Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Flour Characterization
2.2.1. Proximal Composition
2.2.2. Mineral Analysis
2.2.3. Extraction and Determination of Phenolic Content and Profile by RP-HPLC-ESI-MS
2.2.4. Determination of Antioxidant Activity
2.2.5. Functional Activities
2.3. Bread Preparation
2.4. Bread Characterization
2.5. Statistical Analyses
3. Results and Discussion
3.1. Proximal Analysis of Flours
3.2. Mineral Content
3.3. Polyphenol Profile and Antioxidant Activity
3.4. Functional Activities
3.5. Bread Characterization
3.6. Mathematical Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food industry by-products used as functional ingredients of bakery products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Hager, A.S.; Zannini, E.; Arendt, E.K. Formulating breads for specific dietary requirements. In Breadmaking: Improving Quality; Cauvain, S.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 711–735. [Google Scholar]
- Collar, C. Bread: Types of Bread. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 500–507. [Google Scholar]
- Sáez, G.D.; Saavedra, L.; Hebert, E.M.; Zárate, G. Identification and biotechnological characterization of lactic acid bacteria isolated from chickpea sourdough in northwestern Argentina. LWT 2018, 93, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Tuncel, N.B.; Yilmaz, N.; Sener, E. The effect of pea (Pisum sativum L.)-originated asparaginase on acrylamide formation in certain bread types. Int. J. Food Sci. Technol. 2010, 45, 2470–2476. [Google Scholar] [CrossRef]
- Bourré, L.; McMillin, K.; Borsuk, Y.; Boyd, L.; Lagassé, S.; Sopiwnyk, E.; Jones, S.; Dick, A.; Malcolmson, L. Effect of adding fermented split yellow pea flour as a partial replacement of wheat flour in bread. Legum. Sci. 2019, 1, e2. [Google Scholar] [CrossRef]
- Ukeyima, M.T.; Dendegh, T.A.; Isusu, S.E. Quality Characteristics of Bread Produced from Wheat and White Kidney Bean Composite Flour. Eur. J. Nutr. Food Saf. 2019, 10, 263–272. [Google Scholar] [CrossRef]
- Hoxha, I.; Xhabiri, G.; Deliu, R. The Impact of Flour from White Bean (Phaseolus vulgaris) on Rheological, Qualitative and Nutritional Properties of the Bread. Open Access Libr. J. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- González-Montemayor, A.M.; Flores-Gallegos, A.C.; Contreras-Esquivel, J.C.; Solanilla-Duque, J.F.; Rodríguez-Herrera, R. Prosopis spp. functional activities and its applications in bakery products. Trends Food Sci. Technol. 2019, 94, 12–19. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Pini, N.; Guerrini, S.; Granchi, L.; Vincenzini, M. Liquid and firm sourdough fermentation: Microbial robustness and interactions during consecutive backsloppings. LWT 2019, 105, 9–15. [Google Scholar] [CrossRef]
- Official Methods of Analysis AOAC Intternational; AOAC: Rockville, MD, USA, 2000.
