Effects of Light Exposure, Bottle Colour and Storage Temperature on the Quality of Malvasia delle Lipari Sweet Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of Coloured Wine Bottles
2.2. Sampling
2.3. Analytical Parameters
2.4. HMF and 2-Furaldehyde
2.5. Total Phenols
2.6. Chemicals and Reagents
2.7. Statistical Analysis
3. Results and Discussion
3.1. Light Transmission Properties of Clear Glass Bottles
3.2. Effect of Light Exposure and Bottle Color on the Quality of Malvasia Delle Lipari Wine
3.3. Effect of Storage Temperature on Quality Changes of Malvasia Delle Lipari Wine
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Del Nobile, M.; Ambrosino, M.; Sacchi, R.; Masi, P. Design of Plastic Bottles for Packaging of Virgin Olive Oil. J. Food Sci. 2003, 68, 170–175. [Google Scholar] [CrossRef]
- Piergiovanni, L.; Limbo, S. The protective effect of film metallization against oxidative deterioration and discoloration of sensitive foods. Packag. Technol. Sci. 2004, 17, 155–164. [Google Scholar] [CrossRef]
- Licciardello, F.; Del Nobile, M.A.; Spagna, G.; Muratore, G. Scalping of ethyloctanoate and linalool from a model wine into plastic films. LWT 2009, 42, 1065–1069. [Google Scholar] [CrossRef]
- Aldave, L.; Almy, J.; Cabezudo, M.D.; Caceres, I.; Gonzales-Raurich, M.; Salvador, M.D. The shelf life of young white wines. In Shelf Life Studies of Foods and Beverages; Charalambous, G., Ed.; Elsevier: London, UK, 1993; pp. 923–943. [Google Scholar]
- Sanova-Savova, S.; Dimov, S.; Ribarova, F. Anthocyanins and Color Variables of Bulgarian Aged Red Wines. J. Food Compos. Anal. 2002, 15, 647–654. [Google Scholar] [CrossRef]
- Singleton, V.L. Oxygen with phenols and related reactions in musts, wines and model systems: Observations and practical implications. Am. J. Enol. Vitic. 1987, 38, 69–76. [Google Scholar]
- Cheynier, V.; Rigaud, J.; Souquet, J.M.; Barillére, J.M.; Moutounet, M. Effect of pomace contact and hyperoxidation on the phenolic composition and quality of Grenache and Chardonnay wines. Am. J. Enol. Vitic. 1989, 40, 36–42. [Google Scholar]
- Cheynier, V.; Rigaud, J.; Souquet, J.M.; Barillére, J.M.; Moutounet, M. Must browning in relation to the behaviour of phenolic compounds during oxidation. Am. J. Enol. Vitic. 1990, 41, 346–349. [Google Scholar]
- Sims, C.; Morris, J. The effect of pH, sulfur dioxide, storage time and temperature on the color and stability of red muscadine grape wine. Am. J. Enol. Vitic. 1984, 35, 35–39. [Google Scholar]
- Gomez-Plaza, E.; Minano, A.; Lopez-Roca, J.M. Comparison of chromatic properties, stability and antioxidant capacity of anthocyanin-based aqueous extracts from grape pomace obtained from different vinification methods. Food Chem. 2006, 97, 87–94. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Merida, J. Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines. Food Chem. 2014, 146, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Recamales, A.F.; Sarago, A.; Gonzalez-Miret, M.L.; Hernanz, D. The effect of time and storage conditions and colour of white wine. Food Res. Int. 2006, 39, 220–229. [Google Scholar] [CrossRef]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Unal, U. Effect of bottle colour and storage conditions on browning of orange wine. Nahrung/Food 2002, 46, 64–67. [Google Scholar] [CrossRef]
- Benitez, P.; Castro, R.; Garcia Barroso, C. Changes in the Polyphenolic and Volatile Contents of “Fino” Sherry Wine Exposed to Ultraviolet and Visible Radiation during Storage. J. Agric. Food Chem. 2003, 51, 6482–6487. [Google Scholar] [CrossRef]
- Dias, D.A.; Smith, T.A.; Ghiggino, K.P.; Scollary, G.R. The role of light, temperature and wine bottle colour on pigment enhancement in white wine. Food Chem. 2012, 135, 2934–2941. [Google Scholar] [CrossRef]
- Maury, C.; Clark, A.C.; Scollary, G.R. Determination of the impact of bottle colour and phenolic concentration on pigment development in white wine stored under external conditions. Anal. Chim. Acta 2010, 660, 81–86. [Google Scholar] [CrossRef]
- Revi, M.; Badeka, A.; Kontakos, S.; Kontominas, M.G. Effect of packaging material on enological parameters and volatile compounds of dry white wine. Food Chem. 2014, 152, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.C.; Dias, D.A.; Smith, T.A.; Ghiggino, K.P.; Scollary, G.R. Iron (III) Tartrate as a potential precursor of light-induced oxidative degradation of white wine: Studies in a model wine system. J. Agric. Food Chem. 2011, 59, 3575–3581. [Google Scholar] [CrossRef]
- D. P. R. 20.09. 1973. Assignment of the Denomination of Controlled Origin of “Malvasia delle Lipari” