Impairment of Respiratory Chain Function and Involvement of Alternative Respiratory Pathway in Mitochondria of Potato Tubers Infected by Pectobacteriumcarotovorum subsp. carotovorum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Tubers and Pathogenic Bacteria
2.2. Experiment Design and Treatments
2.3. Observation and Measurement of Soft Rot Degree of Potato Tuber Slices
2.4. Extraction and Separation of Mitochondria
2.5. Measurement of Mitochondrial Membrane Potential
2.6. Measurement of AOXs in Mitochondria
2.7. Measurement of Complex III and Complex IV Activity of Mitochondrial Respiratory Chain
2.8. Measurement of Mitochondrial Respiratory Chain Function
2.9. Statistical Analysis
3. Results
3.1. Infection Degree of Pcc.L and Pcc.S on Potato Tuber Slices
3.2. Mitochondrial Membrane Potential
3.3. Mitochondrial Alternative Respiratory Pathway
3.4. Mitochondrial Complex III and Complex IV Activity
3.5. Mitochondrial Respiratory Chain Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czajkowski, R.; Perombelon, M.C.M.; van Veen, J.A.; van der Wolf, J.M. Control of Blackleg and Tuber Soft Rot of Potato Caused by Pectobacterium and Dickeya Species: A Review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Saar-Reismaa, P.; Kotkas, K.; Rosenberg, V.; Kulp, M.; Kuhtinskaja, M.; Vaher, M. Analysis of Total Phenols, Sugars, and Mineral Elements in Colored Tubers of Solanum tuberosum L. Foods 2020, 9, 1862. [Google Scholar] [CrossRef] [PubMed]
- Kalita, D.; Holm, D.G.; LaBarbera, D.V.; Petrash, J.M.; Jayanty, S.S. Inhibition of α-glucosidase, α-amylase, and Aldose Reductase by Potato Polyphenolic Compounds. PLoS ONE 2018, 13, e0191025. [Google Scholar] [CrossRef] [PubMed]
- Reddivari, L.; Wang, T.M.; Wu, B.N.; Li, S.Y. Potato: An Anti-Inflammatory Food. Am. J. Potato Res. 2019, 96, 164–169. [Google Scholar] [CrossRef]
- Schilling, G.; Eissner, H.; Schmidt, L.; Peiter, E. Yield Formation of Five Crop Species Under Water Shortage and Differential Potassium Supply. J. Plant Nutr. Soil Sci. 2016, 179, 234–243. [Google Scholar] [CrossRef]
- Hadizadeh, I.; Peivastegan, B.; Hannukkala, A.; van der Wolf, J.M.; Nissinen, R.; Pirhonen, M. Biological Control of Potato Soft Rot Caused by Dickeya solani and the Survival of Bacterial Antagonists Under Cold Storage Conditions. Plant Pathol. 2019, 68, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Charkowski, A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Marquez-Villavicencio, M.D.; Groves, R.L.; Charkowski, A.O. Soft Rot Disease Severity Is Affected by Potato Physiology and Pectobacterium Taxa. Plant Dis. 2011, 95, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, P.F.; Moreland, D.E. Cyanide-Resistant Respiration of Sweet Potato Mitochondria. Plant Physiol. 1975, 55, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Hanqing, F.; Kun, S.; Mingquan, L.; Hongyu, L.; Xin, L.; Yan, L.; Yifeng, W. The Expression, Function and Regulation of Mitochondrial Alternative Oxidase Under Biotic Stresses. Mol. Plant Pathol. 2010, 11, 429–440. [Google Scholar] [CrossRef]
- Rong, Z.; Tu, P.; Xu, P.; Sun, Y.; Yu, F.; Tu, N.; Guo, L.; Yang, Y. The Mitochondrial Response to DNA Damage. Front. Cell Dev. Biol. 2021, 9, 669379. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, A.; Pieterse, C.M. Cross Talk in Defense Signaling. Plant Physiol. 2008, 146, 839–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmusson, A.; Møller, I. Mitochondrial Electron Transport and Plant Stress. In Plant Mitochondria. Advances in Plant Biology; Kempken, F., Ed.; Springer: New York, NY, USA, 2011; Volume 1, pp. 357–381. [Google Scholar] [CrossRef]
