Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Model Lipids
2.2. Preparation and Isolation of Methyl Linoleate Hydroperoxides
2.3. Samples Used in the Digestion Assays
- -
- One 15 mg mL−1 emulsion of a blend of methyl 9,10-epoxystearate, methyl 12-oxostearate and methyl 12-hydroxystearate (5 mg mL−1 each) with 10 mg mL−1 of the IS in SGF. Samples of 1, 2, 3 and 4 mL (~16 μmol mL−1 of each compound) were used.
- -
- Two methyl 9,10-epoxysteatate emulsions, i.e., 5 and 15 mg mL−1, both with 10 mg mL−1 of the IS, in SGF. Samples of 1, 2, 3 and 4 mL (16 and 46 μmol mL−1) were used.
- -
- Three methyl linoleate hydroperoxides emulsions, i.e., 5, 7.5 and 10 mg mL−1, with 1, 1.5 and 2 mg mL−1 of the IS, respectively. Additional methyl hydroperoxides emulsions at the same concentrations were prepared adjusting the pH to 3.0 and 6.6 with 1 M NaHCO3. Samples of 4 mL (15.3, 23.0 and 30.6 μmol mL−1) were used.
2.4. In Vitro Gastric Digestion
2.5. Lipid Extraction
2.6. Analytical Determinations
2.6.1. Quantitative Determination of Methyl 9,10-Epoxystearate, Methyl 12-Oxostearate and Methyl 12-Hydroxystearate by GC-FID
2.6.2. Quantitative Determination of Methyl Linoleate Hydroperoxides by GC-FID
2.6.3. Analysis of Short-Chain Compounds by GC-FID
2.6.4. Analysis by GC-MS
2.6.5. Analysis of Methyl Linoleate Hydroperoxides by HPLC-UV
2.6.6. Statistical Analysis
3. Results and Discussion
3.1. Fate of Methyl 9,10-Epoxystearate, Methyl 12-Oxostearate and Methyl 12-Hydroxystearate
3.2. Changes of Methyl Linoleate Hydroperoxides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanner, J. Dietary advanced lipid oxidation end products are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef]
- Dobarganes, M.C.; Márquez-Ruiz, G. Possible adverse effects of frying with vegetable oils. Br. J. Nutr. 2015, 113, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, S.A.; Zhang, G.; Decker, E.A. Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 2017, 94, 339–351. [Google Scholar] [CrossRef]
- Kanner, J.; Lapidot, T. The stomach as a bioreactor: Dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic. Biol. Med. 2001, 31, 1388–1395. [Google Scholar] [CrossRef]
- Gorelik, S.; Lapidot, T.; Shaham, I.; Granit, R.; Ligumsky, M.; Kohen, R.; Kanner, J. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: Health implications. J. Agric. Food Chem. 2005, 53, 3397–3402. [Google Scholar] [CrossRef]
- Lapidot, T.; Granit, R.; Kanner, J. Lipid peroxidation by “free” iron ions and myoglobin as affected by dietary antioxidants in simulated gastric fluids. J. Agric. Food Chem. 2005, 53, 3383–3390. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, T.; Granit, R.; Kanner, J. Lipid hydroperoxidase activity of myoglobin and phenolic antioxidants in simulated gastric fluid. J. Agric. Food Chem. 2005, 53, 3391–3396. [Google Scholar] [CrossRef]
- Tirosh, O.; Shpaizer, A.; Kanner, J. Lipid peroxidation in a stomach medium is affected by dietary oils (olive/fish) and antioxidants: The Mediterranean versus Western diet. J. Agric. Food Chem. 2015, 63, 7016–7023. [Google Scholar] [CrossRef]
- Tarvainen, M.; Suomela, J.P.; Kuksis, A.; Kalio, H. Liquid chromatography-light scattering detector-mass spectrometric analysis of digested oxidized rapeseed oil. Lipids 2010, 45, 1061–1079. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, M.; Phuphusit, A.; Suomela, J.P.; Kuksis, A.; Kalio, H. Effects of antioxidants on rapeseed oil oxidation in an artificial digestion model analysed by UHPLC-ESI-MS. J. Agric. Food Chem. 2012, 60, 3564–3579. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Polyunsaturated lipids and vitamin A oxidation during cod liver oil in vitro gastrointestinal digestion. Antioxidant effect of added BHT. Food Chem. 2017, 232, 733–743. