Effects of Roasting Sweet Potato (Ipomoea batatas L. Lam.): Quality, Volatile Compound Composition, and Sensory Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Color Analysis
2.3. Quality Index
2.3.1. Total Starch Content
2.3.2. Sugar Composition
2.3.3. Total Acidity
2.4. GC/MS Analysis
2.5. Sensory Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Appearance and Color Analysis
3.2. Quality Index
3.3. GC/MS Analysis
3.4. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Attribute | Description | |
---|---|---|
Visual | Yellow | Flesh that is yellow in colour. |
Caramel | Appearance associated with brown sugar. | |
Fibrousness | Amount of stringy fibers present. | |
Moisture | Appearance that is moist. | |
Muddy | Appearance that is muddy. | |
Bright | Appearance that is bright. | |
Aroma | Sweet | Aromatic like sugar. |
Caramel | Aromatic associated with brown sugar. | |
Sour | Aromatic associated with acid. | |
Burnt | An aromatic associated with vegetables that were burnt while cooking. | |
Sweet potato | Aromatic associated with cooked sweet potato of TNG57. | |
Vanilla | Aromatic notes associated with damp soil, wet foliage or slightly undercooked potatoes. or In-mouth aromatic associated with vanilla and vanillin. | |
Flavor | Sweet potato | Flavor notes associated with the taste of cooked TNG57. |
Sweet | Tastes like sugar. | |
Caramel | Flavor associated with brown sugar. | |
Sour | Basic taste stimulated by acid. | |
Burnt | The degree of browning or brown spots due to roasting. | |
Texture | Moistness | The amount of moistness/wetness of the sample in the mouth. |
Cohesiveness | Degree to which sample holds together after chewing. | |
Denseness | The solidness/compactness of the sample. | |
Firmness | Degree to which the sample retains its shape after lightly squeezing it. | |
Chalkiness | Degree to which the mouth feels chalky, like raw potato, very fine particles, often perceived on the roof of the mouth. | |
Fiber | The quality of being fibrous. | |
Aftertaste | Sweet | An aftertaste that leaves a sweetness on the tongue and in the mouth that is pleasant. |
Sour | Aftertaste associated with brown sugar. | |
Astringent | Sensation of drying, drawing and/or puckering of any of the mouth surfaces. |
References
- Teow, C.C.; Truong, V.D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Blessington, T.; Nzaramba, M.N.; Scheuring, D.C.; Hale, A.L.; Reddivari, L.; Miller, J.C. Cooking methods and storage treatments of potato: Effects on carotenoids, antioxidant activity, and phenolics. Am. J. Potato Res. 2010, 87, 479–491. [Google Scholar] [CrossRef]
- Sablani, S.; Marcotte, M.; Baik, O.; Castaigne, F. Modeling of simultaneous heat and water transport in the baking process. LWT 1998, 31, 201–209. [Google Scholar] [CrossRef]
