Sensory and Physical Characteristics of M. biceps femoris from Older Cows Using Ginger Powder (Zingibain) and Sous Vide Cooking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Injection Treatment and Cooking Process
2.2. Trained Sensory Evaluation
2.3. Physicochemical Measurements
2.3.1. Total Water Content and Cooking Loss
2.3.2. WBSF and TPA
2.3.3. Total Collagen
2.3.4. Soluble Collagen
2.4. Statistical Methods
3. Results
3.1. Sensory Evaluation
Correlations and Principal Component Analysis of Sensory Traits
3.2. Physicochemical Measurements
3.2.1. Instrumental Texture Profile
3.2.2. Total Water Content
3.2.3. Cooking Loss
3.2.4. Total Collagen
3.2.5. Soluble Collagen
3.2.6. Canonical Correlation Analysis between Sensory Traits and Physical Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polkinghorne, R.; Thompson, J. Meat standards and grading: A world view. Meat Sci. 2010, 86, 227–235. [Google Scholar] [CrossRef]
- Grunert, K.G.; Bredahl, L.; Brunsø, K. Consumer perception of meat quality and implications for product development in the meat sector—A review. Meat Sci. 2004, 66, 259–272. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Botreau, R.; Picard, B.; Jacquet, A.; Pethick, D.W.; Scollan, N.D. Opportunities for predicting and manipulating beef quality. Meat Sci. 2012, 92, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savell, J.; Lorenzen, C.; Neely, T.; Miller, R.; Tatum, J.; Wise, J.; Taylor, J.; Buyck, M.; Reagan, J. Beef customer satisfaction: Cooking method and degree of doneness effects on the top sirloin steak. J. Anim. Sci. 1999, 77, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Shackelford, S.D. Consumer impressions of tender select beef. J. Anim. Sci. 2001, 79, 2605–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyford, C.P.; Thompson, J.M.; Polkinghorne, R.; Miller, M.F.; Nishimura, T.; Neath, K.; Allen, P.; Belasco, E.J. Is willingness to pay (WTP) for beef quality grades affected by consumer demographics and meat consumption preferences? Australas. Agribus. Rev. 2010, 18, 1–17. [Google Scholar]
- Boleman, S.; Boleman, S.L.; Miller, R.; Taylor, J.; Cross, H.; Wheeler, T.; Koohmaraie, M.; Shackelford, S.; Miller, M.; West, R. Consumer evaluation of beef of known categories of tenderness. J. Anim. Sci. 1997, 75, 1521–1524. [Google Scholar] [CrossRef]
- Therkildsen, M.; Stolzenbach, S.; Byrne, D.V. Sensory profiling of textural properties of meat from dairy cows exposed to a compensatory finishing strategy. Meat Sci. 2011, 87, 73–80. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Calkins, C.R. Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci. 2010, 85, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P. New developments on the role of intramuscular connective tissue in meat toughness. Annu. Rev. Food Sci. Technol. 2014, 5, 133–153. [Google Scholar] [CrossRef]
- Harris, P.V. Structural and other aspects of meat tenderness. J. Texture Stud. 1976, 7, 49–63. [Google Scholar] [CrossRef]
- Warner, R.D.; Greenwood, P.L.; Pethick, D.W.; Ferguson, D.M. Genetic and environmental effects on meat quality. Meat Sci. 2010, 86, 171–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef]
- Ashie, I.N.A.; Sorensen, T.L.; Nielsen, P.M. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci. 2002, 67, 2138–2142. [Google Scholar] [CrossRef]
- Arshad, M.S.; Kwon, J.-H.; Imran, M.; Sohaib, M.; Aslam, A.; Nawaz, I.; Amjad, Z.; Khan, U.; Javed, M. Plant and bacterial proteases: A key towards improving meat tenderization, a mini review. Cogent Food Agric. 2016, 2, 1261780. [Google Scholar]
