Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Animal
2.3. Experimental Design
2.3.1. The Herb Sample Preparation
2.3.2. Control Drug Preparation
2.3.3. Animal Grouping and Administration
2.4. Biochemical Index Determination
2.5. Histopathological Analysis of Liver
2.6. Lipidomics Analysis
2.6.1. Extraction and Preparation of Lipid Samples
2.6.2. Preparation of Quality Control (QC) Samples
2.6.3. Chromatographic Conditions
2.6.4. MS Conditions
2.6.5. Statistical Analysis
2.7. MALDI-MSI Analysis
3. Results
3.1. UHPLC-MS Analysis of the P. perfoliatum Extract
3.2. Activities Analysis of AST, ALT and ALP
3.3. Activities Analysis of ADH and ALDH
3.4. Effects on Liver Histopathology
3.5. Analysis of Effects on Lipid Metabolism
3.5.1. Quality Control of Non-Targeted Lipidomics Data
3.5.2. Multivariate Statistical Analysis and Differential Lipid Identification
3.5.3. Regulatory Sffect of P. perfoliatum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faasld, N.; Faasld, M. Alcohol and Alcoholic Liver Disease. Clin. Liver Dis. 2019, 23. [Google Scholar] [CrossRef]
- Taylor, S.A.; Miloh, T. Adolescent Alcoholic Liver Disease. Clin. Liver Dis. 2018, 23, 51–54. [Google Scholar] [CrossRef]
- Lazebnik, L.B.; Golovanova, E.V.; Tarasova, L.V.; Krivosheev, A.B.; Tsyganova, Y.V. Adult Alcoholic Liver Disease. Exp. Clin. Gastroenterol. 2020, 174, 4–28. [Google Scholar] [CrossRef]
- Frazier, T.H.; Stocker, A.M.; Kershner, N.A.; Marsano, L.S.; Mcclain, C.J. Treatment of Alcoholic Liver Disease. Ther. Adv. Gastroenterol. 2011, 4, 63–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslamparast, T.; Eghtesad, S.; Poustchi, H.; Hekmatdoost, A. Recent Advances in Dietary Supplementation, in Treatingnon-Alcoholic Fatty Liver Disease. World J. Hepatol. 2015, 27, 204–212. [Google Scholar] [CrossRef]
- Leclercq, S.; Timary, P.D.; Strkel, P. Targeting the Gut Microbiota to Treat Alcoholic Liver Diseases: Evidence and Promises. Acta Gastro-Enterol. Belg. 2020, 83, 616–621. [Google Scholar]
- Qu, W.; Ma, T.; Cai, J.; Zhang, X.; Zhang, P.; She, Z.; Wan, F.; Li, H. Liver Fibrosis and MAFLD: From Molecular Aspects to Novel Pharmacological Strategies. Front. Med. 2021, 8, 761538. [Google Scholar] [CrossRef]
- Yan, J.; Nie, Y.; Luo, M.; Chen, Z.; He, B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front. Pharmacol. 2021, 12, 694475. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, J.; Di, L.; Li, J.; Hu, L.; Qiao, H.; Wang, L.; Feng, Y. Resource, Chemical Structure and Activity of Natural Polysaccharides against Alcoholic Liver Damages. Carbohydr. Polym. 2020, 241, 116355. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, Y.; Sun, G.; Yu, S.; Xu, Y.; He, C.; Li, Z.; Jin, S.; Qin, X. Polygonumperfoliatum L., an Excellent Herbal Medicine Widely Used in China: A Review. Front. Pharmacol. 2020, 11, 581266. [Google Scholar] [CrossRef]
