Improving the Viability and Metabolism of Intestinal Probiotic Bacteria Using Fibre Obtained from Vegetable By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. Determination of Neutral Sugar and Uronic Acid
2.4. Survival of Probiotics in the Presence of DF Extracts
2.5. In Vitro Prebiotic Capacity
2.6. Determination of Short-Chain Fatty Acids Produced in the Presence of Fibre Extracts
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fibre Constituents: Neutral Sugars and Pectins
3.2. Survival of Probiotics in the Presence of DF Extracts
3.3. In Vitro Prebiotic Capacity
3.4. Short-Chain Fatty Acids Produced in the Presence of Fibre Extract Production
3.5. Multivariate Analysis of the Parameters Related to DF Extract Studied from Different Subproducts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Zhang, B.; Huang, Q.; Fu, X.; Liu, R.H. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity. Ind. Crops Prod. 2017, 100, 1–11. [Google Scholar] [CrossRef]
- Santagata, G.; Mallardo, S.; Fasulo, G.; Lavermicocca, P.; Valerio, F.; Di Biase, M.; Di Stasio, M.; Malinconico, M.; Volpe, M.G. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chem. 2018, 258, 104–110. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Casquete, R.; Martín, A.; Córdoba, M.D.G.; Aranda, E.; Benito, M.J. Strategies to increase the biological and biotechnological value of polysaccharides from agricultural waste for application in healthy nutrition. Int. J. Env. Res. Public Health 2021, 18, 5937. [Google Scholar] [CrossRef] [PubMed]
- Maity, P.; Nandi, A.K.; Manna, D.K.; Pattanayak, M.; Sen, I.K.; Bhanja, S.K.; Samanta, S.; Panda, B.C.; Paloi, S.; Acharia, K.; et al. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohydr. Polym. 2017, 157, 1237–1245. [Google Scholar] [CrossRef]
- Zhao, J.L.; Zhang, M.; Zhou, H.L. Microwave-assisted extraction, purification, partial characterization, and bioactivity of polysaccharides from Panax ginseng. Molecules 2019, 24, 1605. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, B.M.; Williams, B.A.; Sonni, F.; Mikkelsen, D.; Gidley, M.J. Fruit and vegetable insoluble dietary fibre in vitro fermentation characteristics depend on cell wall type. Bioact. Carbohydr. Diet. Fibre 2020, 23, 100223. [Google Scholar] [CrossRef]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef]
- Mohnen, D. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 2008, 11, 266–277. [Google Scholar] [CrossRef]
- Bayar, N.; Friji, M.; Kammoun, R. Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chem. 2018, 241, 127–134. [Google Scholar] [CrossRef]
- Grassino, A.N.; Ostojić, J.; Miletić, V.; Djaković, S.; Bosiljkov, T.; Zorić, Z.; Ježek, D.; Rimac Brnčić, S.; Brnčić, M. Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov. Food Sci. Emerg. Technol. 2020, 64, 102424. [Google Scholar] [CrossRef]
- Halambek, J.; Cindrić, I.; Grassino, A.N. Evaluation of pectin isolated from tomato peel waste as natural tin corrosion inhibitor in sodium chloride/acetic acid solution. Carbohydr. Polym. 2020, 234, 115940. [Google Scholar] [CrossRef]
- Shakhmatov, E.G.; Makarova, E.N.; Belyy, V.A. Structural studies of biologically active pectin-containing polysaccharides of pomegranate Punica granatum. Int. J. Biol. Macromol. 2019, 122, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.Á.; Casquete, R.; Córdoba, M.D.G.; Ruíz-Moyano, S.; Benito, M.J.; Pérez-Nevado, F.; Martín, A. Chemical composition and functional properties of dietary fibre concentrates from winemaking by-products: Skins, stems and leaves. Foods 2021, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Petkowicz, C.L.; Williams, P.A. Pectins from food waste: Characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocoll. 2020, 107, 105930. [Google Scholar] [CrossRef]