- Wang, Y.; Kays, S. Contribution of Volatile Compounds to the Characteristic Aroma of BakedJewel’Sweetpotatoes. J. Am. Soc. Hortic. Sci. 2000, 125, 638–643. [Google Scholar] [CrossRef]
- Corrales, C.V.; Lebrun, M.; Vaillant, F.; Madec, M.N.; Lortal, S.; Pérez, A.M.; Fliedel, G. Key odor and physicochemical characteristics of raw and roasted jicaro seeds (Crescentia alata KHB). Food Res. Int. 2017, 96, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Staatz, J.; Hollinger, F. West African Food Systems and Changing Consumer Demands; FAO: Rome, Italy, 2016. [Google Scholar]
- Shi, X.; Dean, L.O.; Davis, J.P.; Sandeep, K.P.; Sanders, T.H. The effects of different dry roast parameters on peanut quality using an industrial belt-type roaster simulator. Food Chem. 2018, 240, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.; Mu, T.; Ma, M.; Blecker, C. Sensory evaluation of roasted sweet potatoes influenced by different cultivars: A correlation study with respect to sugars, amino acids, volatile compounds, and colors. J. Food Process. Preserv. 2020, 44, e14646. [Google Scholar] [CrossRef]
- Leksrisompong, P.P.; Whitson, M.E.; Truong, V.D.; Drake, M.A. Sensory attributes and consumer acceptance of sweet potato cultivars with varying flesh colors. J. Sens. Stud. 2012, 27, 59–69. [Google Scholar] [CrossRef]
- Ofori, G.; Oduro, I.; Ellis, W.O.; Dapaah, K.H. Assessment of vitamin A content and sensory attributes of new sweet potato (Ipomoea batatas) genotypes in Ghana. Afr. J. Food Sci. 2009, 3, 184–192. [Google Scholar]
- Leighton, C.S.; Schönfeldt, H.C.; Kruger, R. Quantitative descriptive sensory analysis of five different cultivars of sweet potato to determine sensory and textural profiles. J. Sens. Stud. 2010, 25, 2–18. [Google Scholar] [CrossRef]
- Vizzotto, M.; Pereira, E.D.S.; Vinholes, J.R.; Munhoz, P.C.; Ferri, N.M.L.; Castro, L.A.S.D.; Krolow, A.C.R. Physicochemical and antioxidant capacity analysis of colored sweet potato genotypes: In natura and thermally processed. Cienc. Rural 2017, 47. [Google Scholar] [CrossRef]
- Isleroglu, H.; Kemerli, T.; Sakin-Yilmazer, M.; Guven, G.; Ozdestan, O.; Uren, A.; Kaymak-Ertekin, F. Effect of steam baking on acrylamide formation and browning kinetics of cookies. J. Food Sci. 2012, 77, E257–E263. [Google Scholar] [CrossRef]
- Liu, Y.; Sabboh, H.; Kirchhof, G.; Sopade, P. In vitro starch digestion and potassium release in sweet potato from Papua New Guinea. Int. J. Food Sci. Technol. 2010, 45, 1925–1931. [Google Scholar] [CrossRef]
- Chan, C.F.; Chiang, C.M.; Lai, Y.C.; Huang, C.L.; Kao, S.C.; Liao, W.C. Changes in sugar composition during baking and their effects on sensory attributes of baked sweet potatoes. J. Food Sci. Technol. 2014, 51, 4072–4077. [Google Scholar] [CrossRef]
