Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tests
2.1.1. First Test
2.1.2. Second Test
2.2. Ozone Treatment
2.3. Analyses
3. Results and Discussion
3.1. First Test
3.2. Second Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV—International Code of Oenological Practices. Available online: https://www.oiv.int/en/technical-standards-and-documents/oenological-practices/international-code-of-oenological-practices (accessed on 6 September 2021).
- Ribereau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology: The Microbiology of Wine and Vinifications, 2nd ed.; John Wiley& Sons: Chichester, UK, 2000; Volume 1, pp. 1–497. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments, 2nd ed.; John Wiley& Sons: Chichester, UK, 2006; Volume 2, pp. 1–441. [Google Scholar]
- Sudraud, P.; Chauvet, S.; Cazabeil, J.-M.; Bart, M.; Crebassa, B.; Rognon, G. Activité antilevure de l’anhydride sulfureux moléculaire. J. Int. Sci. Vigne Vin 1985, 19, 31–40. (In French) [Google Scholar] [CrossRef]
- Catena, M. Aspetti enologici della trasformazione delle uve lambrusco. L’Enologo 2014, 11, 24–38. (In Italian) [Google Scholar]
- Ferrarini, R.; Piubelli, G.; Bocca, E.; Casarotti, E. Studio e messa a punto della tecnica di desolforazione chimica con acqua ossigenata nella produzione di vini elaborati mediante macerazione solfitica. In Proceedings of the 32th World Congress of Vine and Wine OIV, Zagreb, Croatia, 28 June–3 July 2009. (In Italian). [Google Scholar]
- Loeb, B.L. Ozone: Science and engineering: Thirty-three years and growing. Ozone Sci. Eng. 2011, 33, 329–342. [Google Scholar] [CrossRef]
- Mencarelli, F.; Bellincontro, A. Recent advances in postharvest technology of the wine grape to improve the wine aroma. J. Sci. Food Agric. 2020, 100, 5046–5055. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.P.; Kothakota, A.; Ramesh, S.V.; Shahir, S. Ozone based food preservation: A promising green technology for enhanced food safety. Ozone Sci. Eng. 2019, 41, 17–34. [Google Scholar] [CrossRef]
- Ikehata, K.; El-Din, M.G. Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (part I). Ozone Sci. Eng. 2005, 27, 83–114. [Google Scholar] [CrossRef]
- Kusvuran, E.; Yildirim, D.; Mavruk, F.; Ceyhan, M. Removal of chloropyrifos ethyl, tetradifon and chlorothalonil pesticide residues from citrus by using ozone. J. Hazard. Mater. 2012, 241–242, 287–300. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Wang, T.; Li, C.; Wu, Z. Effects of ozone treatment on pesticide residues in food: A review. Int. J. Food Sci. Technol. 2019, 54, 301–312. [Google Scholar] [CrossRef]
- Sheng, F.; Jingjing, L.; Yu, C.; Fu-Ming, T.; Xuemei, D.; Jing-Yao, L. Theoretical study of the oxidation reactions of sulfurous acid/sulfite with ozone to produce sulfuric acid/sulfate with atmospheric implications. RSC Adv. 2018, 8, 7988–7996. [Google Scholar] [CrossRef] [Green Version]
- Danilewicz, J.C.; Tunbridge, P.; Kilmartin, P.A. Wine Reduction Potentials: Are These Measured Values Really Reduction Potentials? J. Agric. Food Chem. 2019, 67, 4145–4153. [Google Scholar] [CrossRef]
- Mok, Y.S.; Lee, H.J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption–reduction technique. Fuel Process. Technol. 2006, 87, 591–597. [Google Scholar] [CrossRef]
- Nelo, S.K.; Leskela, K.M.; Sohlo, J.J.K. Simultaneous oxidation of nitrogen oxides and sulfur dioxide with ozone and hydrogen peroxide. Chem. Eng. Technol. 1997, 20, 40–42. [Google Scholar] [CrossRef]
- Ratnawati, R.; Kusumaningtyas, D.A.; Suseno, P.; Prasetyaningrum, A. Mass transfer coefficient of ozone in a bubble column. In Proceedings of 24th Regional Symposium on Chemical Engineering (RSCE 2017), Semarang, Indonesia, 15–16 November 2017. MATEC Web Conf. 2018, 156, 02015. [Google Scholar] [CrossRef] [Green Version]
- OIV—Compendium of International Methods of Analysis of Wines and Musts (Volume 2). Available online: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 6 September 2021).