- Fan, D.; Zhao, Y.; Zhou, X.; Gong, X.; Zhao, C. Simultaneous Determination of Esculetin, Quercetin-3-O-β-D-Glucuronide, Quercetin-3-O-β -D-Glucuronopyranside Methyl Ester and Quercetin in Effective Part of Polygonum Perfoliatum, L. Using High Performace Liquid Chromatography. Pharmacogn. Mag. 2014, 10, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.G.; Wei, F.; Liu, Q.; Chen, L.J.; Liu, Y.Y.; Luo, F.; Xiong, H.R.; Yang, Z.Q. The Flavonoid from Polygonum Perfoliatum, L. Inhibits Herpes Simplex Virus 1 Infection. Acta Virol. 2014, 58, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-B.; Liu, X.-Q.; Chen, K.-L. Chemical constituents of ethyl acetate extract from Polygonum perfoliatum. Zhong Yao Cai Zhongyaocai J. Chin. Med. Mater. 2012, 35, 1088–1090. [Google Scholar]
- Chang, C.I.; Tsai, F.J.; Chou, C.H. Natural Products from Polygonum Perfoliatum and Their Diverse Biological Activities. Nat. Prod. Commun. 2008, 3, 1385–1386. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.; Zhou, X.; Zhao, C.; Chen, H.; Zhao, Y.; Gong, X. Anti-Inflammatory, Antiviral and Quantitative Study of Quercetin-3-O-β-D-Glucuronide in Polygonum perfoliatum, L. Fitoterapia 2011, 82, 805–810. [Google Scholar] [CrossRef]
- Wang, J.; Yu, W.; Cheng, X.; Wang, B.; Yu, J. Effects of Total Flavonoids Extracted from Polygonum Perfoliatum, L. on Hypolipidemic and Antioxidant in Hyperlipidemia Rats Induced by High-Fat Diet. Int. J. Clin. Exp. Med. 2018, 11, 6758–6766. [Google Scholar]
- Avela, H.F.; Sirén, H. Advances in Lipidomics. Clin. Chim. Acta 2020, 510, 123–141. [Google Scholar] [CrossRef]
- Brunkhorst-Kanaan, N.P. 120 Plasma Lipidomics in Patients with Affective Disorders. Eur. Neuropsychopharmacol. 2020, 31, S15. [Google Scholar] [CrossRef]
- Silva, C.; Barretto, L.; Turco, E.; Santos, A.; Almeida, F. Lipidomics of Mesenchymal Stem Cell Differentiation. Chem. Phys. Lipids 2020, 232, 104964. [Google Scholar] [CrossRef]
- El-Ansary, A.; Chirumbolo, S.; Bhat, R.S.; Dadar, M.; Ibrahim, E.M.; Bjrklund, G. The Role of Lipidomics in Autism Spectrum Disorder. Mol. Diagn. Ther. 2020, 24, 31–48. [Google Scholar] [CrossRef]
- Goh, E.; Xue, L.G. Targeted Lipidomics of Drosophila Melanogaster During Development. Methods Mol. Biol. 2021, 2306, 187–213. [Google Scholar] [CrossRef] [PubMed]
- Council, N. Guide for the Care and Use of Laboratory Animals: Eighth Edition. Publication 2010, 327, 963–965. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, S.; Chen, S.; Xiong, C.; Liu, H.; Wang, J.; Zhang, N.; Hou, J.; He, Q.; Nie, Z. MALDI-TOF MS imaging of metabolites with a N-(1-naphthyl) ethylenediamine dihydrochloride matrix and its application to colorectal cancer liver metastasis. Anal. Chem. 2015, 87, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Bertola, A.; Mathews, S.; Ki, S.H.; Hua, W.; Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 2013, 8, 627–637. [Google Scholar] [CrossRef] [Green Version]
- King, J.A.; Nephew, B.C.; Choudhury, A.; Poirier, G.L.; Lim, A.; Mandrekar, P. Chronic alcohol-induced liver injury correlates with memory deficits: Role for neuroinflammation. Alcohol 2020, 83, 75–81. [Google Scholar] [CrossRef]
- Wang, X. UHPLC-HRMS-Based Untargeted Lipidomics Reveal Mechanism of Antifungal Activity of Carvacrol against Aspergillus flavus. Foods 2021, 11, 93. [Google Scholar] [CrossRef]
- Dong, X. Significantly Different Lipid Profile Analysis of Litopenaeus vannamei under Low-Temperature Storage by UPLC-Q-Exactive Orbitrap/MS. Foods 2021, 10, 2624. [Google Scholar] [CrossRef]