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Effect of the presence of protein on lipolysis and lipid oxidation occurring during in vitro digestion of highly unsaturated oils. Food Chem. 2017, 235, 21–33. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Fish in vitro digestion: Influence of fish salting on the extent of lipolysis, oxidation and other reactions. J. Agric. Food Chem. 2017, 65, 879–891. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Effect of adding alpha-tocopherol on the oxidation advance during in vitro gastrointestinal digestion of sunflower and flaxseed oils. Food Res. Int. 2019, 125, 108558:1–108558:15. [Google Scholar] [CrossRef]
- Martín-Rubio, A.S.; Sopelana, P.; Guillén, M.D. Influence of minor components on lipid bioaccesibility and oxidation during in vitro digestion of soybean oil. J. Sci. Food Agric. 2019, 99, 4793–4800. [Google Scholar] [CrossRef]
- Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. Effect of enrichment of corn oil with alpha- or gamma-tocopherol on its in vitro digestion studied by 1H NMR and SPME-GC/MS; formation of hydroperoxy-, hydroxyl-, keto-dienes and keto-E-epoxy-E-monoenes in the more alpha-tocopherol enriched samples. Antioxidants 2020, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. Study of the in vitro digestion of olive oil enriched or not with antioxidant phenolic compounds. Relationships between bioaccesibility of main components of different oils and their composition. Antioxidants 2020, 9, 543. [Google Scholar] [CrossRef]
- Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. A global study by 1H NMR and SPME-GC/MS of the in vitro digestion of virgin flaxseed oil enriched or not with mono-, di- or tri-phenolic derivatives. Antioxidant efficiency of these compounds. Antioxidants 2020, 9, 312. [Google Scholar] [CrossRef] [Green Version]
- Larsson, K.; Cavonius, L.; Alminger, M.; Undeland, I. Oxidation of cod liver oil during gastrointestinal in vitro digestion. J. Agric. Food Chem. 2012, 60, 7556–7564. [Google Scholar] [CrossRef]
- Larsson, K.; Harrysson, H.; Havenaar, R.; Alminger, M.; Undeland, I. Formation of malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2nonenal (HNE) in fish and fish oil during dynamic gastrointestinal in vitro digestion. Food Funct. 2016, 7, 1176–1187. [Google Scholar] [CrossRef] [Green Version]
- Larsson, K.; Tullberg, C.; Alminger, M.; Havenaar, R.; Undeland, I. Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food Funct. 2016, 7, 3458–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Food lipid oxidation under gastrointestinal digestion conditions: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 461–478. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Manzanos, M.J.; Guillén, M.D. 1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Food Res. Int. 2017, 91, 171–182. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Behaviour of non-oxidized and oxidized flaxseed oils, as models of omega-3 rich lipids, during in vitro digestion. Occurrence of epoxidation reactions. Food Res. Int. 2017, 95, 104–115. [Google Scholar] [CrossRef]
- Martín-Rubio, A.S.; Sopelana, P.; Guillén, M.D. The key role of ovoalbumin in lipid bioaccesibility and oxidation product profile during the in vitro digestion of slightly oxidized soybean oil. Food Funct. 2019, 10, 4440–4451. [Google Scholar] [CrossRef] [Green Version]
- Márquez-Ruiz, G.; García-Martínez, M.C.; Holgado, F. Changes and effects of dietary oxidized lipids in the gastrointestinal tract. Lipids Insight 2008, 2, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, K.; Ashida, H. Catabolic fate of dietary trilinoleoylglycerol hydroperoxides in rat gastrointestines. Biochim. Biophys. Acta 1998, 1393, 336–348. [Google Scholar] [CrossRef]