- Chen, D.; Shi, J.; Hu, X.; Du, S. Alpha-amylase treatment increases extractable phenolics and antioxidant capacity of oat (Avena nuda L.) flour. J. Cereal Sci. 2015, 65, 60–66. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Aguilar, C.N.; Flores-Gallegos, A.C.; Sepúlveda, L.; Rodríguez-Herrera, R.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J. Preliminary testing of ultrasound/microwave-assisted extraction (U/M-AE) for the isolation of Geraniin from Nephelium lappaceum L. (Mexican Variety) peel. Processes 2020, 8, 572. [Google Scholar] [CrossRef]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicryl-hydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol. 2004, 26, 211–219. [Google Scholar] [CrossRef]
- Opitz, S.E.W.; Smrke, S.; Goodman, B.A.; Yeretzian, C. Methodology for the measurement of antioxidant capacity of coffee: A validated platform composed of three complementary antioxidant assays. In Processing and Impact on Antioxidants in Beverages; Preedy, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 253–264. [Google Scholar]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Escobedo-García, S.; Salas-Tovar, J.A.; Flores-Gallegos, A.C.; Contreras-Esquivel, J.C.; González-Montemayor, A.M. Functionality of Agave Bagasse as Supplement for the Development of Prebiotics-Enriched Foods. Plant. Foods Hum. Nutr. 2019, 75, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Lira, A.Q.; Alvarado-Resendiz, M.G.; Simental, S.S.; Martini, J.P.; Reyes-Santamaria, M.I.; Guemes-Vera, N. Use of Lactobacillus from Pulque in Sourdough. Adv. Microbiol. 2014, 4, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Villarreal Morales, S.L.; Muñiz Márquez, D.B.; Michel Michel, M.; González Montemayor, A.M.; Escobedo García, S.; Salas Tovar, J.A.; Flores Gallegos, A.C.; Rodríguez Herrera, R. Aguamiel a fresh beverage from Agave spp. sap with functional properties. In Natural Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 179–208. [Google Scholar]
- AACC International Approved methods of analysis. In Approved Methods of Analysis, 11th ed.; AACC International: Saint Paul, MN, USA, 2010.
- Purić, M.; Rabrenović, B.; Rac, V.; Pezo, L.; Tomašević, I.; Demin, M. Application of defatted apple seed cakes as a by-product for the enrichment of wheat bread. LWT 2020, 130, 109391. [Google Scholar] [CrossRef]
- Saldanha do Carmo, C.; Silventoinen, P.; Nordgård, C.T.; Poudroux, C.; Dessev, T.; Zobel, H.; Holtekjølen, A.K.; Draget, K.I.; Holopainen-Mantila, U.; Knutsen, S.H.; et al. Is dehulling of peas and faba beans necessary prior to dry fractionation for the production of protein-and starch-rich fractions? Impact on physical properties, chemical composition and techno-functional properties. J. Food Eng. 2020, 278, 109937. [Google Scholar] [CrossRef]
- Kan, L.; Nie, S.; Hu, J.; Wang, S.; Cui, S.W.; Li, Y.; Xu, S.; Wu, Y.; Wang, J.; Bai, Z.; et al. Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food Chem. Toxicol. 2017, 108, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Conforti, P.A.; Patrignani, M. Increase in the antioxidant content in biscuits by infusions or Prosopis chilensis pod flour. Open Agric. 2021, 6, 243–253. [Google Scholar] [CrossRef]