- Picha, D.H. HPLC determination of sugars in raw and baked sweet potatoes. J. Food Sci. 1985, 50, 1189–1190. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2020; Volume 222. [Google Scholar]
- Liu, S.L.; Jaw, Y.M.; Wang, L.F.; Chuang, G.C.C.; Zhuang, Z.Y.; Chen, Y.S.; Liou, B.K. Evaluation of Sensory Quality for Taiwanese Specialty Teas with Cold Infusion Using CATA and Temporal CATA by Taiwanese Consumers. Foods 2021, 10, 2344. [Google Scholar] [CrossRef]
- Dery, E.K.; Carey, E.E.; Ssali, R.T.; Low, J.W.; Johanningsmeier, S.D.; Oduro, I.; Boakye, A.; Omodamiro, R.M.; Yusuf, H.L. Sensory characteristics and consumer segmentation of fried sweetpotato for expanded markets in Africa. Int. J. Food Sci. Technol. 2021, 56, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- van Oirschot, Q.E.; Rees, D.; Aked, J. Sensory characteristics of five sweet potato cultivars and their changes during storage under tropical conditions. Food Qual. Prefer. 2003, 14, 673–680. [Google Scholar] [CrossRef]
- Trugo, L.C.; Macrae, R. An investigation of coffee roasting using high performance gel filtration chromatography. Food Chem. 1986, 19, 1–9. [Google Scholar] [CrossRef]
- Clydesdale, F.M. Changes in color and flavor and their effect on sensory perception in the elderly. Nutr. Rev. 1994, 52, S19. [Google Scholar] [CrossRef]
- Chung, H.S.; Kim, D.H.; Youn, K.S.; Lee, J.B.; Moon, K.D. Optimization of roasting conditions according to antioxidant activity and sensory quality of coffee brews. Food Sci. Biotechnol. 2013, 22, 23–29. [Google Scholar] [CrossRef]
- Mccleary, B.V.; Gibson, T.S.; Mugford, D.C. Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: Collaborative study. J. AOAC Int. 1997, 80, 571–579. [Google Scholar] [CrossRef]
- Trancoso-Reyes, N.; Ochoa-Martínez, L.A.; Bello-Pérez, L.A.; Morales-Castro, J.; Estévez-Santiago, R.; Olmedilla-Alonso, B. Effect of pre-treatment on physicochemical and structural properties, and the bioaccessibility of β-carotene in sweet potato flour. Food Chem. 2016, 200, 199–205. [Google Scholar] [CrossRef]
- Lai, Y.C.; Huang, C.L.; Chan, C.F.; Lien, C.Y.; Liao, W.C. Studies of sugar composition and starch morphology of baked sweet potatoes (Ipomoea batatas (L.) Lam). J. Food Sci. Technol. 2013, 50, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Binner, S.; Jardine, W.G.; Renard, C.M.C.G.; Jarvis, M.C. Cell wall modifications during cooking of potatoes and sweet potatoes. J. Sci. Food Agric. 2000, 80, 216–218. [Google Scholar] [CrossRef]
- Caetano, P.K.; Mariano-nasser, F.A.D.C.; MendonÇa, V.Z.D.; Furlaneto, K.A.; Daiuto, E.R.; Vieites, R.L. Physicochemical and sensory characteristics of sweet potato chips undergoing different cooking methods. Food Sci. Technol. 2017, 38, 434–440. [Google Scholar] [CrossRef]
- Ogliari, R.; Soares, J.M.; Teixeira, F.; Schwarz, K.; da Silva, K.A.; Schiessel, D.L.; Novello, D. Chemical, nutritional and sensory characterization of sweet potato submitted to different cooking methods. Int. J. Res.-Granthaalayah 2020, 8, 147–156. [Google Scholar] [CrossRef]
