Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optimization of the POEO Extraction Process
2.2.1. Single-Factor Experiments
Soaking Time
Extraction Time
Ratio of Liquid to Solid
2.2.2. Response Surface Methodology
2.3. Antibacterial Activity Assays
2.3.1. In Vitro Antibacterial Activity Assay
2.3.2. In Vivo Antibacterial Activity Assay
Protective Assay
Curative Assay
2.4. GC-MS Analysis
2.5. Transmission Electron Microscope (TEM) Analysis
2.6. Cell Surface Analyses
2.6.1. Determination of Surface Potential
2.6.2. Determination of Hydrophobicity
2.7. Cell Wall Damage Assessment
2.8. Cell Membrane Damage Assessments
2.8.1. Cell Membrane Integrity Analysis
2.8.2. Cell Membrane Permeability Analysis
2.8.3. Determination of Membrane Potential
2.8.4. Membrane Protein Conformation Analysis
2.9. Determination of PK, SDH and ATPase Activities
2.10. Statistical Analysis
3. Results
3.1. Single-Factor Experiments of POEO Extraction
3.2. Optimization of POEO Extraction Conditions
3.3. Antibacterial Activity of POEO
3.3.1. in vitro Antibacterial Effects of POEO on Pcc
3.3.2. In Vivo Antibacterial Effects of POEO on Pcc
3.4. Chemical Compounds of POEO
3.5. Effect of POEO on Microscopic Morphology
3.6. Effects of POEO on Cell Surface
3.7. Effect of POEO on Cell Wall
3.8. Effects of POEO on Cell Membrane
3.9. Effects of POEO on PK, SDH, ATPase Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Managa, M.G.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of moist cooking blanching on colour, phenolic metabolites and glucosinolate content in Chinese cabbage (Brassica rapa L. subsp. chinensis). Foods 2019, 8, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.A.; Jee, S.; Lee, D.H.; Roh, E.; Jung, K.; Oh, C.; Heu, S. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. J. Microbiol. Biotechnol. 2013, 23, 1147–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.Y.; Wu, F.; Wang, S.; Lu, Y.; Chen, X.P.; Wang, Y.H.; Gu, A.X.; Zhao, J.J.; Shen, S.X. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Hortic. Res. 2019, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, K.; Tsuji, G.; Higashiyama, M.; Ogiyama, H.; Umemura, K.; Mitomi, M.; Kubo, Y.; Kosaka, Y. Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol. Control 2016, 100, 63–69. [Google Scholar] [CrossRef]
- Dai, Y.N.; Liu, Q.H.; Pan, H.; Zhang, Y.F.; Pu, J.F.; Bai, J.P. Analysis on the control effect of registered pesticides of soft rot of Chinese cabbage. Agric. Technol. 2020, 40, 15–19. [Google Scholar] [CrossRef]
- Guo, Z.H.; Wang, Q.X. Efficacy of ozonated water against Erwinia carotovora subsp. carotovora in Brassica campestris ssp. chinensis. Ozone-Sci. Eng. 2017, 39, 127–136. [Google Scholar] [CrossRef]
- Han, X.B.; Zhao, J.; Cao, J.M.; Zhang, C.S. Essential oil of Chrysanthemum indicum L.: Potential biocontrol agent against plant pathogen Phytophthora nicotianae. Environ. Sci. Pollut. Res. 2019, 26, 7013–7023. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Benomari, F.Z.; Andreu, V.; Kotarba, J.; El Amine Dib, M.; Bertrand, C.; Muselli, A.; Costa, J.; Djabou, N. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains. Environ. Sci. Pollut. R. 2017, 25, 29889–29900. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.F.; Yu, H.; Guo, Y.H.; Cheng, Y.L.; Qian, H.; Yao, W.R. Synergistic interactions of plant essential oils with antimicrobial agents: A new antimicrobial therapy. Crit. Rev. Food Sci. 2020, 62, 1740–1751. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhang, L.F.; Hu, Q.P.; Hao, D.L.; Xu, J.G. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway. Food Control 2017, 80, 290–296. [Google Scholar] [CrossRef]