- Michaels, T.E. Grain Legumes and Their Dietary Impact: Overview. In Encyclopedia of Food Grains; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press Limited: Cambridge, MA, USA, 2016; Volume 1–4, pp. 265–273. [Google Scholar]
- Millar, K.A.; Gallagher, E.; Burke, R.; Mccarthy, S.; Barry-ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Sciammaro, L.P.; Ferrero, C.; Puppo, C. Physicochemical and nutritional characterization of sweet snacks formulated with Prosopis alba flour. LWT 2018, 93, 24–31. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Dijkshoorn, R.; Maloncy, M.; Finimundy, T.; Calhelha, R.C.; Pereira, C.; Stojković, D.; Soković, M.; Ferreira, I.C.F.R.; Barros, L.; et al. Nutritive and bioactive properties of mesquite (Prosopis pallida) flour and its technological performance in breadmaking. Foods 2020, 9, 597. [Google Scholar] [CrossRef] [PubMed]
- Romano, N.; Sciammaro, L.; Mobili, P.; Puppo, M.C.; Gomez-Zavaglia, A. Flour from mature Prosopis nigra pods as suitable substrate for the synthesis of prebiotic fructo-oligosaccharides and stabilization of dehydrated Lactobacillus delbrueckii subsp. bulgaricus. Food Res. Int. 2019, 121, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, V.G.; Kraus, S.; Schott, M.; Muranyi, I.; Schweiggert-Weisz, U.; Eisner, P. Screening of twelve pea (Pisum sativum L.) cultivars and their isolates focusing on the protein characterization, functionality, and sensory profiles. Foods 2021, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Aquino-Bolaños, E.N.; Garzón-García, A.K.; Alba-Jiménez, J.E.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C.; Santos-Basurto, M.A. Physicochemical Characterization and Functional Potential of Phaseolus vulgaris L. and Phaseolus coccineus L. Landrace green beans. Agronomy 2021, 11, 803. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J.; Zapata-Revilla, M.A.; Tenorio-Sanz, M.D. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT 2010, 43, 1467–1470. [Google Scholar] [CrossRef]
- Falade, K.O.; Akeem, S.A. Protein quality of dehulled-defatted African mesquite bean (Prosopis africana) flour and protein isolates. J. Food Meas. Charact. 2020, 14, 3426–3433. [Google Scholar] [CrossRef]
- Sciammaro, L.P.; Quintero Ruiz, N.A.; Ferrero, C.; Giacomino, S.; Picariello, G.; Mamone, G.; Puppo, M.C. Prosopis spp. powder: Influence of chemical components in water adsorption properties. Int. J. Food Sci. Technol. 2021, 56, 278–286. [Google Scholar] [CrossRef]
- Veber, A.; Zareba, D.; Ziarno, M. Functional fermented beverage prepares from germinated white kidney beans (Phaseolus vulgaris L.). In Milk Substitutes-Selected Aspects; Ziarno, M., Ed.; IntechOpen: London, UK, 2021; pp. 3–22. [Google Scholar]
- Manonmani, D.; Bhol, S.; Bosco, S.J.D. Effect of Red Kidney Bean (Phaseolus vulgaris L.) Flour on Bread Quality. Open Access Libr. J. 2014, 3, 1–6. [Google Scholar] [CrossRef]
- Pitura, K.; Arnt, S.D. Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats. Food Chem. 2019, 272, 26–32. [Google Scholar] [CrossRef]