- Sohail, M.; Khan, R.U.; Afridi, S.R.; Imad, M.; Mehrin, B. Preparation and quality evaluation of sweet potato ready to drink beverage. ARPN J. Agric. Biol. Sci. 2013, 8, 279–282. [Google Scholar]
- Sun, J.B.; Severson, R.F.; Schlotzhauer, W.S.; Kays, S.J. Identifying Critical Volatiles in the Flavor of BakedJewel’Sweetpotatoes [Ipomoea batatas (L.) Lam.]. J. Am. Soc. Hortic. Sci. 1995, 120, 468–474. [Google Scholar] [CrossRef]
- Chen, M.X.; Chen, X.S.; Wang, X.G.; Ci, Z.J.; Liu, X.L.; He, T.M.; Zhang, L.J. Comparison of headspace solid-phase microextraction with simultaneous steam distillation extraction for the analysis of the volatile constituents in Chinese apricot. Agric. Sci. China 2006, 5, 879–884. [Google Scholar] [CrossRef]
- Zhou, Y.; Zeng, L.; Liu, X.; Gui, J.; Mei, X.; Fu, X.; Dong, F.; Tang, J.; Zhang, L.; Yang, Z. Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chem. 2017, 231, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Ravichandran, R. Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. Food Chem. 2002, 78, 23–28. [Google Scholar] [CrossRef]
- Bi, S.; Xu, X.; Luo, D.; Lao, F.; Pang, X.; Shen, Q.; Hu, X.; Wu, J. Characterization of key aroma compounds in raw and roasted peas (Pisum sativum L.) by application of instrumental and sensory techniques. J. Agric. Food Chem. 2020, 68, 2718–2727. [Google Scholar] [CrossRef] [PubMed]
- Perez Locas, C.; Yaylayan, V.A. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J. Agric. Food Chem. 2008, 56, 6717–6723. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, P.; Xie, C.; Chen, D.W. Key aroma-active compounds in brown sugar and their influence on sweetness. Food Chem. 2021, 345, 128826. [Google Scholar] [CrossRef]
- Pu, D.; Zhang, H.; Zhang, Y.; Sun, B.; Ren, F.; Chen, H. Characterization of the key aroma compounds in white bread by aroma extract dilution analysis, quantitation, and sensory evaluation experiments. J. Food Process. Preserv. 2019, 43, e13933. [Google Scholar] [CrossRef]
- Samborska, K.; Bonikowski, R.; Kalemba, D.; Barańska, A.; Jedlińska, A.; Edris, A. Volatile aroma compounds of sugarcane molasses as affected by spray drying at low and high temperature. LWT 2021, 145, 111288. [Google Scholar] [CrossRef]
- Qin, G.; Tao, S.; Cao, Y.; Wu, J.; Zhang, H.; Huang, W.; Zhang, S. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC–MS. Food Chem. 2012, 134, 2367–2382. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Li, Y.; Xu, Y.; Jiang, W.; Tao, Y. Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC-MS) and olfactometry (GC-O). J. Food Sci. 2012, 77, C1030–C1035. [Google Scholar] [CrossRef]