- Morshdy, A.E.M.A.; Al-Mogbel, M.S.; Mohamed, M.E.M.; Elabbasy, M.T.; Elshafee, A.K.; Hussein, M.A. Bioactivity of essential oils for mitigation of Listeria monocytogenes isolated from fresh retail chicken meat. Foods 2021, 10, 3006. [Google Scholar] [CrossRef] [PubMed]
- Wajs-Bonikowska, A.; Malarz, J.; Szoka, L.; Kwiatkowski, P.; Stojakowska, A. Composition of essential oils from roots and aerial parts of Carpesium cernuum and their antibacterial and cytotoxic activities. Molecules 2021, 26, 1883. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.F.; Liu, M.Y.; Shen, H.M.; Zhang, X.R.; Li, Y.Q.; Niu, S.J. A study on contact toxicity of extracts from Polygonum orientale against 13 species of agricultural pests. Acta Prataculturae Sin. 2011, 20, 229–235. [Google Scholar]
- Malik, U.; Barik, A. Free fatty acids from the weed, Polygonum orientale leaves for attraction of the potential biocontrol agent, Galerucella placida (Coleoptera: Chrysomelidae). Biocontrol Sci. Technol. 2015, 25, 593–607. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Li, H.L.; Zhu, Z.; Huang, D.; Qi, Y.L.; Ma, C.H.; Zou, Z.R.; Ni, H.Y. Cinnamomum camphora fruit peel as a source of essential oil extracted using the solvent-free microwave-assisted method compared with conventional hydrodistillation. Lwt-Food Sci. Technol. 2022, 153, 112549. [Google Scholar] [CrossRef]
- Haddouchi, F.; Chaouche, T.M.; Zaouali, Y.; Ksouri, R.; Attou, A.; Benmansour, A. Chemical composition and antimicrobial activity of the essential oils from four Ruta species growing in Algeria. Food Chem. 2013, 141, 253–258. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Liu, X.Y.; Wang, Y.F.; Jiang, P.P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Ambrico, A.; Trupo, M.; Magarelli, R.; Balducchi, R.; Ferraro, A.; Hristoforou, E.; Marino, T.; Musmarra, D.; Casella, P.; Molino, A. Effectiveness of Dunaliella salina extracts against Bacillus subtilis and bacterial plant pathogens. Pathogens 2020, 9, 613. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Dai, G.H.; Zhuge, Y.Y.; Li, Y.B. Protective effect of Robinia pseudoacacia Linnl extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea. Crop. Prot. 2008, 27, 920–925. [Google Scholar] [CrossRef]
- Cui, W.Y.; He, P.J.; Munir, S.; He, P.B.; He, Y.Q.; Li, X.Y.; Yang, L.J.; Wang, B.; Wu, Y.X.; He, P.F. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Front. Microbiol. 2019, 10, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.Y.; Luo, Y.; Zhang, X.S.; Shi, W.L.; Gong, Z.T.; Shi, M.; Chen, L.L.; Chen, X.L.; Zhang, Y.Z.; Song, X.Y. Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. Fems Microbiol. Left 2014, 354, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajer, T.; Šilha, D.; Ventura, K.; Bajerová, P. Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum Schreb. Ind. Crops Prod. 2017, 100, 95–105. [Google Scholar] [CrossRef]
- Sun, X.H.; Hao, L.R.; Xie, Q.C.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C.H. Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020, 111, 107020. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Belwal, T.; Dong, L.; Lu, L.; Zou, Y.; Li, L.; Xu, Y.Q.; Luo, Z.S. A novel W/O/W double emulsion co-delivering brassinolide and cinnamon essential oil delayed the senescence of broccoli via regulating chlorophyll degradation and energy metabolism. Food Chem. 2021, 356, 129704. [Google Scholar] [CrossRef]
- Zhao, J.X.; Peng, T.; Liang, S.B.; Ma, M.M.; Zeng, Z.L.; Yu, P.; Gong, D.M.; Deng, S.G. Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2020, 109, 106953. [Google Scholar] [CrossRef]