- Davis, C.D.; Milner, J.A. Gastrointestinal microflora, food components and colon cancer prevention. J. Nutr. Biochem. 2009, 20, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, M.C.; Carmo, M.R.; Balthazar, C.F.; Guimarães, J.T.; Esmerino, E.A.; Freitas, M.Q.; Silva, M.C.; Pimentel, T.C.; Cruz, A.G. Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. Int. Dairy J. 2021, 117, 105009. [Google Scholar] [CrossRef]
- Singla, V.; Chakkaravarthi, S. Applications of prebiotics in food industry: A review. Food Sci. Technol. Int. 2017, 23, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Sarao, L.K.; Arora, M. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Sci Nutr. 2017, 57, 344–371. [Google Scholar] [CrossRef]
- Sanders, M.E. Probiotics: Definition, sources, selection, and uses. Clin. Infect. Dis. 2008, 46, S58–S61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinkçi, N.; Akdeniz, V.; Akalin, A.S. Survival of probiotics in functional foods during shelf life. In Food Quality and Shelf Life; Academic Press: Cambridge, MA, USA, 2019; pp. 201–233. [Google Scholar] [CrossRef]
- Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.; Zhong, F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863–2878. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Medronho, B.; dos Santos, T.; Nunes-Correia, I.; Granja, P.; Miguel, M.G.; Lindman, B. On the viability, cytotoxicity and stability of probiotic bacteria entrapped in cellulose-based particles. Food Hydrocoll. 2018, 82, 457–465. [Google Scholar] [CrossRef]
- Hu, M.X.; Li, J.N.; Guo, Q.; Zhu, Y.Q.; Niu, H.M. Probiotics biofilm-integrated electrospun nanofiber membranes: A new starter culture for fermented milk production. J. Agr. Food Chem. 2019, 67, 3198–3208. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Sampers, I.; Raes, K. Dietary fiber concentrates recovered from agro-industrial by-products: Functional properties and application as physical carriers for probiotics. Food Hydrocoll. 2021, 111, 106175. [Google Scholar] [CrossRef]
- Femenia, A.; Garcı́a-Pascual, P.; Simal, S.; Rosselló, C. Effects of heat treatment and dehydration on bioactive polysaccharide acemannanand cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym. 2003, 51, 397–405. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Martín, A.; Benito, M.J.; Casquete, R.; Serradilla, M.J.; de Guía Córdoba, M. Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat Sci. 2009, 83, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moyano, S.; Martín, A.; Benito, M.J.; Aranda, E.; Casquete, R.; de Guía Cordoba, M. Safety and functional aspects of preselected enterococci for probiotic use in Iberian dry-fermented sausages. J. Food Sci. 2009, 74, M398–M404. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Moyano, S.; dos Santos, M.T.P.G.; Galván, A.I.; Merchán, A.V.; González, E.; de Guía Córdoba, M.; Benito, M.J. Screening of autochthonous lactic acid bacteria strains from artisanal soft cheese: Probiotic characteristics and prebiotic metabolism. LWT 2019, 114, 108388. [Google Scholar] [CrossRef]
- Brighenti, F. Simple Method for Quantitative Analysis of Short Chain Fatty Acids in Serum by Gas-Liquid Chrmotography. Plant Polysaccharides in Human Nutrition: Structure, Function, Digestive Fate and Metabolic Affects. 1997, pp. 114–119. Available online: https://ci.nii.ac.jp/naid/10011807480/ (accessed on 23 June 2021).