- Cheng, H.; Qin, Z.H.; Guo, X.F.; Hu, X.S.; Wu, J.H. Geographical origin identification of propolis using GC–MS and electronic nose combined with principal component analysis. Food Res. Int. 2013, 51, 813–822. [Google Scholar] [CrossRef]
- Yuan, F.; Qian, M.C. Aroma potential in early-and late-maturity Pinot noir grapes evaluated by aroma extract dilution analysis. J. Agric. Food Chem. 2016, 64, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Luo, D.; Gholamhosseini, H.; Li, Z.; Han, B.; He, J.; Wang, S. Aroma characteristic analysis of Amomi fructus from different habitats using machine olfactory and gas chromatography-mass spectrometry. Pharmacogn. Mag. 2019, 15, 392. [Google Scholar]
- King, S.C.; Meiselman, H.L.; Carr, B.T. Measuring emotions associated with foods in consumer testing. Food Qual. Prefer. 2010, 21, 1114–1116. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar]
- Lund, M.N.; Ray, C.A. Control of Maillard reactions in foods: Strategies and chemical mechanisms. J. Agric. Food Chem. 2017, 65, 4537–4552. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Jom, K.N.; Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Komaki, T.; Taji, N. Studies on Enzymatic Liquefaction and Saccharification of Starch: Part VIII. Liquefying Conditions of Corn Starch by Bacterial Alpha-Amylase. Agric. Biol. Chem. 1968, 32, 860–872. [Google Scholar] [CrossRef][Green Version]
Time | L* | a* | b* | B.I. | ||||
---|---|---|---|---|---|---|---|---|
(h) | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled |
0 | 70.35 ± 0.27 gA | 67.50 ± 0.33 fA | 4.40 ± 0.16 cA | 5.51 ± 0.08 dA | 28.99 ±0.12 eA | 30.84 ± 0.41 eA | 56.38 ± 0.62 aA | 65.30 ± 1.06 aA |
0.5 | 49.90 ± 0.16 eB | 47.33 ± 0.23 cA | 1.65 ± 0.07 aA | 3.33 ± 0.35 cB | 27.94 ± 0.15 dB | 26.90 ± 0.41 bA | 80.39 ± 0.29 bA | 85.08 ± 1.80 bB |
1 | 50.83 ± 0.38 fB | 49.85 ± 0.83 eA | 1.47 ± 0.10 aB | 0.54 ± 0.26 aA | 29.83 ± 0.19 eA | 29.91 ± 0.28 fA | 85.55 ± 0.60 cA | 86.77 ± 1.43 bA |
1.5 | 45.16 ± 0.59 dA | 48.73 ± 0.67 dB | 3.27 ± 0.62 bB | 2.22 ± 0.30 bA | 26.58 ± 0.39 cA | 30.45 ± 0.33 gB | 89.43 ± 1.63 dA | 95.01 ± 1.96 cB |
2 | 39.62 ± 0.37 aA | 41.14 ± 0.22 aB | 5.98 ± 0.29 dA | 6.10 ± 0.51 eB | 23.54 ± 0.20 aA | 25.81 ± 0.18 aB | 96.92 ± 0.37 eA | 103.69 ± 2.03 dB |
2.5 | 42.23 ± 0.61 cA | 42.76 ± 0.44 bA | 7.63 ± 0.11 eB | 7.06 ± 0.32 fA | 25.25 ± 0.65 bA | 26.26 ± 0.32 bB | 104.17 ± 2.73 fA | 108.07 ± 0.64 dA |
3 | 40.98 ± 3.03 bA | 44.62 ± 1.08 aA | 8.10 ± 0.15 fB | 7.52 ± 0.23 gA | 22.08 ± 0.87 cA | 27.60 ± 0.46 dB | 106.32 ± 4.74 fA | 103.34 ± 1.25 eA |
Time | Total Starch | Fructose | Glucose | Sucrose | Maltose | Total Titratable Acidity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(h) | (g/100 g) | (g/100 g, DW) | (g/100 g, DW) | (g/100 g, DW) | (g/100 g, DW) | (g/100 g, DW) | ||||||
Type | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled | Unpeeled | Peeled |