- Christensen, M.; Tørngren, M.; Gunvig, A.; Rozlosnik, N.; Lametsch, R.; Karlsson, A.; Ertbjerg, P. Injection of marinade with actinidin increases tenderness of porcine M. biceps femorisand affects myofibrils and connective tissue. J. Sci. Food Agric. 2009, 89, 1607–1614. [Google Scholar] [CrossRef]
- Zhu, X.; Kaur, L.; Staincliffe, M.; Boland, M. Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility. Meat Sci. 2018, 145, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Bekhit, A.; Carne, A.; Hopkins, D. Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins. J. Food Sci. 2013, 78, C170–C177. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous proteases for meat tenderization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1012–1031. [Google Scholar] [CrossRef]
- Gagaoua, M.; Dib, A.L.; Lakhdara, N.; Lamri, M.; Botineştean, C.; Lorenzo, J.M. Artificial meat tenderization using plant cysteine proteases. Curr. Opin. Food Sci. 2021, 38, 177–188. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Campbell, M.A.; Latif, S.; Thomson, P.C.; McGill, D.M.; Warner, R.D.; Friend, M.A. Improving tenderness and quality of M. biceps femoris from older cows through concentrate feeding, zingibain protease and sous vide cooking. Meat Sci. 2021, 180, 108563. [Google Scholar] [CrossRef]
- Thompson, E.H.; Wolf, I.D.; Allen, C.E. Ginger rhizome: A new source of proteolytic enzyme. J. Food Sci. 1973, 38, 652–655. [Google Scholar] [CrossRef]
- Saranya, S.; Santhi, D.; Kalaikannan, A. Ginger as a tenderizing agent for tough meats—A review. J. Livest. Sci. 2016, 7, 54–61. [Google Scholar]
- Cruz, P.L.; Panno, P.H.C.; Giannotti, J.D.G.; Carvalho, R.V.d.; Roberto, C.D. Effect of proteases from ginger rhizome on the fragmentation of myofibrils and tenderness of chicken breast. LWT Food Sci. Technol. 2020, 120, 108921. [Google Scholar] [CrossRef]
- Lee, Y.B.; Sehnert, D.J.; Ashmore, C.R. Tenderization of meat with ginger rhizome protease. J. Food Sci. 1986, 51, 1558–1559. [Google Scholar] [CrossRef]
- He, F.-Y.; Kim, H.-W.; Hwang, K.-E.; Song, D.-H.; Kim, Y.-J.; Ham, Y.-K.; Kim, S.-Y.; Yeo, I.-J.; Jung, T.-J.; Kim, C.-J. Effect of ginger extract and citric acid on the tenderness of duck breast muscles. Korean J. Food Sci. Anim. Resour. 2015, 35, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.S. Effect of proteolytic enzymes and ginger extract on tenderization of m. Pectoralis profundus from holstein steer. Korean J. Food Sci. Anim. Resour. 2018, 38, 143. [Google Scholar] [PubMed]
- Naveena, B.M.; Mendiratta, S.K.; Anjaneyulu, A.S.R. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Sci. 2004, 68, 363–369. [Google Scholar] [CrossRef]
- Naveena, B.M.; Mendiratta, S.K. The tenderization of buffalo meat using ginger extract. J. Muscle Foods 2004, 15, 235–244. [Google Scholar] [CrossRef]
- Pawar, V.D.; Mule, B.D.; Machewad, G.M. Effect of marination with ginger rhizome extract on properties of raw and cooked chevon. J. Muscle Foods 2007, 18, 349–369. [Google Scholar] [CrossRef]
- Bhaskar, N.; Sachindra, N.M.; Modi, V.K.; Sakhare, P.Z.; Mahendrakar, N.S. Preparation of proteolytic activity rich ginger powder and evaluation of its tenderizing effect on spent-hen muscles. J. Muscle Foods 2006, 17, 174–184. [Google Scholar] [CrossRef]
- Schellekens, M. New research issues in sous-vide cooking. Trends Food Sci. Technol. 1996, 7, 256–262. [Google Scholar] [CrossRef]
- Baldwin, D. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, Z.B.; Thomson, P.C.; Ha, M.; Campbell, M.A.; McGill, D.M.; Friend, M.A.; Warner, R.D. Effect of sous vide cooking and ageing on tenderness and water-holding capacity of low-value beef muscles from young and older animals. Meat Sci. 2021, 175, 108435. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Zhang, X.; Mason, S.L.; Bekhit, A.E.-D.A. Sous-vide cooking improves the quality and in-vitro digestibility of Semitendinosus from culled dairy cows. Food Res. Int. 2020, 127, 108708. [Google Scholar] [CrossRef]