- Kong, J.; Zhang, Y.; Ju, J.; Xie, Y.F.; Guo, Y.H.; Cheng, Y.L.; Qian, H.; Quek, S.Y.; Yao, W.R. Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in postharvest preservation of tomatoes. Food Chem. 2019, 285, 380–388. [Google Scholar] [CrossRef]
- Cui, H.Y.; Bai, M.; Sun, Y.H.; Abdel-Samie, M.A.S.; Lin, L. Antibacterial activity and mechanism of Chuzhou chrysanthemum essential oil. J. Funct. Foods 2018, 48, 159–166. [Google Scholar] [CrossRef]
- Li, L.; Song, X.; Yin, Z.Q.; Jia, R.Y.; Li, Z.W.; Zhou, X.; Zou, Y.F.; Li, L.X.; Yin, L.Z.; Yue, G.Z.; et al. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro. Microbiol. Res. 2016, 186, 139–145. [Google Scholar] [CrossRef]
- Guo, F.Y.; Chen, Q.P.; Liang, Q.; Zhang, M.; Chen, W.X.; Chen, H.M.; Yun, Y.H.; Zhong, Q.P.; Chen, W.J. Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Front. Microbiol. 2021, 12, 562094. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Y.J.; Gao, S.K.; Shao, X.; Cui, W.; Du, Y.; Guo, M.Z.; Tang, D.Q. Highly efficient and selective extraction of minor bioactive natural products using pure ionic liquids: Application to prenylated flavonoids in licorice. J. Ind. Eng. Chem. 2019, 80, 352–360. [Google Scholar] [CrossRef]
- Madhumita, M.; Guha, P.; Nag, A. Optimization of the exhaustive hydrodistillation method in the recovery of essential oil from fresh and cured betel leaves (Piper betle L.) using the Box-Behnken design. J. Food Process. Preserv. 2019, 43, e14196. [Google Scholar] [CrossRef]
- Wang, F.Y.; You, H.Q.; Guo, Y.H.; Wei, Y.K.; Xia, P.G.; Yang, Z.Q.; Ren, M.; Guo, H.; Han, R.L.; Yang, D.F. Essential oils from three kinds of fingered citrons and their antibacterial activities. Ind. Crops Prod. 2020, 147, 112172. [Google Scholar] [CrossRef]
- Milojević, S.Ž.; Stojanović, T.D.; Palić, R.; Lazić, M.L.; Veljković, V.B. Kinetics of distillation of essential oil from comminuted ripe juniper (Juniperus communis L.) berries. Biochem. Eng. J. 2008, 39, 547–553. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Deng, S.T.; Bi, Y.G. Optimization of ultrasonic-assisted extraction and UPLC-TOF/MS analysis of limonoids from lemon seed. LWT-Food Sci. Technol. 2017, 84, 135–142. [Google Scholar] [CrossRef]
- Akalin, M.K.; Tekin, K.; Akyüz, M.; Karagöz, S. Sage oil extraction and optimization by response surface methodology. Ind. Crops Prod. 2015, 76, 829–835. [Google Scholar] [CrossRef]
- Wang, H.W.; Liu, Y.Q.; Wei, S.L.; Yan, Z.J. Application of response surface methodology to optimise supercritical carbon dioxide extraction of essential oil from Cyperus rotundus Linn. Food Chem. 2012, 132, 582–587. [Google Scholar] [CrossRef]
- Hamid, H.A.; Jenidi, Y.; Thielemans, W.; Somerfield, C.; Gomes, R.L. Predicting the capability of carboxylated cellulose nanowhiskers for the remediation of copper from water using response surface methodology (RSM) and artificial neural network (ANN) models. Ind. Crops Prod. 2016, 93, 108–120. [Google Scholar] [CrossRef]
- Sutaphanit, P.; Chitprasert, P. Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chem. 2014, 150, 313–320. [Google Scholar] [CrossRef]
- Li, Y.T.; Xia, L.; Vazquez, J.F.T.; Song, S.X. Optimization of supercritical CO2 extraction of essential oil from Artemisia annua L. by means of response surface methodology. J. Essent. Oil Bear. Plants 2017, 20, 314–327. [Google Scholar] [CrossRef]