0 | 64.62 ± 0.46 d | 64.62 ± 0.46 d | 1.60 ± 0.29 a | 1.82 ± 0.24 ab | 2.23 ± 0.10 a | 2.60 ± 0.18 a | 11.49 ± 0.02 c | 12.68 ± 1.10 a | ND | ND | 0.14 ± 0.01 b | 0.14 ± 0.01 abc |
0.5 | 50.57 ± 0.13 a | 51.84 ± 0.06 a | 1.70 ± 0.06 a | 1.56 ± 0.12 a | 2.54 ± 0.02 ab | 2.62 ± 0.05 ab | 10.63 ± 0.21 ab | 11.12 ± 0.46 a | 41.45 ± 0.45 a | 45.92 ± 2.21 a | 0.11 ± 0.01 a | 0.09 ± 0.01 a |
1 | 53.36 ± 0.06 c | 53.94 ± 0.57 c | 1.87 ± 0.06 ab * | 1.97 ± 0.26 ab * | 2.61 ± 0.00 ab | 3.19 ± 0.43 cd | 11.66 ± 0.34 bc | 11.79 ± 0.69 a | 39.04 ± 0.16 a * | 52.70 ± 2.69 ab * | 0.11 ± 0.01 a | 0.11 ± 0.01 ab |
1.5 | 52.28 ± 0.03 b | 53.38 ± 0.42 bc | 2.39 ± 0.01 c * | 2.13 ± 0.26 b * | 3.60 ± 0.23 c | 3.37 ± 0.02 c | 12.01 ± 0.14 bc | 12.51 ± 0.91 a | 39.79 ± 0.37 a * | 55.28 ± 3.30 b * | 0.13 ± 0.01 b | 0.14 ± 0.01 abc |
2 | 51.79 ± 0.06 b | 52.47 ± 0.25 abc | 1.94 ± 0.02 b | 2.00 ± 0.47 b | 2.79 ± 0.23 ab | 3.38 ± 0.28 c | 11.63 ± 0.06 bc | 12.09 ± 1.40 a | 39.71 ± 0.93 a * | 51.82 ± 2.70 ab * | 0.14 ± 0.01 b | 0.16 ± 0.01 abc |
2.5 | 51.20 ± 0.90 b | 52.90 ± 0.93 abc | 2.02 ± 0.09 b | 1.98 ± 0.15 ab | 2.75 ± 0.01 ab | 3.01 ± 0.14 bcd | 11.12 ± 0.24 abc | 12.36 ± 2.09 a | 40.00 ± 0.71 a * | 49.82 ± 1.69 ab * | 0.14 ± 0.01 b * | 0.18 ± 0.01 bc * |
3 | 51.10 ± 0.91 b | 51.42 ± 0.73 ab | 2.05 ± 0.05 b * | 1.77 ± 0.13 ab * | 2.89 ± 0.12 b | 2.72 ± 0.19 abc | 10.01 ± 0.01 a * | 10.79 ± 0.04 a * | 38.13 ± 0.20 a | 46.16 ± 3.00 a | 0.19 ± 0.01 c * | 0.21 ± 0.01 c * |
No | Compound a | RI b | No | Compound a | RI b |
---|---|---|---|---|---|
1 | Tetradecane | 1124 | 24 | Corylone | 1647 |
2 | Pentadecane | 1269 | 25 | cis-muurola-3,5-diene | 1658 |
3 | Nonanal | 1281 | 26 | β-Damascenone | 1668 |
4 | Acetic acid | 1293 | 27 | Furaneol | 1670 |
5 | Furfural | 1307 | 28 | trans-Calamenene | 1695 |
6 | 3-Methyl-tridecane | 1371 | 29 | N-Methylsuccinimide | 1708 |
7 | Copaene | 1396 | 30 | Butylated Hydroxytoluene | 1762 |
8 | 5-Methyl-2-furaldehyde | 1411 | 31 | Maltol | 1765 |
9 | Cyperene | 1426 | 32 | 1-(1H-pyrrole-2-yl)-ethanone | 1768 |
10 | γ-Butyrolactone | 1450 | 33 | trans-ß-Ionone | 1777 |
11 | 4-Hydroxybutyric acid | 1451 | 34 | 2-Pyrrolecarbaldehyde | 1806 |
12 | Benzeneacetaldehyde | 1476 | 35 | Pantolactone | 1815 |
13 | Pristane | 1477 | 36 | 5-Methyl tetrahydrofurfuryl alcohol | 1836 |
14 | 2-Furanmethanol | 1492 | 37 | Nerolidol | 1876 |
15 | α-Himachalene | 1506 | 38 | 3,5-dimethyl-2,4(3H,5H)-Furandione | 1908 |
16 | 5-methyl-2-furanmethanol | 1554 | 39 | 8α-H-Secoeudesmanolide | 1936 |
17 | 2(5H)-Furanone | 1559 | 40 | γ-Decalactone | 1946 |
18 | γ-Gurjunene | 1563 | 41 | Rosefuran | 1974 |
19 | α-Ionol | 1594 | 42 | 5-Acetoxymethyl-2-furaldehyde | 1975 |
20 | α-Guaiene | 1595 | 43 | 2,3-Dihydro-3,5-dihydroxy-6-methyl-4h-pyran-4-one | 2019 |
21 | α-Muurolene | 1604 | 44 | Butyl 2 heptenate | 2022 |