- Kanazawa, K.; Ashida, H. Dietary hydroperoxides of linoleic acid decompose to aldehydes in stomach before being absorbed into the body. Biochim. Biophys. Acta 1998, 1393, 349–361. [Google Scholar] [CrossRef]
- Dobarganes, M.C.; Márquez-Ruiz, G. Oxidized fats in foods. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 157–163. [Google Scholar] [CrossRef]
- Márquez-Ruiz, G.; Pérez-Camino, M.C.; Dobarganes, M.C. Digestibility of fatty acid monomers, dimers and polymers in the rat. J. Am. Oil Chem. Soc. 1992, 69, 930–934. [Google Scholar] [CrossRef]
- Márquez-Ruiz, G.; Dobarganes, M.C. Assessments on the digestibility of oxidized compounds from [1-14C]-linoleic acid using a combination of chromatographic techniques. J. Chromatogr. B 1995, 675, 1–8. [Google Scholar] [CrossRef]
- Penumetcha, M.; Khan-Merchant, N.; Parthasarathy, S. Dietary oxidized fatty acids: An atherogenic risk? J. Lipid Res. 2000, 41, 1473–1480. [Google Scholar] [CrossRef]
- Wilson, R.; Lyall, K.; Smyth, L.; Fernie, C.E.; Riemersma, R.A. Dietary hydroxy fatty acids are absorbed in humans: Implications for the measurement of “oxidative stress” in vivo. Free Rad. Biol. Med. 2002, 32, 162–168. [Google Scholar] [CrossRef]
- Wilson, R.; Fernie, C.E.; Scrimgeour, C.M.; Lyall, K.; Smyth, L.; Riemersma, R.A. Dietary epoxy fatty acids are absorbed in healthy women. Eur. J. Clin. Investig. 2002, 32, 79–83. [Google Scholar] [CrossRef]
- Goicoechea, E.; Van Twillert, K.; Duits, M.; Brandon, E.D.F.A.; Kootstra, P.R.; Blokland, M.H.; Guillén, M.D. Use of an in vitro digestion model to study the bioaccesibility of 4-hydroxy-2-nonenal and related aldehydes present in oxidized oils rich in omega-6 acyl groups. J. Agric. Food Chem. 2008, 56, 8475–8483. [Google Scholar] [CrossRef] [PubMed]
- Grootveld, M.; Atherton, M.D.; Sheerin, A.N.; Hawkes, J.; Blake, D.; Richens, T.E.; Silwood, C.J.L.; Lynch, E.; Claxson, A.W.D. In vivo absorption, metabolism, and urinary excretion of alpha,beta-unsaturated aldehydes in experimental animals. Relevance to the development of cardiovascular diseases by the dietary ingestion of thermally stressed polyunsaturate-rich culinary oils. J. Clin. Investig. 1998, 101, 1210–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobarganes, M.C.; Márquez-Ruiz, G.; Berdeaux, O.; Velasco, J. Determination of oxidized compounds and oligomers by chromatographic techniques. In Frying of Foods; Boskou, D., Elmadfa, I., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 141–143. ISBN 9780367383176. [Google Scholar]
- Jessup, W.; Kritharides, L.; Stocker, R. Lipid oxidation in atherogenesis: An overview. Biochem. Soc. Trans. 2004, 32, 134–138. [Google Scholar] [CrossRef]
- Kanazawa, A.; Sawa, T.; Akaik, T.; Maeda, H. Formation of abasic sites in DNA by t-butyl peroxyl radicals: Implication for potent genotoxicity of lipid peroxyl radicals. Cancer Lett. 2000, 156, 51–55. [Google Scholar] [CrossRef]
- Shen, Z.; Apriani, C.; Weerakkody, R.; Sanguansri, L.; Augustin, M.A. Food matrix effects on in vitro digestion of microencapsulated tuna oil powder. J. Agric. Food Chem. 2011, 59, 8442–8449. [Google Scholar] [CrossRef]
- Morales, A.; Dobarganes, C.; Márquez-Ruiz, G.; Velasco, J. Quantitation of hydroperoxy-, keto- and hydroxy-dienes during oxidation of FAMEs from high-linoleic and high-oleic sunflower oils. J. Am. Oil Chem. Soc. 2010, 87, 1271–1279. [Google Scholar] [CrossRef]
- United States Pharmacopeia and National Formulary USP38-NF33; The United States Pharmacopeia Convention, Inc.: Rockville, MD, USA, 2015.