- Marchand, J.; Guitton, Y.; Martineau, E.; Royer, A.L.; Dervilly, G. Extending the Lipidome Coverage by Combining Different Mass Spectrometric Platforms: An Innovative Strategy to Answer Chemical Food Safety Issues. Foods 2021, 10, 1218. [Google Scholar] [CrossRef]
- Aba, P.E.; Ihedioha, J.I.; Nwaogu, I.C. Reference Values for Certain Serum Biochemical Markers of Liver Damage in Apparently Healthy Red Sokoto Goats. Thai Vet. Med. 2020, 50, 81–88. [Google Scholar]
- Aloisio, E.; Frusciante, E.; Pasqualetti, S.; Infusino, I.; Krintus, M.; Sypniewska, G.; Panteghini, M. Traceability Validation of Six Enzyme Measurements on the Abbott Alinity c Analytical System. Clin. Chem. Lab. Med. 2020, 58, 1250–1256. [Google Scholar] [CrossRef]
- Benedé-Ubieto, R.; Estévez-Vázquez, O.; Flores-Perojo, V.; Macías-Rodríguez, R.U.; Ruiz-Margáin, A.; Martínez-Naves, E.; Regueiro, J.R.; Ávila, M.A.; Trautwein, C.; Bañares, R.; et al. Abnormal Liver Function Test in Patients Infected with Coronavirus (SARS-CoV-2): A Retrospective Single-Center Study from Spain. J. Clin. Med. 2021, 10, 1039. [Google Scholar] [CrossRef]
- Jelski, W.; Piechota, J.; Orywal, K.; Mroczko, B. The Alterations in Alcohol Dehydrogenase Activity in the Sera of Women With Intrahepatic Cholestasis of Pregnancy. Anticancer Res. 2020, 40, 1997–2001. [Google Scholar] [CrossRef]
- Kim, G.; Yang, J.; Jang, J.; Choi, J.-S.; Roe, A.J.; Byron, O.; Seok, C.; Song, J.-J. Aldehyde-Alcohol Dehydrogenase Undergoes Structural Transition to Form Extended Spirosomes for Substrate Channeling. Commun. Biol. 2020, 3, 298. [Google Scholar] [CrossRef]
- Orywal, K.; Jelski, W.; KozŁowski, M.D.; Mroczko, B. Activity of Alcohol Dehydrogenase and Aldehyde Dehydrogenase in Lung Cancer Cells. Anticancer Res. 2020, 40, 3857–3863. [Google Scholar] [CrossRef]
- Kourkoumpetis, T.; Sood, G. Pathogenesis of Alcoholic Liver Disease: An Update. Clin. Liver Dis. 2018, 23, 71–80. [Google Scholar] [CrossRef]
- Kartsoli, S.; Kostara, C.E.; Tsimihodimos, V.; Bairaktari, E.T.; Christodoulou, D.K. Lipidomics in Non-Alcoholic Fatty Liver Disease. World J. Hepatol. 2020, 12, 436–450. [Google Scholar] [CrossRef]
- Lange, M.; Ni, Z.; Criscuolo, A.; Fedorova, M. Liquid Chromatography Techniques in Lipidomics Research. Chromatographia 2018, 82, 77–100. [Google Scholar] [CrossRef]
- Laudicella, V.A.; Whitfield, P.D.; Carboni, S.; Doherty, M.K.; Hughes, A.D. Application of Lipidomics in Bivalve Aquaculture, a Review. Rev. Aquac. 2020, 12, 678–702. [Google Scholar] [CrossRef]
- Layre, E. Targeted Lipidomics of Mycobacterial Lipids and Glycolipids. Methods Mol. Biol. 2021, 2314, 549–577. [Google Scholar] [CrossRef]
- Paavola, T.; Bergmann, U.; Kuusisto, S.; Kakko, S.; Savolainen, M.J.; Salonurmi, T. Distinct Fatty Acid Compositions of HDL Phospholipids Are Characteristic of Metabolic Syndrome and Premature Coronary Heart Disease-Family Study. Int. J. Mol. Sci. 2021, 22, 4908. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Li, H.; Li, Y.; Guo, Y. Seminal Plasma Lipidomics Profiling to Identify Signatures of Kallmann Syndrome. Front. Endocrinol. 2021, 12, 692690. [Google Scholar] [CrossRef]