22 | α-Humulene | 1606 | 45 | 4-Methyl-5-thiazolethanol | 2069 |
23 | α-Bisabolol | 1607 | 46 | 5-Hydroxymethylfurfural | 2214 |
Sample | Overall | Visual | Aroma | Flavor | Texture | Aftertaste |
---|---|---|---|---|---|---|
Unpeeled-0.5 h | 4.96 ± 1.26 c *** | 5.65 ± 1.38 a | 5.35 ± 1.08 b *** | 4.95 ± 1.30 d *** | 4.98 ± 1.56 b *** | 5.20 ± 1.15 cd *** |
Unpeeled-1 h | 6.55 ± 1.37 a | 6.24 ± 1.23 a | 6.51 ± 1.40 a ** | 6.49 ± 1.43 ab | 6.47 ± 1.33 a | 6.71 ± 1.18 a |
Unpeeled-1.5 h | 6.20 ± 1.39 ab | 5.71 ± 1.47 a * | 6.27 ± 1.35 a | 6.31 ± 1.49 abc | 5.87 ± 1.44 a * | 5.91 ± 1.55 abc |
Unpeeled-2 h | 6.25 ± 1.46 ab | 6.25 ± 1.39 a | 6.67 ± 1.09 a | 6.56 ± 1.46 a | 6.47 ± 1.55 a | 6.25 ± 1.54 ab |
Unpeeled-2.5 h | 5.71 ± 1.61 bc | 5.87 ± 1.50 a | 6.56 ± 1.45 a | 5.65 ± 1.95 bcd | 6.02 ± 1.67 a | 5.49 ± 1.59 bcd |
Unpeeled-3 h | 5.53 ± 1.89 bc * | 5.67 ± 1.60 a | 6.16 ± 1.55 a | 5.45 ± 2.09 cd ** | 6.18 ± 1.66 a * | 4.95 ± 1.95 d |
Peeled-0.5 h | 3.84 ± 1.32 d *** | 5.18 ± 1.25 c | 4.47 ± 1.12 c *** | 3.85 ± 1.38 c *** | 3.38 ± 1.34 c *** | 4.18 ± 1.40 c *** |
Peeled-1 h | 6.35 ± 1.27 ab | 5.91 ± 1.25 abc | 5.75 ± 1.00 b ** | 6.45 ± 1.26 a | 6.31 ± 1.36 a | 6.25 ± 1.28 a |
Peeled-1.5 h | 6.60 ± 1.15 a | 6.49 ± 1.44 a * | 6.20 ± 1.46 ab | 6.47 ± 1.26 a | 6.53 ± 1.29 a * | 6.13 ± 1.32 ab * |
Peeled-2 h | 6.65 ± 1.25 a | 6.51 ± 1.18 a | 6.87 ± 1.26 a | 6.67 ± 1.52 a | 6.53 ± 1.39 a | 6.31 ± 1.30 a |
Peeled-2.5 h | 5.75 ± 1.65 b | 6.02 ± 1.35 ab | 6.51 ± 1.26 a | 5.45 ± 1.95 b | 6.24 ± 1.40 a | 5.31 ± 1.90 b |
Peeled-3 h | 4.65 ± 1.91 c * | 5.58 ± 1.66 bc | 5.69 ± 1.94 b | 4.15 ± 2.01 c ** | 5.44 ± 1.77 b * | 4.24 ± 1.90 c * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, Y.-J.; Lin, L.-Y.; Yang, K.-M.; Chiang, Y.-C.; Chen, M.-H.; Chiang, P.-Y. Effects of Roasting Sweet Potato (Ipomoea batatas L. Lam.): Quality, Volatile Compound Composition, and Sensory Evaluation. Foods 2021, 10, 2602. https://doi.org/10.3390/foods10112602
Tsai Y-J, Lin L-Y, Yang K-M, Chiang Y-C, Chen M-H, Chiang P-Y. Effects of Roasting Sweet Potato (Ipomoea batatas L. Lam.): Quality, Volatile Compound Composition, and Sensory Evaluation. Foods. 2021; 10(11):2602. https://doi.org/10.3390/foods10112602
Chicago/Turabian StyleTsai, Yu-Jung, Li-Yun Lin, Kai-Min Yang, Yi-Chan Chiang, Min-Hung Chen, and Po-Yuan Chiang. 2021. "Effects of Roasting Sweet Potato (Ipomoea batatas L. Lam.): Quality, Volatile Compound Composition, and Sensory Evaluation" Foods 10, no. 11: 2602. https://doi.org/10.3390/foods10112602
APA StyleTsai, Y.-J., Lin, L.-Y., Yang, K.-M., Chiang, Y.-C., Chen, M.-H., & Chiang, P.-Y. (2021). Effects of Roasting Sweet Potato (Ipomoea batatas L. Lam.): Quality, Volatile Compound Composition, and Sensory Evaluation. Foods, 10(11), 2602. https://doi.org/10.3390/foods10112602