- Gebreegziabher, B.G.; Tsegay, B.A. Proximate and mineral composition of Ethiopian pea (Pisum sativum var. abyssinicum A. Braun) landraces vary across altitudinal ecosystems. Cogent Food Agric. 2020, 6, 1789421. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Dijkshoorn, R.; Maloncy, M.; Finimundy, T.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L.; Cadavez, V. Nutritional quality and staling of wheat bread partially replaced with Peruvian mesquite (Prosopis pallida) flour. Food Res. Int. 2020, 137, 109621. [Google Scholar] [CrossRef]
- Anhwange, B.; Kyenge, B.; Kukwa, R.; Ishwa, B. Chemical Analysis of Prosopis africana (Guill &Perr.) Seeds. Niger. Ann. Pure Appl. Sci. 2020, 3, 129–140. [Google Scholar] [CrossRef]
- Santiago-Ramos, D.; de Dios Figueroa-Cárdenas, J.; Véles-Medina, J.J.; Salazar, R. Physicochemical properties of nixtamalized black bean (Phaseolus vulgaris L.) flours. Food Chem. 2018, 240, 456–462. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Campa Negrillo, A.; Suárez Valles, B.; Ferreira Fernández, J.J. Phenolic content and antioxidant activity in seeds of common bean (Phaseolus vulgaris L.). Foods 2021, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.K.; Ahmed, M.; Khan, F. Identification of novel anticancer terpenoids from Prosopis juliflora (Sw) DC (Leguminosae) pods. Trop. J. Pharm. Res. 2018, 17, 661–668. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Zhong, J.; Ayatollahi, S.A.; Kobarfard, F.; Faizi, M.; Khosravi-Dehaghi, N.; Suleria, H.A.R. LC-ESI-QTOF-MS/MS characterization of phenolic compounds from Prosopis farcta (Banks & Sol.) J.F.Macbr. And their potential antioxidant activities. Cell. Mol. Biol. 2021, 67, 189–200. [Google Scholar] [CrossRef]
- Schendel, R.R. Phenol content in sprouted grains. In Sprouted Grains; Feng, H., Nemzer, B., DeVries, J.W., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 247–316. [Google Scholar]
- Fahim, J.R.; Attia, E.Z.; Kamel, M.S. The phenolic profile of pea (Pisum sativum): A phytochemical and pharmacological overview. Phytochem. Rev. 2019, 18, 173–198. [Google Scholar] [CrossRef]
- Borges-Martínez, E.; Gallardo-Velázquez, T.; Cardador-Martínez, A.; Moguel-Concha, D.; Osorio-Revilla, G.; Ruiz-Ruiz, J.C.; Martínez, C.J. Phenolic compounds profile and antioxidant activity of pea (Pisum sativum L.) and black bean (Phaseolus vulgaris L.) sprouts. Food Sci. Technol. 2021, 2061, 1–7. [Google Scholar] [CrossRef]
- Brizzolari, A.; Brandolini, A.; Glorio-Paulet, P.; Hidalgo, A. Antioxidant capacity and heat damage of powder products from South American plants with functional properties. Ital. J. Food Sci. 2019, 31, 731–748. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Quispe, C.; Soriano, M.D.P.C.; Theodoluz, C.; Jiménez-Aspée, F.; Pérez, M.J.; Cuello, A.S.; Isla, M.I. Chilean Prosopis Mesocarp Flour: Phenolic Profiling and Antioxidant Activity. Molecules 2015, 20, 7017–7033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Govindasamy, J.; Nyola, N.K. In-vitro and in-vivo Anti-Hyperglycemic Potential of Prosopis cineraria Pods Extract and Fractions. J. Biol. Act. Prod. Nat. 2019, 9, 135–140. [Google Scholar] [CrossRef]
- Siddiq, M.; Kelkar, S.; Harte, J.B.; Dolan, K.D.; Nyombaire, G. Functional properties of flour from low-temperature extruded navy and pinto beans (Phaseolus vulgaris L.). LWT 2013, 50, 215–219. [Google Scholar] [CrossRef]