- Sengar, A.S.; Rawson, A.; Muthiah, M.; Kalakandan, S.K. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason. Sonochem. 2020, 61, 104812. [Google Scholar] [CrossRef]
- Abid, M.; Renard, C.M.; Watrelot, A.A.; Fendri, I.; Attia, H.; Ayadi, M.A. Yield and composition of pectin extracted from Tunisian pomegranate peel. Int. J. Biol. Macromol. 2016, 93, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Houben, K.; Jolie, R.P.; Fraeye, I.; Van Loey, A.M.; Hendrickx, M.E. Comparative study of the cell wall composition of broccoli, carrot, and tomato: Structural characterization of the extractable pectins and hemicelluloses. Carbohydrate Res. 2011, 346, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, J.; Zhong, Q. The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers. Food Res. Int. 2015, 71, 9–15. [Google Scholar] [CrossRef]
- Blaiotta, G.; La Gatta, B.; Di Capua, M.; Di Luccia, A.; Coppola, R.; Aponte, M. Effect of chestnut extract and chestnut fiber on viability of potential probiotic Lactobacillus strains under gastrointestinal tract conditions. Food Microbiol. 2013, 36, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.H.; Song, A.X.; Yao, Z.P.; Wu, J.Y. Protective effects of natural and partially degraded konjac glucomannan on Bifidobacteria against antibiotic damage. Carbohydr. Polym. 2018, 181, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Hamaker, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- Aprikian, O.; Duclos, V.; Guyot, S.; Besson, C.; Manach, C.; Bernalier, A.; Morand, C.; Rémésy, C.; Demigné, C. Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J. Nutr. 2003, 133, 1860–1865. [Google Scholar] [CrossRef] [Green Version]
- Baenas, N.; Nuñez-Gómez, V.; Navarro-González, I.; Sánchez-Martínez, L.; García-Alonso, J.; Periago, M.J.; González-Barrio, R. Raspberry dietary fibre: Chemical properties, functional evaluation and prebiotic in vitro effect. LWT 2020, 134, 110140. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, W.; Ma, Z.; Liu, Y.; Mu, J.; Wang, J.; Hui, X. Enzymatic-modified dietary fibre fraction extracted from potato residue regulates the gut microbiotas and production of short-chain fatty acids of C57BL/6 mice. J. Funct. Foods 2021, 84, 104606. [Google Scholar] [CrossRef]
Parameters | Tomato Peel | Pomegranate Peel | Grape Stems | Broccoli Stems | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 1 | Mean | SD | Mean | SD | Mean | SD | |||||
Neutral sugar (mg/g) | ||||||||||||
Glucose | 6.04 | ± | 1.37 b | 4.7 | ± | 1.00 b | 1.35 | ± | 0.01 a | 0.56 | ± | 0.00 a |
Rhamnose | 0.26 | ± | 0.00 c | 0.12 | ± | 0.04 b | <0.1 a | 0.34 | ± | 0.00 d | ||
Xylose | <0.1 *a | 2.17 | ± | 0.46 b | <0.1 a | 2.37 | ± | 0.02 b | ||||
Mannose | 0.97 | ± | 0.31 a | 0.48 | ± | 0.12 a | 2.33 | ± | 0.01 b | 0.62 | ± | 0.00 a |
Fucose | 3.09 | ± | 0.70 b | 3.09 | ± | 0.03 b | 1.65 | ± | 0.01 a | 2.61 | ± | 0.18 ab |