- Hua, D.; Duan, J.; Ma, M.; Li, Z.; Li, H. Reactive Oxygen Species Induce Cyanide-Resistant Respiration in Potato Infected by Erwinia carotovora subsp. Carotovora. J. Plant Physiol. 2020, 246–247, 153132. [Google Scholar] [CrossRef] [PubMed]
- Suleman, M.; Ma, M.; Ge, G.; Hua, D.; Li, H. The Role of Alternative Oxidase in Plant Hypersensitive Response. Plant Biol. 2021, 23, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Oh, Y.; Li, H.; Baldwin, I.T.; Galis, I. Alternative Oxidase in Resistance to Biotic Stresses: Nicotiana attenuata AOX Contributes to Resistance to a Pathogen and a Piercing-Sucking Insect but not Manduca sexta larvae. Plant Physiol. 2012, 160, 1453–1467. [Google Scholar] [CrossRef] [Green Version]
- Vanlerberghe, G.C. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants. Int. J. Mol. Sci. 2013, 14, 6805–6847. [Google Scholar] [CrossRef]
- Gandin, A.; Denysyuk, M.; Cousins, A.B. Disruption of the Mitochondrial Alternative Oxidase (AOX) and Uncoupling Protein (UCP) Alters Rates of Foliar Nitrate and Carbon Assimilation in Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 3133–3142. [Google Scholar] [CrossRef] [Green Version]
- Kühn, K.; Obata, T.; Feher, K.; Bock, R.; Fernie, A.R.; Meyer, E.H. Complete Mitochondrial Complex I Deficiency Induces an Up-Regulation of Respiratory Fluxes That Is Abolished by Traces of Functional Complex I. Plant Physiol. 2015, 168, 1537–1549. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, S.; McIntosh, L. Higher Plant Mitochondria. Plant Cell 1999, 11, 571–586. [Google Scholar] [CrossRef]
- Lambers, H. The Physiological Significance of Cyanide-Resistant Respiration in High-Plants. Plant Cell Environ. 1980, 3, 293–302. [Google Scholar] [CrossRef]
- Millenaar, F.F.; Lambers, H. The Alternative Oxidase: In Vivo Regulation and Function. Plant Biol. 2003, 5, 2–15. [Google Scholar] [CrossRef]
- Yoshida, K.; Watanabe, C.K.; Hachiya, T.; Tholen, D.; Shibata, M.; Terashima, I.; Noguchi, K. Distinct Responses of the Mitochondrial Respiratory Chain to Long-and Short-Term High-Light Environments in Arabidopsis thaliana. Plant Cell Environ. 2011, 34, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Vanlerberghe, G.C.; Vanlerberghe, A.E.; McIntosh, L. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco). Plant Physiol. 1994, 106, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Maher, E.A.; Deboer, S.H.; Kelman, A. Serogroups of Erwinia carotovora Involved in Systemic Infection of Potato Plants and Infestation of Progeny Tubers. Am. Potato J. 1986, 63, 1–11. [Google Scholar] [CrossRef]
- Jacoby, R.P.; Millar, A.H.; Taylor, N.L. Assessment of Respiration in Isolated Plant Mitochondria Using Clark-Type Electrodes. Methods Mol. Biol. 2015, 1305, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Duvenage, L.; Munro, C.A.; Gourlay, C.W. The Potential of Respiration Inhibition As a New Approach to Combat Human Fungal Pathogens. Curr. Genet. 2019, 65, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Doherty, E.; Perl, A. Measurement of Mitochondrial Mass by Flow Cytometry During Oxidative Stress. React. Oxyg. Species 2017, 4, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Li, H.y.; Zhou, G.k.; Hu, T.q.; Meng, X.q.; Wan, D.s.; Shen, X.; Bi, Y.R.; Guo, J.k.; Liang, H.G.; Zhang, L.X. Cyanide-Resistant Alternative Pathway Was Involved in the Compatible Interaction Between Potato Tuber (Salonum tuberosum L.) and Soft Rot Bacteria (Erwinia carotovora pv. Carotovora). Acta Botanica Boreali-Occidentalia Sinica 2000, 20, 997–1002. [Google Scholar]