- De La Rosa, A.P.; Frias-Hernández, J.T.; Olalde-Portugal, V.; González Castañeda, J. Processing, Nutritional Evaluation, and Utilization of Whole Mesquite Flour (Prosopis laevigata). J. Food Sci. 2006, 71, 315–320. [Google Scholar] [CrossRef]
- Wu, C.; Ma, W.; Chen, Y.; Navicha, W.B.; Wu, D.; Du, M. The water holding capacity and storage modulus of chemical cross-linked soy protein gels directly related to aggregates size. LWT 2019, 103, 125–130. [Google Scholar] [CrossRef]
- Lin, T.; Fernández-Fraguas, C. Effect of thermal and high-pressure processing on the thermo-rheological and functional properties of common bean (Phaseolus vulgaris L.) flours. LWT 2020, 127, 109325. [Google Scholar] [CrossRef]
- Belghith Fendri, L.; Chaari, F.; Maaloul, M.; Kallel, F.; Abdelkafi, L.; Ellouz Chaabouni, S.; Ghribi-Aydi, D. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 2016, 73, 584–591. [Google Scholar] [CrossRef]
- Nyam, K.L.; Lau, M.; Tan, C.P. Fibre from pumpkin (Cucurbita pepo L.) Seeds and rinds: Physico-chemical properties, antioxidant capacity and application as bakery product ingredients. Malays. J. Nutr. 2013, 19, 99–110. [Google Scholar]
- Rubel, I.A.; Pérez, E.E.; Manrique, G.D.; Genovese, D.B. Fibre enrichment of wheat bread with Jerusalem artichoke inulin: Effect on dough rheology and bread quality. Food Struct. 2014, 3, 21–29. [Google Scholar] [CrossRef]
- Bigne, F.; Puppo, M.C.; Ferrero, C. Fibre enrichment of wheat flour with mesquite (Prosopis spp.): Effect on breadmaking performance and staling. LWT 2016, 65, 1008–1016. [Google Scholar] [CrossRef]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; McCarthy, S.; Gallagher, E. Dough properties and baking characteristics of white bread, as affected by addition of raw, germinated and toasted pea flour. Innov. Food Sci. Emerg. Technol. 2019, 56, 102189. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C.F.R. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Varis, J.; Verni, M.; Rizzello, C.G.; Katina, K. Improvement of the protein quality of wheat bread through faba bean sourdough addition. LWT 2017, 82, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Sahin, A.W.; Zannini, E.; Coffey, A.; Arendt, E.K. Sugar reduction in bakery products: Current strategies and sourdough technology as a potential novel approach. Food Res. Int. 2019, 126, 108583. [Google Scholar] [CrossRef] [PubMed]
Treatment | Flours (g) | |||
---|---|---|---|---|
PF | GBF | MF | WF | |
1 | 10 | 10 | 0 | 80 |
2 | 0 | 10 | 10 | 80 |
3 | 10 | 0 | 10 | 80 |
4 | 6.66 | 6.66 | 6.66 | 80 |
5 | 20 | 0 | 0 | 80 |
6 | 0 | 20 | 0 | 80 |
7 | 0 | 0 | 20 | 80 |
Control | 0 | 0 | 0 | 100 |
Proximal Composition (g/100 g) | PF | GBF | MF |
---|---|---|---|
Moisture | 18.71 ± 1.35 a * | 10.86 ± 0.05 b | 5.97 ± 0.85 c |
Fat | 1.57 ± 0.24 a | 1.76 ± 0.25 a | 1.85 ± 0.38 a |
Ash | 3.44 ± 1.25 b | 7.06 ± 0.19 a | 5.52 ± 0.33 a |
Total fiber | 9.37 ± 3.43 b | 6.06 ± 1.95 b | 19.97 ± 0.11 a |
Protein | 47.5 ± 2.44 a | 41.31 ± 2.52 a | 24.71 ± 5.05 b |
Carbohydrates | 19.41 ± 6.09 b | 32.95 ± 3.20 a | 41.79 ± 5.43 a |