Galactose | 1.54 | ± | 0.53 b | 0.84 | ± | 0.22 ab | <0.1 a | 0.69 | ± | 0.00 ab | ||
Arabinose | 1.33 | ± | 0.00 a | 1.47 | ± | 0.15 a | 1.20 | ± | 0.01 a | 3.40 | ± | 0.02 b |
Uronic acids (pectin) (mg/g) | ||||||||||||
Galacturonic acid | 934.72 | ± | 45.81 b | 581.24 | ± | 53.91 a | 655 | ± | 0.32 a | 657.51 | ± | 4.58 a |
Strains | Extracts | pH Tolerance (2.5) | Tolerance to Gastointestinal Transit |
---|---|---|---|
2 h | 6 h | ||
E. faecium SE 906 | Control | 8 | 8 |
Tomato peel | 8 | 8 | |
Pomegranate peel | 8 | 8 | |
Broccoli stems | 8 | 8 | |
Grape stems | 8 | 8 | |
E. faecium SE 920 | Control | 3 | 8 |
Tomato peel | 0 | 1 | |
Pomegranate peel | 1 | 4 | |
Broccoli stems | 1 | 2 | |
Grape stems | 2 | 2 | |
L. casei HL 245 | Control | 2 | 5 |
Tomato peel | 2 | 4 | |
Pomegranate peel | 2 | 2 | |
Broccoli stems | 2 | 2 | |
Grape stems | 2 | 2 | |
L. casei HL 233 | Control | 2 | 2 |
Tomato peel | 0 | 1 | |
Pomegranate peel | 2 | 2 | |
Broccoli stems | 1 | 2 | |
Grape stems | 2 | 2 | |
L. reuteri PL 503 | Control | 1 | 2 |
Tomato peel | 0 | 0 | |
Pomegranate peel | 1 | 2 | |
Broccoli stems | 1 | 1 | |
Grape stems | 0 | 1 | |
L. reuteri PL 519 | Control | 3 | 5 |
Tomato peel | 2 | 2 | |
Pomegranate peel | 3 | 5 | |
Broccoli stems | 4 | 4 | |
Grape stems | 3 | 4 |
E. faecium SE 906 | E. faecium SE 920 | L. casei HL 245 | L. casei HL 233 | L. reuteri PL 503 | L. reuteri PL 519 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extracts | Mean | SD 1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||||||
Control (FOS 2) | 7.21 | ± | 0.53 a | 27.97 | ± | 0.65 a | 68.14 | ± | 0.78 c | 28.75 | ± | 0.77 a | 29.05 | ± | 0.06 ab | 7.60 | ± | 10.4 a |
Tomato peel | 8.88 | ± | 0.19 a | 23.29 | ± | 4.35 a | 14.16 | ± | 6.44 a | 23.95 | ± | 3.07 a | 31.21 | ± | 0.50 ab | 25.38 | ± | 1.28 ab |
Pomegranate peel | 10.34 | ± | 0.96 a | 44.49 | ± | 0.45 b | 38.23 | ± | 1.25 b | 48.35 | ± | 1.66 b | 21.52 | ± | 1.55 a | 16.06 | ± | 0.46 ab |
Broccoli stems | 15.53 | ± | 0.82 b | 26.84 | ± | 0.03 a | 30.36 | ± | 1.94 b | 24.09 | ± | 6.95 a | 26.95 | ± | 6.55 ab | 21.81 | ± | 0.22 ab |
Grape stems | 42.31 | ± | 2.71 c | 107.29 | ± | 1.32 c | 58.12 | ± | 4.58 c | 82.90 | ± | 2.26 c | 34.27 | ± | 0.45 b | 37.58 | ± | 9.94 b |
Acetic Acid | Propionic Acid | Isovaleric Acid | Butyric Acid | Isocaproic Acid | Isobutyric Acid | Valeric Acid | Caproic Acid | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 1 | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||||||||
Extracts (E) | ||||||||||||||||||||||||
Control (Glucose) | 70.90 | ± | 57.00 b | 0.51 | ± | 0.34 abc | 0.37 | ± | 0.21 bc | 0.06 | ± | 0.03 ab | 0.69 | ± | 1.46 | 0.08 | ± | 0.06 ab | 0.40 | ± | 0.21 bc | 0.24 | ± | 0.17 ab |
Control (FOS 2) | 85.15 | ± | 26.30 b | 0.41 | ± | 0.07 ab | 0.35 | ± | 0.11 abc | 0.04 | ± | 0.01 a | 0.18 | ± | 0.07 | 0.06 | ± | 0.01 ab | 0.30 | ± | 0.13 b | 0.17 | ± | 0.06 ab |