- Christensen, L.; Ertbjerg, P.; Løje, H.; Risbo, J.; van den Berg, F.W.J.; Christensen, M. Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. Meat Sci. 2013, 93, 787–795. [Google Scholar] [CrossRef]
- Mortensen, L.; Frøst, M.; Skibsted, L.; Risbo, J. Effect of time and temperature on sensory properties in low-temperature long-timesous-vide cooking of beef. J. Culin. Sci. Technol. 2012, 10, 75–90. [Google Scholar] [CrossRef]
- Ruiz, J.; Calvarro, J.; Sánchez del Pulgar, J.; Roldán, M. Science and technology for new culinary techniques. J. Culin. Sci. Technol. 2013, 11, 66–79. [Google Scholar] [CrossRef]
- Christensen, L.; Gunvig, A.; Torngren, M.A.; Aaslyng, M.D.; Knochel, S.; Christensen, M. Sensory characteristics of meat cooked for prolonged times at low temperature. Meat Sci. 2012, 90, 485–489. [Google Scholar] [CrossRef]
- Sun, S.; Rasmussen, F.D.; Cavender, G.A.; Sullivan, G.A. Texture, color and sensory evaluation of sous-vide cooked beef steaks processed using high pressure processing as method of microbial control. LWT Food Sci. Technol. 2019, 103, 169–177. [Google Scholar] [CrossRef]
- Botinestean, C.; Hossain, M.; Mullen, A.M.; Kerry, J.P.; Hamill, R.M. The influence of the interaction of sous-vide cooking time and papain concentration on tenderness and technological characteristics of meat products. Meat Sci. 2021, 177, 108491. [Google Scholar] [CrossRef] [PubMed]
- Lucherk, L.; O’Quinn, T.; Legako, J.; Rathmann, R.; Brooks, J.; Miller, M. Consumer and trained panel evaluation of beef strip steaks of varying marbling and enhancement levels cooked to three degrees of doneness. Meat Sci. 2016, 122, 145–154. [Google Scholar] [CrossRef]
- AMSA. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; AMSA: Champaign, IL, USA, 2015. [Google Scholar]
- Oillic, S.; Lemoine, E.; Gros, J.-B.; Kondjoyan, A. Kinetic analysis of cooking losses from beef and other animal muscles heated in a water bath—Effect of sample dimensions and prior freezing and ageing. Meat Sci. 2011, 88, 338–346. [Google Scholar] [CrossRef] [PubMed]
- De Huidobro, F.R.; Miguel, E.; Blázquez, B.; Onega, E. A comparison between two methods (Warner–Bratzler and texture profile analysis) for testing either raw meat or cooked meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef]
- Warner, R.; Miller, R.; Ha, M.; Wheeler, T.L.; Dunshea, F.; Li, X.; Vaskoska, R.; Purslow, P.; Wheeler, T. Meat tenderness: Underlying mechanisms, instrumental measurement, and sensory assessment. Meat Muscle Biol. 2021, 4, 1–25. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Shorthose, W.R.; Harris, P.V. Effect of animal age on the tenderness of selected beef muscles. J. Food Sci. 1990, 55, 1–8. [Google Scholar] [CrossRef]
- Mena, B.; Ashman, H.; Dunshea, F.R.; Hutchings, S.; Ha, M.; Warner, R.D. Exploring meal and snacking behaviour of older adults in Australia and China. Foods 2020, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Felderhoff, C.; Lyford, C.; Malaga, J.; Polkinghorne, R.; Brooks, C.; Garmyn, A.; Miller, M. Beef quality preferences: Factors driving consumer satisfaction. Foods 2020, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. semitendinosus steaks targeted at elderly consumers. LWT Food Sci. Technol. 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Ha, M.; Bekhit, A.E.-D.A.; Carne, A.; Hopkins, D.L. Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chem. 2012, 134, 95–105. [Google Scholar] [CrossRef]
