) | 24.75 ± 0.48 a | 24.30 ± 0.30 a | 24.08 ± 0.24 a | 23.63 ± 0.05 a | 23.62 ± 0.04 a | |
C3-C2 (Nm) | 1.58 ± 0.01 a | 1.621 ± 0.01 b | 1.638 ± 0.01 b | 1.701 ± 0.02 b | 1.795 ± 0.02 c | |
Phase 4 | C4 (Nm) | 1.553 ± 0.01 a | 1.479 ± 0.01 b | 1.458 ± 0.01 b,c | 1.436 ± 0.02 c | 1.429 ± 0.02 c |
TC4 (min) | 30.95 ± 0.18 a | 30.67 ± 0.12 a | 29.95 ± 0.10 a | 29.43 ± 0.08 a,b | 28.75 ± 0.06 b | |
C3-C4 (Nm) | 0.488 ± 0.01 a | 0.611 ± 0.01 b | 0.648 ± 0.01 b | 0.693 ± 0.02 c | 0.782 ± 0.02 d | |
Phase 5 | C5 (Nm) | 3.131 ± 0.09 a | 3.083 ± 0.10 a | 3.009 ± 0.12 a | 2.873 ± 0.08 a,b | 2.632 ± 0.11 b |
TC5 (min) | 45.02 ± 0.01 a | 45.02 ± 0.01 a | 45.02 ± 0.01 a | 45.02 ± 0.01 a | 45.02 ± 0.01 a | |
C5-C4 (Nm) | 1.578 ± 0.01 a | 1.604 ± 0.01 a | 1.551 ± 0.01 b | 1.437 ± 0.01 c | 1.203 ± 0.01 d |
Sample | Mass (kg) | Specific Volume (cm3/100 g) | Porosity (%) | Elasticity (%) | Flavor | Humidity (%) | Acidity (degree) |
---|---|---|---|---|---|---|---|
P0: 0% | 0.680 | 290 | 84.3 | 95 | Pleasant, characteristic of well-baked white bread | 43.7 | 1.2 |
P1: 3% | 0.675 | 278 | 82 | 92 | Pleasant, similar to black bread, well baked | 42.3 | 1.6 |
P2: 5% | 0.681 | 220 | 61 | 92 | Aroma of wine, sticky to chew | 41.1 | 1.9 |
P3: 7% | 0.672 | 208 | 56.8 | 87 | Strong smell and taste of wine, sticky to chew, a slight feeling of sand, annoying | 39.8 | 2.0 |
P4: 9% | 0.674 | 197 | 50.8 | 83 | Strong odor and taste of yeast, sticky to chew, intense sandy feeling, annoying | 37.6 | 2.2 |
Sensorial Attribute | Crust Color | Core Color | The Uniformity of the Core Pores | The Softness of the Core | The Core Crumbliness | Bitter Taste | Salty Taste | Sour Taste | Specific Aroma | Persistence of Aroma after Chewing and Swallowing |
---|---|---|---|---|---|---|---|---|---|---|
Samples | ||||||||||
P0: 0% | 1.51 | 1.17 | 3.51 | 4.32 | 2.16 | 1.17 | 1.42 | 1.42 | 2.66 | 1.66 |
P1: 3% | 2.05 | 3.67 | 3.62 | 4.12 | 2.99 | 1.21 | 1.46 | 2.12 | 2.73 | 2.02 |
P2: 5% | 2.57 | 4.06 | 3.87 | 3.88 | 3.84 | 1.87 | 1.49 | 2.46 | 2.81 | 2.78 |
P3: 7% | 3.04 | 4.42 | 4.02 | 3.67 | 4.32 | 2.54 | 1.50 | 2.79 | 2.9 | 3.53 |
P4: 9% | 3.48 | 4.81 | 4.21 | 3.47 | 4.63 | 3.01 | 1.52 | 3.14 | 3.03 | 4.37 |
PN | 3.63 | 3.53 | 4.19 | 3.52 | 3.68 | 2.26 | 1.58 | 2.03 | 3.68 | 2.76 |
Quality Indicator | Total Fiber (g/100 g) | Ca (% of RDI) | Mg (% of RDI) | K (% of RDI) | Cu (% of RDI) | Fe (% of RDI) | Zn (% of RDI) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P0: control sample WF type 480 | 1.46 | 3.95 | 10.54 | 7.29 | 14.00 | 5.86 | “rich in Zn” | 38.8 ** | ||||
P1: 97% WF + 3% GSF a | Commercial use | “source of fiber” | 3.51 * | 4.95 | 12.74 | 7.52 | “source of Cu” | 15.00 * | 6.00 | 37.1 ** | ||
P2: 95% WF + 5% GSF a | 4.24 * | 5.51 | 12.94 | 7.78 | 16.00 * | 6.07 | 37.4 ** | |||||
P3: 93% WF + 7% GSF b | Medical use | 5.54 * | 6.68 | “source of Mg” | 15.01 * | 8.42 | 17.00 * | 6.21 | 37.7 ** | |||
P4: 91% WF + 9% GSF c | Special use | “rich in fiber” | 7.37 ** | 7.43 | 15.83 * | 8.59 | 19.00 * | 6.43 | 39.8 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oprea, O.B.; Popa, M.E.; Apostol, L.; Gaceu, L. Research on the Potential Use of Grape Seed Flour in the Bakery Industry. Foods 2022, 11, 1589. https://doi.org/10.3390/foods11111589
Oprea OB, Popa ME, Apostol L, Gaceu L. Research on the Potential Use of Grape Seed Flour in the Bakery Industry. Foods. 2022; 11(11):1589. https://doi.org/10.3390/foods11111589
Chicago/Turabian StyleOprea, Oana Bianca, Mona Elena Popa, Livia Apostol, and Liviu Gaceu. 2022. "Research on the Potential Use of Grape Seed Flour in the Bakery Industry" Foods 11, no. 11: 1589. https://doi.org/10.3390/foods11111589
APA StyleOprea, O. B., Popa, M. E., Apostol, L., & Gaceu, L. (2022). Research on the Potential Use of Grape Seed Flour in the Bakery Industry. Foods, 11(11), 1589. https://doi.org/10.3390/foods11111589