- Li, L.; Chen, M.; Zhang, Y.H.; Zhu, T.; Li, J.L.; Ding, J. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate. Atmos. Chem. Phys. 2006, 6, 2453–2464. [Google Scholar] [CrossRef] [Green Version]
- Penkett, S.A.; Jones, B.M.R.; Brice, K.A.; Eggleton, A.E.J. The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater. Atmos. Environ. 2007, 41, 154–168. [Google Scholar] [CrossRef]
- Halstead, W.D. A review of saturated vapour pressures and allied data for the principal corrosion products of iron, chromium, nickel and cobalt in flue gases. Corros. Sci. 1975, 15, 603–625. [Google Scholar] [CrossRef]
- Travaini, R.; Martín-Juárez, J.; Lorenzo-Hernando, A.; Bolado-Rodríguez, S. Ozonolysis: An advantageous pretreatment for lignocellulosic biomass revisited. Bioresour. Technol. 2016, 199, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Danilewicz, J.C. Reaction of oxygen and sulfite in wine. AJEV 2016, 67, 13–17. [Google Scholar] [CrossRef]
- Peng, Z.; Duncan, B.; Pocock, K.F.; Sefton, M.A. The effect of ascorbic acid on oxidative browning of white wines and model wines. Aust. J. Grape Wine Res. 1998, 4, 127–135. [Google Scholar] [CrossRef]
- Bradshaw, M.P.; Cheynier, V.; Scollary, G.R.; Prenzler, P.D. Defining the ascorbic acid crossover from anti-oxidant to pro-oxidant in a model wine matrix containing (+)-catechin. J. Agric. Food Chem. 2003, 51, 4126–4132. [Google Scholar] [CrossRef]
- Danilewicz, J.C.; Wallbridge, P.J. Further studies on the mechanism of interaction polyphenols, oxygen, and sulfite in wine. Am. J. Enol. Vitic. 2010, 61, 166–175. [Google Scholar]
- Chinnici, F.; Sonni, F.; Natali, N.; Riponi, C. Oxidative evolution of (+)-catechin in model white wine solutions containing sulfur dioxide, ascorbic acid or gallotannins. Food Res. Int. 2013, 51, 59–65. [Google Scholar] [CrossRef]
- Bradshaw, M.P.; Barril, C.; Clark, A.C.; Prenzler, P.D.; Scollary, G.R. Ascorbic acid: A review of its chemistry and reactivity in relation to a wine environment. Crit. Rev. Food Sci. Nutr. 2011, 6, 479–498. [Google Scholar] [CrossRef]
- Barril, C.; Clark, A.C.; Scollary, G.R. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal. Chim. Acta 2012, 732, 186–193. [Google Scholar] [CrossRef]
O3 Treatment | Total SO2 (mg/L) | ||
---|---|---|---|
(h) | T = 20 °C | T = 10 °C | |
T0 | 0 | 1040 ± 80 A | 1100 ± 90 A |
T1 | 4 | 640 ± 42 B | 530 ± 65 B |
T2 | 7.5 | 352 ± 25 C | 270 ± 39 C |
T3 | 24 | 200 ± 18 D | 120 ± 20 D |
O3 Treatment | CI | T | |||
---|---|---|---|---|---|
(h) | T = 20 °C | T = 10 °C | T = 20 °C | T = 10 °C | |
T0 | 0 | 0.773 ± 0.022 D | 0.775 ± 0.012 D | 366 ± 0.045 D | 1.360 ± 0.045 D |
T1 | 4 | 1.187 ± 0.044 C | 1.206 ± 0.034 C | 2.214 ± 0.066 B | 2.010 ± 0.066 C |
T2 | 7.5 | 1.357 ± 0.068 B | 1.398 ± 0.048 B | 2.180 ± 0.034 B | 2.080 ± 0.034 C |
T3 | 24 | 1.522 ± 0.054 A | 1.580 ± 0.064 A | 3.118 ± 0.038 A | 3.198 ± 0.038 A |
O3 Treatment | Total Polyphenols | ||
---|---|---|---|
(h) | T = 20 °C | T = 10 °C | |
T0 | 0 | 3350 ± 65 A | 3430 ± 28 A |
T1 | 4 | 3005 ± 46 B | 2970 ± 35 B |
T2 | 7.5 | 2740 ± 45 C | 2670 ± 44 C |
T3 | 24 | 2360 ± 39 D | 2280 ± 36 D |
O3 Treatment (h) | SO2 (mg/L) | SO2 (mg/L) + Mixture | Tannins (mg/L) | Tannins (mg/L) + Mixture | Ascorbic Acid (mg/L) | Ascorbic Acid (mg/L) + Mixture | |
---|---|---|---|---|---|---|---|
T0 | 0 | 28.4 ± 0.6 A | 21.9 ± 0.6 B | 902 ± 18 a | 907 ± 16 a | 47.4 ± 2.3 A | 50.1 ± 5.5 A |
T1 | 1 | 22.4 ± 0.4 B | 7.2 ± 0.2 C | 877 ±15 abc | 881 ± 16 ab | 13.6 ± 1.8 C | 27.2 ± 3.2 B |
T2 | 3 | 0 | 0 | 746 ± 15 d | 864 ± 12 bc | 9.3 ± 0.5 D | 5.1 ± 0.8 E |
T3 | 5 | 0 | 0 | 713 ± 10 e | 851 ± 11 c | 6.3 ± 1.1 E | 2.7 ± 0.6 F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delogu, M.; Ceccantoni, B.; Forniti, R.; Taglieri, I.; Sanmartin, C.; Mencarelli, F.; Bellincontro, A. Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must. Foods 2022, 11, 1405. https://doi.org/10.3390/foods11101405
Delogu M, Ceccantoni B, Forniti R, Taglieri I, Sanmartin C, Mencarelli F, Bellincontro A. Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must. Foods. 2022; 11(10):1405. https://doi.org/10.3390/foods11101405
Chicago/Turabian StyleDelogu, Marina, Brunella Ceccantoni, Roberto Forniti, Isabella Taglieri, Chiara Sanmartin, Fabio Mencarelli, and Andrea Bellincontro. 2022. "Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must" Foods 11, no. 10: 1405. https://doi.org/10.3390/foods11101405
APA StyleDelogu, M., Ceccantoni, B., Forniti, R., Taglieri, I., Sanmartin, C., Mencarelli, F., & Bellincontro, A. (2022). Ozone Gas for Low Cost and Environmentally Friendly Desulfurization of Mute Grape Must. Foods, 11(10), 1405. https://doi.org/10.3390/foods11101405