- Kim, M.; Hamilton, S.; Guddat, L.; Overall, C. Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger. Biochim. Et Biophys. Acta 2007, 1770, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Dominguez Hernandez, E.; Salaseviciene, A.; Ertbjerg, P. Low-temperature long-time cooking of meat: Eating quality and underlying mechanisms. Meat Sci. 2018, 143, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Hughes, J.M.; Oiseth, S.K.; Purslow, P.P.; Warner, R.D. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Dąbrowska, E.; Jankowska, B.; Kwiatkowska, A.; Cierach, M. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast. Meat Sci. 2012, 91, 195–202. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Bejerholm, C.; Ertbjerg, P.; Bertram, H.C.; Andersen, H.J. Cooking loss and juiciness of pork in relation to raw meat quality and cooking procedure. Food Qual. Prefer. 2003, 14, 277–288. [Google Scholar] [CrossRef]
- Becker, A.; Boulaaba, A.; Pingen, S.; Krischek, C.; Klein, G. Low temperature cooking of pork meat—Physicochemical and sensory aspects. Meat Sci. 2016, 118, 82–88. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Ismail, I.; Joo, S.-T. Identification of umami taste in sous-vide beef by chemical analyses, equivalent umami concentration, and electronic tongue system. Foods 2020, 9, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roldán, M.; Ruiz, J.; del Pulgar, J.S.; Pérez-Palacios, T.; Antequera, T. Volatile compound profile of sous-vide cooked lamb loins at different temperature–time combinations. Meat Sci. 2015, 100, 52–57. [Google Scholar] [CrossRef]
- Ravindran, P. The Encyclopedia of Herbs and Spices; CABI: Wallingford, UK, 2017. [Google Scholar]
- Bartley, J.P.; Jacobs, A.L. Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). J. Sci. Food Agric. 2000, 80, 209–215. [Google Scholar] [CrossRef]
- Menon, A.N.; Padmakumari, K.; Kutty, B.S.; Sumathikutty, M.; Sreekumar, M.; Arumugham, C. Effects of processing on the flavor compounds of indian fresh ginger (Zingiber Officinale Rose.). J. Essent. Oil Res. 2007, 19, 105–109. [Google Scholar] [CrossRef]
- Peachey, B.M.; Purchas, R.W.; Duizer, L.M. Relationships between sensory and objective measures of meat tenderness of beef m. longissimus thoracis from bulls and steers. Meat Sci. 2002, 60, 211–218. [Google Scholar] [CrossRef]
Attribute | Definition | References |
---|---|---|
Beef identity | Amount of beef flavour identity in the sample | Beef Broth = 5.0 |
Beef brisket cooked to 71 °C = 8.0 | ||
Metallic flavour | Impression of slightly oxidized metal, such as iron, copper, and silver spoons | Strip steak cooked to 71 °C = 4.0 |
Canned pineapple juice = 6.0 | ||
Ginger flavour | Slightly pungent impression/warm/spicy | Outside flat injected (10 g/L GP * solution) cooked at 65 °C = 8.0 |
Outside flat injected (0.5 g/L GP solution cooked at 65 °C = 2.0 | ||
Tender | Easy to cut and chew | Tenderloin steak cooked to 65 °C = 8.0 |
Strip steak cooked to 71 °C = 5.5 | ||
Chewy/tough | Requiring much chewing/tough | Eye of round steak cooked to 85 °C = 3.0 |
Inconsistent/patchy texture | Irregular or uneven in texture | Outside flat with uneven volume of GP injections per injection site (between 5–10 mL) cooked under sous vide at 65 °C = 8.0 |
Overall juiciness | Amount of liquid released from sample over the entire chewing | Strip steak cooked to 60 °C = 7.5 |
Strip steak cooked to 71 °C = 5.0 | ||
Strip steak cooked to 85 °C = 2–3 |
Scale Point | Flavour Intensity | Juiciness | Tenderness | Texture Consistency |
---|---|---|---|---|
8 | Extremely Intense | Extremely Juicy | Extremely Tender | Extremely Uniform |
7 | Very Intense | Very Juicy | Very Tender | Very Uniform |
6 | Moderately Intense | Moderately Juicy | Moderately Tender | Moderately Uniform |