- Ning, X.; Yue, S.L. Optimization of preparation conditions of eucalyptus essential oil microcapsules by response surface methodology. J. Food Process. Preserv. 2019, 43, e14188. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2019, 60, 104604. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Maleki, H.; Baghaee-Ravari, S.; Moghaddam, M. Herbal essential oils exert a preservative effect against the potato soft rot disease. Sci. Hortic. 2021, 285, 110192. [Google Scholar] [CrossRef]
- Ashmawy, N.A.; Salem, M.Z.M.; EL-Hefny, M.; Abd El-Kareem, M.S.M.; El-Shanhorey, N.A.; Mohamed, A.A.; Salem, A.Z.M. Antibacterial activity of the bioactive compounds identified in three woody plants against some pathogenic bacteria. Microb. Pathogenesis. 2018, 121, 331–340. [Google Scholar] [CrossRef]
- Bellik, F.Z.; Benkaci-Ali, F.; Alsafra, Z.; Eppe, G.; Tata, S.; Sabaou, N.; Zidani, R. Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding. Ind. Crops Prod. 2019, 139, 111505. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Shill, M.C.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A review of biomedical activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef]
- Saha, M.; Bandyopadhyay, P.K. in vivo and in vitro antimicrobial activity of phytol, a diterpene molecule, isolated and characterized from Adhatoda vasica Nees. (Acanthaceae), to control severe bacterial disease of ornamental fish, Carassius auratus, caused by Bacillus licheniformis PKBMS16. Microb. Pathog. 2020, 141, 103977. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Assaeed, A.M.; Elgamal, A.M.; El Gendy, A.G.; Mohamed, T.A.; Dar, B.A.; Mohamed, T.K.; Elshamy, A.I. Essential oil of Calotropis procera: Comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules 2020, 25, 5203. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ismail, Z.; Rahman, A.; Kang, S.C. Chemical composition and anti-fungal properties of the essential oils and crude extracts of Orthosiphon stamineus Benth. Ind. Crops Prod. 2008, 27, 328–334. [Google Scholar] [CrossRef]
- Li, R.; Hu, H.B.; Li, X.F.; Zhang, P.; Xu, Y.K.; Yang, J.J.; Wang, Y.F. Essential oils composition and bioactivities of two species leaves used as packaging materials in Xishuangbanna, China. Food Control 2015, 51, 9–14. [Google Scholar] [CrossRef]
- Matebie, W.A.; Zhang, W.C.; Xie, G.B. Chemical composition and antimicrobial activity of essential oil from Phytolacca dodecandra collected in Ethiopia. Molecules 2019, 24, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmini, N.; Rashiya, N.; Sivakumar, N.; Kannan, N.D.; Manjuladevi, R.; Rajasekar, P.; Prabhu, N.M.; Selvakumar, G. in vitro and in vivo efficacy of methyl oleate and palmitic acid against ESBL producing MDR Escherichia coli and Klebsiella pneumoniae. Microb. Pathog. 2020, 148, 104446. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cha, E.; Ham, S.Y.; Park, J.H.; Nam, S.; Kwon, H.; Byun, Y.; Park, H.D. Linoleic acid inhibits Pseudomonas aeruginosa biofilm formation by activating diffusible signal factor-mediated quorum sensing. Biotechnol. Bioeng. 2021, 118, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Lee, J.H.; Park, J.G.; Lee, J. Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling 2020, 36, 126–137. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Pilizota, T.; Shaevitz, J.W. Plasmolysis and cell shape depend on solute outer-membrane permeability during hyperosmotic shock in E. coli. Biophys. J. 2013, 104, 2733–2742. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.F.; Ghaderi, J.; Gómez-Guillén, M.C. Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloid. 2022, 124, 107249. [Google Scholar] [CrossRef]