- Simons, B.H.; Millenaar, F.F.; Mulder, L.; Van Loon, L.C.; Lambers, H. Enhanced Expression and Activation of the Alternative Oxidase During Infection of Arabidopsis With Pseudomonas syringae pv Tomato. Plant Physiol. 1999, 120, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Kayser, E.B.; Sedensky, M.M.; Morgan, P.G. The Effects of Complex I Function and Oxidative Damage On Lifespan and Anesthetic Sensitivity in Caenorhabditis elegans. Mech. Ageing Dev. 2004, 125, 455–464. [Google Scholar] [CrossRef]
- Lin, Y.J.; Yu, X.Z.; Li, Y.H.; Yang, L. Inhibition of the Mitochondrial Respiratory Components (Complex I and Complex III) As Stimuli to Induce Oxidative Damage in Oryza sativa L. Under Thiocyanate Exposure. Chemosphere 2020, 243, 125472. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.M.; Krab, K. The Alternative Respiration Pathway in Plants-Role and Regulatin. Physiol. Plant. 1995, 95, 318–325. [Google Scholar] [CrossRef]
- Amirsadeghi, S.; Robson, C.A.; Vanlerberghe, G.C. The Role of the Mitochondrion in Plant Responses to Biotic Stress. Physiol. Plant. 2007, 129, 253–266. [Google Scholar] [CrossRef]
- Szibor, M.; Dhandapani, P.K.; Dufour, E.; Holmström, K.M.; Zhuang, Y.; Salwig, I.; Wittig, I.; Heidler, J.; Gizatullina, Z.; Gainutdinov, T.; et al. Broad AOX Expression In a Genetically Tractable Mouse Model Does Not Disturb Normal Physiology. Dis. Model. Mech. 2017, 10, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, L.; Farnham, A.; Dhandapani, P.K.; Salminen, L.; Bhaskaran, J.; Voswinckel, R.; Rauschkolb, P.; Scheibe, S.; Sommer, N.; Beisswenger, C.; et al. Alternative Oxidase Attenuates Cigarette Smoke-Induced Lung Dysfunction and Tissue Damage. Am. J. Respir. Cell Mol. Biol. 2019, 60, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Nicholls, D.G. Assessing Mitochondrial Dysfunction in Cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [Green Version]
Treatment | Strains | Pathogenicity | Rot Degree | Color | p % |
---|---|---|---|---|---|
−sham | Aging | − | + | White | 49.90 d |
Pcc.L | weak | +++ | Brown | 60.20 c | |
Pcc.S | strong | ++++ | Dark brown | 65.80 c | |
+sham | Aging | − | + | White | 53.78 d |
Pcc.L | weak | ++++ | Brown | 70.41 b | |
Pcc.S | strong | +++++ | Dark brown | 80.98 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Muhammad, S.; Duan, J.; Bai, L.; Li, H. Impairment of Respiratory Chain Function and Involvement of Alternative Respiratory Pathway in Mitochondria of Potato Tubers Infected by Pectobacteriumcarotovorum subsp. carotovorum. Foods 2022, 11, 1574. https://doi.org/10.3390/foods11111574
Ma M, Muhammad S, Duan J, Bai L, Li H. Impairment of Respiratory Chain Function and Involvement of Alternative Respiratory Pathway in Mitochondria of Potato Tubers Infected by Pectobacteriumcarotovorum subsp. carotovorum. Foods. 2022; 11(11):1574. https://doi.org/10.3390/foods11111574
Chicago/Turabian StyleMa, Minzhi, Suleman Muhammad, Jiangong Duan, Lu Bai, and Hongyu Li. 2022. "Impairment of Respiratory Chain Function and Involvement of Alternative Respiratory Pathway in Mitochondria of Potato Tubers Infected by Pectobacteriumcarotovorum subsp. carotovorum" Foods 11, no. 11: 1574. https://doi.org/10.3390/foods11111574
APA StyleMa, M., Muhammad, S., Duan, J., Bai, L., & Li, H. (2022). Impairment of Respiratory Chain Function and Involvement of Alternative Respiratory Pathway in Mitochondria of Potato Tubers Infected by Pectobacteriumcarotovorum subsp. carotovorum. Foods, 11(11), 1574. https://doi.org/10.3390/foods11111574