5 | Slightly Intense | Slightly Juicy | Slightly Tender | Slightly Uniform |
4 | Slightly Bland | Slightly Dry | Slightly Tough | Slightly Inconsistent |
3 | Moderately Bland | Moderately Dry | Moderately Tough | Moderately Inconsistent |
2 | Very Bland | Very Dry | Very Tough | Very Inconsistent |
1 | None | Extremely Dry | Extremely Tough | Extremely Inconsistent |
Sensory Traits | PC1 | PC2 |
---|---|---|
Beef identity/flavour | 0.092 | −0.496 |
Metallic flavour | 0.037 | 0.066 |
Ginger flavour | 0.423 | 0.463 |
Juiciness | 0.239 | −0.731 |
Tenderness | 0.824 | 0.023 |
Texture consistency | 0.273 | 0.012 |
Variables | Control | GP-Injection | p Values | ||||
---|---|---|---|---|---|---|---|
8 h | 12 h | 8 h | 12 h | Time (T) | Injection Treatment (IT) | T × IT | |
WBSF (N) | 47.50 ± 4.11 a | 43.61 ± 3.56 a | 26.51 ± 3.18 b | 12.22 ± 1.17 c | 0.329 | 0.003 | 0.006 |
Hardness (N) | 29.74 ± 1.54 a | 25.87 ± 1.53 a | 12.98 ± 2.50 b | 6.97 ± 1.77 b | 0.135 | 0.001 | 0.593 |
Cohesiveness (N/mm2) | 0.42 ± 0.05 a | 0.25 ± 0.05 b | 0.21 ± 0.07 b | 0.16 ± 0.05 b | 0.042 | 0.045 | 0.342 |
Adhesiveness (N·s) | −0.02 ± 0.01 a | −0.01 ± 0.01 a | −0.02 ± 0.01 a | −0.01 ± 0.01 a | 0.439 | 0.959 | 0.652 |
Springiness (cm) | 0.49 ± 0.01 a | 0.45 ± 0.01 a | 0.50 ± 0.03 a | 0.36 ± 0.02 b | 0.123 | 0.769 | 0.057 |
Chewiness (N·s) | 5.63 ± 2.323 a | 1.82 ± 0.75 ab | 0.68 ± 0.46 bc | 0.19 ± 0.09 c | 0.097 | 0.033 | 0.893 |
Gumminess (N/cm2) | 12.62 ± 1.16 a | 6.92 ± 1.16 b | 2.12 ± 1.89 bc | 1.44 ± 1.34 c | 0.026 | 0.006 | 0.243 |
Injection Treatment | Cooking Time | ||
---|---|---|---|
8 h | 12 h | ||
Cooking loss % | Control | 32.5 a ± 0.83 | 34.5 b ± 0.70 |
GP-injected | 39.2 c ± 0.83 | 41.7 c ± 0.66 |
Injection Treatment | Cooking Time | ||
---|---|---|---|
8 h | 12 h | ||
Soluble collagen (mg soluble collagen/g raw meat) | Control | 3.72 ± 0.43 a | 5.00 ± 0.57 b |
GP-injection | 14.05 ± 2.75 c | 17.72 ± 3.17 c |
Physical Variables | Canonical x-Loadings | Sensory Variables | Canonical y-Loadings |
---|---|---|---|
WBSF | −0.537 | Beef flavour | −0.321 |
Hardness | −0.411 | Metallic flavour | −0.392 |
Adhesiveness | 0.151 | Ginger flavour | 0.364 |
Springiness | 0.245 | Juiciness | 0.014 |
Cohesiveness | −0.009 | Tenderness | 0.440 |
Gumminess | 2.972 | No of chews | 0.045 |
Chewiness | −3.026 | Texture consistency | −0.421 |
TWC | 0.074 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqvi, Z.B.; Thomson, P.C.; Campbell, M.A.; Latif, S.; Legako, J.F.; McGill, D.M.; Wynn, P.C.; Friend, M.A.; Warner, R.D. Sensory and Physical Characteristics of M. biceps femoris from Older Cows Using Ginger Powder (Zingibain) and Sous Vide Cooking. Foods 2021, 10, 1936. https://doi.org/10.3390/foods10081936
Naqvi ZB, Thomson PC, Campbell MA, Latif S, Legako JF, McGill DM, Wynn PC, Friend MA, Warner RD. Sensory and Physical Characteristics of M. biceps femoris from Older Cows Using Ginger Powder (Zingibain) and Sous Vide Cooking. Foods. 2021; 10(8):1936. https://doi.org/10.3390/foods10081936
Chicago/Turabian StyleNaqvi, Zahra B., Peter C. Thomson, Michael A. Campbell, Sajid Latif, Jerrad F. Legako, David M. McGill, Peter C. Wynn, Michael A. Friend, and Robyn D. Warner. 2021. "Sensory and Physical Characteristics of M. biceps femoris from Older Cows Using Ginger Powder (Zingibain) and Sous Vide Cooking" Foods 10, no. 8: 1936. https://doi.org/10.3390/foods10081936
APA StyleNaqvi, Z. B., Thomson, P. C., Campbell, M. A., Latif, S., Legako, J. F., McGill, D. M., Wynn, P. C., Friend, M. A., & Warner, R. D. (2021). Sensory and Physical Characteristics of M. biceps femoris from Older Cows Using Ginger Powder (Zingibain) and Sous Vide Cooking. Foods, 10(8), 1936. https://doi.org/10.3390/foods10081936