Tomato peel | 14.39 | ± | 10.70 a | 0.08 | ± | 0.03 a | 0.11 | ± | 0.03 a | 0.01 | ± | 0.00 a | 0.00 | ± | 0.00 | 0.02 | ± | 0.00 a | 0.00 | ± | 0.00 a | 0.03 | ± | 0.04 a |
Pomegranate peel | 221.40 | ± | 27.27 c | 1.13 | ± | 0.45 d | 0.83 | ± | 0.30 d | 0.13 | ± | 0.05 c | 0.72 | ± | 0.37 | 0.22 | ± | 0.12 d | 0.91 | ± | 0.29 d | 0.61 | ± | 0.28 c |
Broccoli stems | 355.59 | ± | 150.39 d | 1.06 | ± | 0.47 cd | 0.76 | ± | 0.31 d | 0.13 | ± | 0.00 c | 0.64 | ± | 0.35 | 0.19 | ± | 0.09 c | 0.82 | ± | 0.39 d | 0.59 | ± | 0.30 c |
Grape stems | 256.37 | ± | 52.94 c | 0.89 | ± | 0.22 bcd | 0.61 | ± | 0.12 cd | 0.09 | ± | 0.02 bc | 0.42 | ± | 0.15 | 0.13 | ± | 0.03 bc | 0.63 | ± | 0.17 cd | 0.41 | ± | 0.12 bc |
Strains (S) | ||||||||||||||||||||||||
E. faecium SE 906 | 161.49 | ± | 110.94 | 0.61 | ± | 0.49 | 0.51 | ± | 0.33 | 0.07 | ± | 0.05 | 0.36 | ± | 0.35 | 0.12 | ± | 0.12 | 0.47 | ± | 0.37 | 0.33 | ± | 0.27 |
E. faecium SE 920 | 153.71 | ± | 116.08 | 0.63 | ± | 0.49 | 0.45 | ± | 0.31 | 0.07 | ± | 0.05 | 702 | ± | 1.36 | 0.11 | ± | 0.09 | 0.47 | ± | 0.37 | 0.32 | ± | 0.27 |
L. casei HL 245 | 184.06 | ± | 212.62 | 0.67 | ± | 0.58 | 0.49 | ± | 0.39 | 0.08 | ± | 0.07 | 0.37 | ± | 0.39 | 0.11 | ± | 0.11 | 0.53 | ± | 0.46 | 0.34 | ± | 0.34 |
L. casei HL 233 | 163.86 | ± | 137.21 | 0.62 | ± | 0.42 | 0.46 | ± | 0.28 | 0.07 | ± | 0.05 | 0.34 | ± | 0.31 | 0.10 | ± | 0.08 | 0.45 | ± | 0.36 | 0.31 | ± | 0.27 |
L. reuteri PL 503 | 136.30 | ± | 106.83 | 0.72 | ± | 0.63 | 0.43 | ± | 0.29 | 0.06 | ± | 0.05 | 0.31 | ± | 0.29 | 0.09 | ± | 0.08 | 0.44 | ± | 0.34 | 0.27 | ± | 0.25 |
L. reuteri PL 519 | 149.20 | ± | 89.38 | 0.81 | ± | 0.54 | 0.46 | ± | 0.30 | 0.07 | ± | 0.05 | 0.34 | ± | 0.30 | 0.11 | ± | 0.08 | 0.96 | ± | 0.37 | 0.31 | ± | 0.26 |
Values P | ||||||||||||||||||||||||
Pe | 0.000 | 0.000 | 0.000 | 0.000 | 0.031 | 0.000 | 0.000 | 0.000 | ||||||||||||||||
Ps | 0.230 | 0.850 | 0.952 | 0.957 | 0.576 | 0.960 | 0.952 | 0.983 | ||||||||||||||||
Pe*s | 0.000 | 0.929 | 0.876 | 0.960 | 0.796 | 0.995 | 0.982 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, M.Á.; Benito, M.J.; Ruíz-Moyano, S.; Martín, A.; Córdoba, M.d.G.; Merchán, A.V.; Casquete, R. Improving the Viability and Metabolism of Intestinal Probiotic Bacteria Using Fibre Obtained from Vegetable By-Products. Foods 2021, 10, 2113. https://doi.org/10.3390/foods10092113
Rivas MÁ, Benito MJ, Ruíz-Moyano S, Martín A, Córdoba MdG, Merchán AV, Casquete R. Improving the Viability and Metabolism of Intestinal Probiotic Bacteria Using Fibre Obtained from Vegetable By-Products. Foods. 2021; 10(9):2113. https://doi.org/10.3390/foods10092113
Chicago/Turabian StyleRivas, María Ángeles, María José Benito, Santiago Ruíz-Moyano, Alberto Martín, María de Guía Córdoba, Almudena V. Merchán, and Rocío Casquete. 2021. "Improving the Viability and Metabolism of Intestinal Probiotic Bacteria Using Fibre Obtained from Vegetable By-Products" Foods 10, no. 9: 2113. https://doi.org/10.3390/foods10092113