Total Polyphenols (mg GA eq/g) | 65.83 ± 1.17 b | 66.34 ± 2.51 b | 474.77 ± 31.40 a |
Mineral content (mg/100 g flour) | |||
Potassium | 1839.22 ± 17.04 c | 4400.12 ± 0.99 a | 2870.13 ± 21.39 b |
Calcium | 1180.29 ± 35.79 b | 1880.67 ± 7.48 a | 1132.86 ± 15.34 b |
Magnesium | n.d. | n.d. | 765.71 ± 39.56 a |
Phosphorus | 128.45 ± 2.43 b | 223.75 ± 9.98 a | 243.25 ± 0.80 a |
Iron | 26.34 ± 0.24 b | 39.17 ± 0.49 a | 23.13 ± 2.82 b |
Antioxidant activity (mg TE/g) | |||
DPPH | 21.12 ± 6.06 b | 10.72 ± 1.25 b | 204.67 ± 3.79 a |
ABTS | 9.94 ± 7.94 b | 9.64 ± 2.73 b | 95.86 ± 0.74 a |
FRAP | 20.01 ± 14.17 b | 8.46 ± 1.42 b | 1054.19 ± 64.42 a |
Functional properties | |||
WAI (g/g) | 4.41 ± 0.11 b | 7.11 ± 0.13 a | 2.28 ± 0.12 c |
WSI (%) | 73.66 ± 0.64 b | 80.61 ± 3.53 a | 64.87 ± 1.21 c |
WHC (g water/g sample) | 3.80 ± 0.00 b | 5.77 ± 0.15 a | 2.07 ± 0.12 c |
OHC (g oil/g sample) | 1.94 ± 0.20 a | 2.52 ± 0.56 a | 1.86 ± 0.18 a |
OMAC (g oil/g sample) | 1.60 ± 0.10 a | 2.03 ± 0.35 a | 1.66 ± 0.10 a |
Sample | Retention Time (min) | Molecular Mass [M-H]−1 | Compound | Family |
---|---|---|---|---|
PF | 3.727 | 377.1 | 3,4-DHPEA-EA | Tyrosols |
4.951 | 341.0 | Caffeic acid 4-O-glucoside | Hydroxycinnamic acids | |
13.681 | 326.1 | p-Coumaroyl tyrosine | ||
14.802 | 315.0 | Protocatechuic acid 4-O-glucoside | ||
16.891 | 365.0 | Secoisolariciresinol (possibility) | Lignans | |
19.521 | 395.1 | Unknown | ||
29.634 | 787.0 | Patuletin 3-O-glucosyl-(1→6)-[apiosyl(1→2)]-glucoside | Methoxyflavonols | |
34.429 | 933.0 | Pedunculagin III | Ellagitannins | |
GBF | 3.709 | 377.1 | 3,4-DHPEA-EA | Tyrosols |
4.520 | 341.0 | Caffeic acid 4-O-glucoside | Hydroxycinnamic acids | |
15.147 | 315.0 | Protocatechuic acid 4-O-glucoside | ||
16.605 | 365.0 | Secoisolariciresinol (possibility) | Lignans | |
25.760 | 378.0 | Medioresinol | ||
30.332 | 741.0 | Quercetin 3-O-xylosyl-rutinoside | Flavonols | |
MF | 3.667 | 377.1 | 3,4-DHPEA-EA | Tyrosols |
4.750 | 341.1 | Caffeic acid 4-O-glucoside | Hydroxycinnamic acids | |
15.308 | 255.0 | Pterostilbene | Stilbenes | |
19.304 | 337.1 | 3-p-Coumaroylquinic acid | Hydroxycinnamic acids | |
22.135 | 275.1 | Unknown | ||
26.898 | 593.1 | Apigenin 6,8-di-C-glucoside (Vicenin II) | Flavones | |
27.844 | 593.1 | Chrysoeriol 7-O-apiosyl-glucoside | Methoxyflavones | |
29.999 | 563.0 | Apigenin-6-C- arabinoside-8-C-glucoside (isoschaftoside) | Flavones | |
31.224 | 328.2 | Avenanthramide 2f | Methoxycinnamic acids | |
35.141 | 623.1 | Isorhamnetin 3-O-glucoside 7-O-rhamnoside | Methoxyflavonols |
Bread Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
Proximal Composition (g/100 g) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Control |
Moisture | 36.60 ± 1.61 a* | 35.98 ± 2.05 a | 34.31 ± 1.05 a | 35.74 ± 2.05 a | 34.93 ± 1.42 a | 36.13 ± 2.46 a | 33.25 ± 2.91 a | 38.56 ± 1.60 a |
Ash | 3.29 ± 0.21 a | 3.95 ± 0.75 a | 3.33 ± 0.43 a | 3.24 ± 0.11 a | 3.43 ± 0.24 a | 3.62 ± 0.25 a | 3.81 ± 0.94 a | 2.85 ± 0.58 a |
Total fiber | 5.18 ± 0.16 bc | 4.42 ± 0.48 bc | 5.40 ± 0.29 abc | 5.63 ± 0.20 ab | 5.18 ± 0.29 bc | 4.24 ± 0.47 c | 6.45 ± 0.90 a | 2.63 ± 0.24 d |
Protein | 19.77 ± 2.70 a | 15.35 ± 0.49 ab | 16.05 ± 2.99 ab | 17.40 ± 0.42 ab | 18.02 ± 0.03 ab | 18.45 ± 0.64 ab | 14.56 ± 1.53 ab | 13.13 ± 1.22 b |