- Velasco, J.; Dobarganes, M.C.; Márquez-Ruiz, G. Antioxidant activity of phenolic compounds in sunflower oil-in-water emulsions containing sodium caseinate and lactose. Eur. J. Lipid Sci. Technol. 2004, 106, 325–333. [Google Scholar] [CrossRef]
- Marmesat, S.; Velasco, J.; Dobarganes, M.C. Quantitative determination of epoxy acids, keto acids and hydroxy acids formed in fats and oils at frying temperatures. J. Chromatogr. A 2008, 1211, 129–134. [Google Scholar] [CrossRef]
- Dalgleish, D.G. Food emulsions. In Emulsions and Emulsion Stability; Sjöblom, J., Ed.; Mercel Dekker Inc.: New York, NY, USA, 1996; pp. 288–325. [Google Scholar]
- Velasco, J.; Marmesat, S.; Berdeaux, O.; Márquez-Ruiz, M.G.; Dobarganes, M.C. Formation and evolution of monoepoxy fatty acids in thermoxidized olive and sunflower oils and quantitation in used frying oils from restaurants and fried food outlets. J. Agric. Food Chem. 2004, 52, 4438–4443. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Marmesat, S.; Márquez-Ruiz, G.; Dobarganes, M.C. Formation of short-chain glycerol-bound oxidation products and oxidized monomeric triacylglycerols during deep-frying and occurrence in used frying fats. Eur. J. Lipid Sci. Technol. 2004, 106, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Piazza, G.J.; Nunez, A.; Foglia, T.A. Hydrolysis of mono- and diepoxyoctadecanoates by alumina. J. Am. Oil Chem. Soc. 2003, 80, 901–904. [Google Scholar] [CrossRef]
- Lin, B.; Yang, L.; Dai, H.; Yi, A. Kinetic studies on oxirane cleavage of epoxidized soybean oil by methanol and characterization of polyols. J. Am. Oil Chem. Soc. 2008, 85, 113–117. [Google Scholar] [CrossRef]
- Piazza, G.J.; Nunez, A.; Foglia, T.A. Isolation of unsaturated diols after oxidation of conjugated linoleic acid with peroxygenase. Lipids 2003, 38, 255–265. [Google Scholar] [CrossRef]
- Maerker, G.; Nungesser, E.H.; Bunick, F.J. Reaction of cholesterol 5,6-epoxides with simulated gastric juice. Lipids 1988, 23, 761–765. [Google Scholar] [CrossRef]
- Giuffrida, F.; Destaillats, F.; Robert, F.; Skibsted, L.H.; Dionisi, F. Formation and hydrolysis of triacylglycerol and sterol epoxides: Role of unsaturated triacylglycerol peroxyl radicals. Free Rad. Biol. Med. 2004, 37, 104–114. [Google Scholar] [CrossRef]
- Youhnovski, N.; Schulz, D.; Schwarz, C.; Spiteller, G.; Schubert, K. Determination of Hydroxyoctadecadienoic Acids. Z. Naturforsch. 2003, 58, 268–276. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid Oxidation, 2nd ed.; The Oily Press: Dundee, UK, 2005; ISBN 9780953194988. [Google Scholar]
- Ekmekcioglu, C. A physiological approach for preparing and conducting intestinal bioavailability studies using experimental systems. Food Chem. 2002, 76, 225–230. [Google Scholar] [CrossRef]
- Ovesen, L.; Bendtsen, F.; Tage-Jensen, U.; Pedersen, N.T.; Gram, B.R.; Rune, S.J. Intraluminal pH in the stomach, duodenum, and proximal jejunum in normal subjects and patients with exocrine pancreatic insufficiency. Gastroenterology 1986, 90, 958–962. [Google Scholar] [CrossRef]
- Terao, J.; Nagao, A.; Yuki, H.; Itoh, Y. Reduction of fatty acid hydroperoxides by human parotid saliva. Lipids 1993, 28, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, S.; Ligumsky, M.; Kohen, R.; Kanner, J. The stomach as a “bioreactor”: When red meat meets red wine. J Agric. Food Chem. 2008, 56, 5002–5007. [Google Scholar] [CrossRef] [PubMed]