- Maillard, A.P.V.F.; Espeche, J.C.; Maturana, P.; Cutro, A.C.; Hollmann, A. Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BBA-Biomembranes 2021, 1863, 183597. [Google Scholar] [CrossRef]
- Moo, C.L.; Yang, S.K.; Osman, M.A.; Yuswan, M.H.; Loh, J.Y.; Lim, W.M.; Lim, S.H.E.; Lai, K.S. Antibacterial activity and mode of action of β-caryophyllene on Bacillus cereus. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.L.; Chen, J.L.; Zhang, L.X.; Zhang, R.F.; Zhang, S.C.; Ye, S.X.; Zhao, Z.M.; Yang, D.P. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef]
- Wang, F.; Wei, F.Y.; Song, C.X.; Jiang, B.; Tian, S.Y.; Yi, J.W.; Yu, C.L.; Song, Z.B.; Sun, L.G.; Bao, Y.L.; et al. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Ind. Crops Prod. 2017, 109, 358–366. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Li, J.Y.; Zhang, W.W.; Jiang, B.; Xuan, H.Z. Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz. J. Microbiol. 2021, 52, 1651–1664. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.L.; Dang, Q.F.; Liu, C.S.; Yan, J.Q.; Wang, T.; Fan, B.; Cha, D.S.; Li, X.L.; Liang, S.N.; Zhang, Z.Z. 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism. Carbohyd. Polym. 2016, 149, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Wichelecki, D.J.; McNew, T.M.; Aygun, A.; Torrey, K.; Stephenson, L.D. Detection of liposome lysis utilizing an enzyme–substrate system. Appl. Biochem. Biotechnol. 2011, 165, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, J.L.; Yang, L.Q.; Shi, F.; Yang, L.; Ye, M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 2017, 73, 1445–1451. [Google Scholar] [CrossRef]
- Liu, X.; Cai, J.X.; Chen, H.M.; Zhong, Q.P.; Hou, Y.Q.; Chen, W.J.; Chen, W.X. Antibacterial activity and mechanism of linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Liu, C.S.; Liu, C.G.; Meng, X.H.; Yu, L.J. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf. B 2008, 65, 197–202. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, R.; Hou, Q.; Tian, X.N.; Fan, X.Q.; Zhang, W.G.; Zhou, G.H. Comparison of activity, expression and S-nitrosylation of glycolytic enzymes between pale, soft and exudative and red, firm and non-exudative pork during post-mortem aging. Food Chem. 2020, 314, 126203. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.F.; Yu, H.; Guo, Y.H.; Cheng, Y.L.; Zhang, R.R.; Yao, W.R. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind. Crops Prod. 2020, 149, 112349. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food-borne pathogens. Food Control 2013, 32, 582–590. [Google Scholar] [CrossRef]
Factor | Levels | ||
---|---|---|---|
Soaking time (h) X1 | 0(−1) | 3(0) | 6(1) |
Extraction time (h) X2 | 3(−1) | 6(0) | 9(1) |
Ratio of liquid to solid (mL/g) X3 | 8(−1) | 10(0) | 12(1) |
Experimental Number | Factors | Extraction Yield (%) Y | ||
---|---|---|---|---|
Soaking Time (h) X1 | Extraction Time (h) X2 | Ratio of Liquid to Solid (mL/g) X3 | ||
1 | 0(−1) | 3(−1) | 10(0) | 0.270 |
2 | 6(1) | 3(−1) | 10(0) | 0.230 |
3 | 0(−1) | 9(1) | 10(0) | 0.384 |
4 | 6(1) | 9(1) | 10(0) | 0.367 |
5 | 0(−1) | 6(0) | 8(−1) | 0.298 |
6 | 6(1) | 6(0) | 8(−1) | 0.260 |
7 | 0(−1) | 6(0) | 12(1) | 0.338 |
8 | 6(1) | 6(0) | 12(1) | 0.318 |
9 | 3(0) | 3(−1) | 8(−1) | 0.237 |
10 | 3(0) | 9(1) | 8(−1) | 0.344 |
11 | 3(0) | 3(−1) | 12(1) | 0.246 |
12 | 3(0) | 9(1) | 12(1) | 0.358 |
13 | 3(0) | 6(0) | 10(0) | 0.392 |
14 | 3(0) | 6(0) | 10(0) | 0.398 |
15 | 3(0) | 6(0) | 10(0) | 0.429 |
16 | 3(0) | 6(0) | 10(0) | 0.399 |
17 | 3(0) | 6(0) | 10(0) | 0.418 |
Source | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 0.069 | 9 | 7.70 × 10−3 | 29.86 | <0.0001 |