Carbohydrates | 34.54 ± 0.61 b | 40.56 ± 3.93 ab | 41.88 ± 2.73 ab | 37.99 ± 2.18 ab | 37.39 ± 0.06 ab | 35.94 ± 2.18 ab | 40.27 ± 0.60 ab | 43.40 ± 0.82 a |
Caloric value (kcal/100 g) | 217.24 ±8.37 a | 223.65 ± 17.71 a | 231.69 ± 1.03 a | 221.54 ± 10.38 a | 221.64 ± 0.35 a | 217.56 ± 6.18 a | 219.29 ± 3.72 a | 226.09 ± 8.17 a |
Specific volume (cm3/g) | 1.27 ± 0.09 b | 1.35 ± 0.05 ab | 1.34 ± 0.15 ab | 1.26 ± 0.05 b | 1.47 ± 0.26 ab | 1.21 ± 0.01 b | 1.54 ± 0.06 ab | 1.66 ± 0.15 a |
Color parameters | ||||||||
L* | 47.28 ± 3.64 a | 42.03 ± 4.20 a | 40.65 ± 6.13 a | 40.88 ± 6.14 a | 44.97 ± 3.18 a | 46.37 ± 0.75 a | 39.24 ± 3.18 a | 38.03 ± 3.49 a |
a* | 8.27 ± 0.55 c | 8.94 ± 0.29 abc | 8.86 ± 0.27 abc | 8.82 ± 0.39 abc | 8.52 ± 0.71 bc | 7.72 ± 0.46 c | 9.88 ± 0.70 ab | 10.10 ± 0.50 a |
b* | 21.08 ± 0.61 a | 19.25 ± 0.55 ab | 18.51 ± 0.88 abc | 19.44 ± 1.03 ab | 20.06 ± 1.08 a | 20.91 ± 1.39 a | 16.89 ± 1.06 bc | 16.48 ± 0.77 c |
Total Polyphenols (mg GA eq/g) | 392.16 ± 91.64 a | 433.32 ± 98.87 a | 430.71 ± 57.16 a | 436.07 ± 34.57 a | 401.87 ± 52.64 a | 396.94 ± 85.04 a | 630.57 ± 266.60 a | 350.28 ± 59.51 a |
Antioxidant activity (mg Trolox eq/g) | ||||||||
DPPH | 133.67 ± 62.43 a | 148.67 ± 65.65 a | 178.00 ± 18.36 a | 172.33 ± 12.06 a | 180.33 ± 6.43 a | 150.67 ± 22.68 a | 183.33 ± 15.89 a | 176.67 ± 9.81 a |
ABTS | 91.15 ± 3.87 a | 85.46 ± 14.72 a | 95.13 ± 0.86 a | 94.64 ± 0.37 a | 93.50 ± 2.91 a | 91.07 ± 6.59 a | 92.24 ± 3.11 a | 91.96 ± 3.07 a |
FRAP | 920.68 ± 190.08 a | 923.67 ± 153.24 a | 992.79 ± 91.13 a | 995.95 ± 99.85 a | 961.04 ± 198.43 a | 908.93 ± 274.54 a | 995.07 ± 132.92 a | 809.24 ± 203.44 a |
Functional properties | ||||||||
WHC (g water/g sample) | 1.03 ± 0.06 d | 1.63 ± 0.15 ab | 1.40 ± 0.20 bc | 1.37 ± 0.12 abc | 1.10 ± 0.10 bc | 1.27 ± 0.12 bc | 1.07 ± 0.12 bc | 1.87 ± 0.12 a |
OHC (g oil/ g sample) | 0.43 ± 0.02 bc | 0.50 ± 0.05 a | 0.32 ± 0.04 c | 0.40 ± 0.01 abc | 0.36 ± 0.04 bc | 0.33 ± 0.01 bc | 0.35 ± 0.05 bc | 0.49 ± 0.05 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Montemayor, A.M.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C.; López-Badillo, C.M.; Ascacio-Valdés, J.A.; Rodríguez-Herrera, R. Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods 2021, 10, 2227. https://doi.org/10.3390/foods10092227
González-Montemayor AM, Solanilla-Duque JF, Flores-Gallegos AC, López-Badillo CM, Ascacio-Valdés JA, Rodríguez-Herrera R. Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods. 2021; 10(9):2227. https://doi.org/10.3390/foods10092227
Chicago/Turabian StyleGonzález-Montemayor, Angela Mariela, José Fernando Solanilla-Duque, Adriana C. Flores-Gallegos, Claudia Magdalena López-Badillo, Juan Alberto Ascacio-Valdés, and Raúl Rodríguez-Herrera. 2021. "Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread" Foods 10, no. 9: 2227. https://doi.org/10.3390/foods10092227
APA StyleGonzález-Montemayor, A. M., Solanilla-Duque, J. F., Flores-Gallegos, A. C., López-Badillo, C. M., Ascacio-Valdés, J. A., & Rodríguez-Herrera, R. (2021). Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods, 10(9), 2227. https://doi.org/10.3390/foods10092227