Sample Volume | Compound | Initial Concentration | Final Concentration | Loss % after Digestion |
---|---|---|---|---|
(mL) | (μmol mL−1) | (μmol mL−1) | ||
9,10-epoxystearate | 16.0 ± 0.32 c | 7.52 ± 0.73 a | 52.7 ± 4.6 B | |
1 | 12-oxostearate | 15.95 ± 0.49 c | 16.11 ± 0.21 c | |
12-hydroxystearate | 15.74 ± 0.73 c | 15.92 ± 0.40 c | ||
9,10-epoxystearate | 16.0 ± 0.32 c | 7.79 ± 0.65 ab | 51.3 ± 4.0 AB | |
2 | 12-oxostearate | 15.95 ± 0.49 c | 15.80 ± 0.37 c | |
12-hydroxystearate | 15.74 ± 0.73 c | 15.45 ± 1.03 c | ||
9,10-epoxystearate | 16.0 ± 0.32 c | 8.89 ± 0.43 b | 44.4 ± 2.7 A | |
3 | 12-oxostearate | 15.95 ± 0.49 c | 15.88 ± 0.73 c | |
12-hydroxystearate | 15.74 ± 0.73 c | 16.13 ± 0.39 c | ||
9,10-epoxystearate | 16.0 ± 0.32 c | 9.55 ± 0.40 b | 40.3 ± 2.5 A | |
4 | 12-oxostearate | 15.95 ± 0.49 c | 16.15 ± 0.58 c | |
12-hydroxystearate | 15.74 ± 0.73 c | 15.51 ± 1.13 c |
Initial [9,10-Epoxystearate] | Sample Volume | Final [9,10-Epoxystearate] | Loss % after Digestion |
---|---|---|---|
(μmol mL−1) | (mL) | (μmol mL−1) | |
15.79 ± 0.12 c | 1 | 6.50 ± 1.07 a | 58.8 ± 6.8 D |
2 | 7.20 ± 0.80 ab | 54.4 ± 5.0 CD | |
3 | 8.00 ± 0.48 ab | 49.3 ± 3.0 CD | |
4 | 8.97 ± 0.60 b | 43.2 ± 3.8 BC | |
46.03 ± 0.94 c | 1 | 26.16 ± 2.24 a | 43.2 ± 4.9 BC |
2 | 30.53 ± 1.48 a | 33.7 ± 3.2 B | |
3 | 35.06 ± 0.81 b | 23.8 ± 1.8 A | |
4 | 37.82 ± 1.96 b | 17.8 ± 4.3 A |
Compounds | Formation Source |
---|---|
Hexanal | 13-OOH cleavage |
Methyl heptanoate | Further reactions of compounds formed from 13-OOH |
Methyl octanoate | 9-OOH cleavage |
Deca-2,4-dienals | 9-OOH cleavage |
Methyl 8-hydroxyoctanoate | 9-OOH cleavage |
Methyl 8-oxooctanoate | Further reactions of compounds formed from 13-OOH |
Methyl 9-oxononanoate | 9-OOH cleavage |
Initial [Methyl Linoleate Hydroperoxides] | pH | Final [Methyl Linoleate Hydroperoxides] | Minimum Loss % |
---|---|---|---|
(μmol mL−1) | (μmol mL−1) | after Digestion | |
15.30 ± 0.10 c | 1.2 | 5.87 ± 3.29 a | 61.7 ± 21.5 BC |
3.0 | 6.75 ± 1.80 a | 55.9 ± 11.8 BC | |
6.6 | 14.76 ± 0.25 b | 3.5 ± 1.7 A | |
22.97 ± 0.15 b | 1.2 | 7.98 ± 2.04 a | 65.3 ± 8.9 C |
3.0 | 9.57 ± 1.49 a | 58.3 ± 6.5 BC | |
6.6 | 21.50 ± 0.70 b | 6.4 ± 3.1 A | |
30.58 ± 0.25 c | 1.2 | 14.21 ± 1.71 a | 53.5 ± 5.6 BC |
3.0 | 17.63 ± 2.29 a | 42.3 ± 7.5 B | |
6.6 | 28.76 ± 0.80 b | 6.0 ± 2.7 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Márquez-Ruiz, G.; Holgado, F.; Ruiz-Méndez, M.V.; Velasco, J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods 2021, 10, 2035. https://doi.org/10.3390/foods10092035
Márquez-Ruiz G, Holgado F, Ruiz-Méndez MV, Velasco J. Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods. 2021; 10(9):2035. https://doi.org/10.3390/foods10092035
Chicago/Turabian StyleMárquez-Ruiz, Gloria, Francisca Holgado, María Victoria Ruiz-Méndez, and Joaquín Velasco. 2021. "Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions" Foods 10, no. 9: 2035. https://doi.org/10.3390/foods10092035
APA StyleMárquez-Ruiz, G., Holgado, F., Ruiz-Méndez, M. V., & Velasco, J. (2021). Chemical Changes of Hydroperoxy-, Epoxy-, Keto- and Hydroxy-Model Lipids under Simulated Gastric Conditions. Foods, 10(9), 2035. https://doi.org/10.3390/foods10092035