- Sun, W.; Liu, C.; Zhou, X.; Li, X.; Chu, X.; Wang, X.; Han, F. Serum Lipidomics Study Reveals Protective Effects of Rhodiola Crenulata Extract on Alzheimer’s Disease Rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1158, 122346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Duan, X.; Shang, B.; Hong, Y.; Sun, H. Analysis of Lipidomics Profile of Rice and Changes during Storage by UPLC-Q-Extractive Orbitrap Mass Spectrometry. Food Res. Int. 2021, 142, 110214. [Google Scholar] [CrossRef] [PubMed]
- Walczak-Skierska, J.; Złoch, M.; Pauter, K.; Pomastowski, P.; Buszewski, B. Lipidomic Analysis of Lactic Acid Bacteria Strains by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. J. Dairy Sci. 2020, 103, 11062–11078. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, E.V.; Svetashev, V.I. Edible Far Eastern Ferns as a Dietary Source of Long-Chain Polyunsaturated Fatty Acids. Foods 2021, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
Group | ALT/µg·dL−1 | AST/µg·L−1 | ALP/ng·L−1 |
---|---|---|---|
BCG | 1.17 ± 0.11 | 1.06 ± 0.14 | 348.62 ± 13.61 |
MCG | 1.89 ± 0.15 * | 1.73 ± 0.12 * | 457.11 ± 11.42 ** |
PLG | 1.15 ± 0.12 # | 1.02 ± 0.16 # | 362.42 ± 21.23 ## |
PMG | 1.11 ± 0.16 # | 1.12 ± 0.13 # | 357.31 ± 24.41 ## |
PHG | 1.16 ± 0.18 # | 1.10 ± 0.08 # | 345.72 ± 18.89 ## |
PCG | 1.15 ± 0.10 # | 1.14 ± 0.14 # | 366.67 ± 19.61 ## |
Group | ADH Activity/(U•mg−1) | ALDH Activity/(U•mg−1) |
---|---|---|
BCG | 1.23 ± 0.15 | 0.76 ± 0.11 |
MCG | 0.81 ± 0.13 * | 0.43 ± 0.07 * |
PLG | 1.15 ± 0.10 ## | 0.72 ± 0.06 # |
PMG | 1.51 ± 0.26 ## | 1.01 ± 0.14 ## |
PHG | 1.66 ± 0.28 ## | 1.20 ± 0.18 ## |
PCG | 1.44 ± 0.22 ## | 1.13 ± 0.19 ## |
NO. | Metabolite | Formula | Class | ESI Mode | Retention Time (min) | Measured m/z | MASS Accuracy (ppm) | Blank | Model |
---|---|---|---|---|---|---|---|---|---|
1 | Stearoyl-L-Carnitine | C25H49NO4 | FA | + | 6.56 | 426.3421 | −2.03 | ↑ | ↓ |
2 | 6-Aminohexanoate | C6H12NO2 | FA | − | 15.62 | 131.3162 | −0.79 | ↑ | ↓ |
3 | Linoleic acid | C18H32O2 | FA | + | 11.60 | 280.3325 | −0.91 | ↑ | ↓ |
4 | PC (16:0/18:1) | C42H82NO8P | PC | + | 19.78 | 703.4683 | 1.49 | ↑ | ↓ |
5 | LPE (20:3) | C25H46NO7P | PC | + | 11.56 | 503.3612 | −0.95 | ↑ | ↓ |
6 | Bexarotene | C24H28O2 | PL | + | 23.45 | 348.5070 | −0.71 | ↓ | ↑ |
7 | Ginkgolide B | C20H24O10 | PL | + | 17.86 | 424.4803 | 1.35 | ↓ | ↑ |
8 | Abietic acid | C20H30O2 | PL | + | 5.62 | 302.2624 | −0.97 | ↓ | ↑ |
9 | SM (d18:1/18:0) | C41H83N2O6P | SM | + | 9.09 | 730.5561 | −1.06 | ↑ | ↓ |
10 | SM (d18:0/16:0) | C39H81N2O6P | SM | + | 22.04 | 704.4763 | −0.11 | ↑ | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Peng, L.; Zhao, C.; Cai, Z.; Zhou, X. Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. Foods 2022, 11, 1583. https://doi.org/10.3390/foods11111583
Chen H, Peng L, Zhao C, Cai Z, Zhou X. Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. Foods. 2022; 11(11):1583. https://doi.org/10.3390/foods11111583
Chicago/Turabian StyleChen, Huaguo, Lei Peng, Chao Zhao, Zongwei Cai, and Xin Zhou. 2022. "Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging" Foods 11, no. 11: 1583. https://doi.org/10.3390/foods11111583
APA StyleChen, H., Peng, L., Zhao, C., Cai, Z., & Zhou, X. (2022). Protective Mechanism of Polygonum perfoliatum L. Extract on Chronic Alcoholic Liver Injury Based on UHPLC-QExactive Plus Mass Spectrometry Lipidomics and MALDI-TOF/TOF Mass Spectrometry Imaging. Foods, 11(11), 1583. https://doi.org/10.3390/foods11111583