X1 | 1.65 × 10−3 | 1 | 1.65 × 10−3 | 6.41 | 0.0392 |
X2 | 0.028 | 1 | 0.028 | 107.02 | <0.0001 |
X3 | 1.83 × 10−3 | 1 | 1.83 × 10−3 | 7.09 | 0.0323 |
X1X2 | 1.32 × 10−4 | 1 | 1.32 × 10−4 | 0.51 | 0.4972 |
X1X3 | 8.10 × 10−5 | 1 | 8.10 × 10−5 | 0.31 | 0.5927 |
X2X3 | 6.25 × 10−6 | 1 | 6.25 × 10−6 | 0.024 | 0.8807 |
X12 | 8.00 × 10−3 | 1 | 8.00 × 10−3 | 31.02 | 0.0008 |
X22 | 0.011 | 1 | 0.011 | 42.2 | 0.0003 |
X32 | 0.015 | 1 | 0.015 | 58.95 | 0.0001 |
Residual | 1.81 × 10−3 | 7 | 2.58 × 10−4 | ||
Lack of fit | 8.31 × 10−4 | 3 | 2.77 × 10−4 | 1.14 | 0.4349 |
Pure error | 9.75 × 10−4 | 4 | 2.44 × 10−4 | ||
Cor Total | 0.071 | 16 | |||
R-Squared | 97.46% | ||||
Adj R-Squared | 94.20% |
Strain | Concentration (mg/mL) | 3% DMSO | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
40 | 20 | 10 | 5 | 2.5 | 1.25 | 0.625 | 0.313 | 0.156 | 0.08 | 0.04 | 0.02 | 0.01 | ||
Pcc | - | - | - | - | - | - | - | + | + | + + | + + + | + + + | + + + | + + + |
Peak | Compound | RT (min) | RI1 | RI2 | Molecular Formula | Relative Percentage (%) |
---|---|---|---|---|---|---|
1 | 1-octen-3-ol | 4.18 | 961.1 | 980 ± 2 | C8H16O | 6.75 |
2 | unidentified | 5.08 | 1014.6 | - | - | 1.79 |
3 | 3,5-octadien-2-one | 6.38 | 1092.5 | 1091 ± 10 | C8H12O | 0.49 |
4 | unidentified | 7.99 | 1159.0 | - | - | 0.58 |
5 | safranal | 9.17 | 1205.0 | 1201 ± 4 | C10H14O | 0.63 |
6 | 2-methyl-2-decen-4-one | 9.48 | 1215.9 | 1215 ± N/A | C10H18O | 0.36 |
7 | β-cyclocitral | 9.74 | 1225.3 | 1220 ± 3 | C10H16O | 1.05 |
8 | β-homocyclocitral | 10.78 | 1261.8 | 1254 ± 3 | C11H18O | 0.47 |
9 | geranyl acetone | 16.45 | 1454.0 | 1456 ± 5 | C13H22O | 2.21 |
10 | β-ionone | 17.51 | 1490.1 | 1491 ± 2 | C13H20O | 6.66 |
11 | unidentified | 21.48 | 1628.9 | - | - | 0.69 |
12 | unidentified | 22.08 | 1651.0 | - | - | 0.86 |
13 | n-heptadecane | 23.45 | 1700.4 | 1700 | C17H36 | 0.73 |
14 | unidentified | 25.54 | 1779.1 | - | - | 0.62 |
15 | n-octadecane | 26.10 | 1800.4 | 1800 | C18H38 | 0.53 |
16 | phytone | 27.29 | 1847.7 | 1844 ± 4 | C18H36O | 17.24 |
17 | diisobutyl phthalate | 27.88 | 1871.0 | 1870 ± 4 | C16H22O4 | 2.95 |
18 | farnesyl acetone | 29.11 | 1921.2 | 1919 ± 5 | C18H30O | 3.35 |
19 | unidentified | 29.27 | 1927.8 | - | - | 1.12 |
20 | isophytol | 29.80 | 1950.5 | 1948 ± 2 | C20H40O | 2.09 |
21 | palmitic acid | 30.26 | 1969.5 | 1968 ± 7 | C16H32O2 | 3.21 |
22 | n-heneicosane | 33.36 | 2100.5 | 2100 | C21H44 | 3.01 |
23 | phytol | 33.72 | 2116.8 | 2116 ± 2 | C20H40O | 23.87 |
24 | linoleic acid | 34.56 | 2154.8 | 2133 ± 12 | C18H32O2 | 0.43 |
25 | n-tricosane | 37.70 | 2308.1 | 2300 | C23H48 | 1.53 |
26 | n-tetracosane | 39.73 | 2404.3 | 2400 | C24H50 | 0.67 |
27 | n-pentacosane | 41.73 | 2502.7 | 2500 | C25H52 | 12.62 |
28 | n-hexacosane | 43.60 | 2607.6 | 2600 | C26H54 | 0.78 |
29 | n-heptacosane | 45.43 | 2700.7 | 2700 | C27H56 | 2.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Wang, S.; Gao, Y.; Wang, Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods 2022, 11, 1585. https://doi.org/10.3390/foods11111585
Cai J, Wang S, Gao Y, Wang Q. Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods. 2022; 11(11):1585. https://doi.org/10.3390/foods11111585
Chicago/Turabian StyleCai, Jin, Shiqin Wang, Yichen Gao, and Qi Wang. 2022. "Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum" Foods 11, no. 11: 1585. https://doi.org/10.3390/foods11111585
APA StyleCai, J., Wang, S., Gao, Y., & Wang, Q. (2022). Antibacterial Activity and Mechanism of Polygonum orientale L. Essential Oil against Pectobacterium carotovorum subsp. carotovorum. Foods, 11(11), 1585. https://doi.org/10.3390/foods11111585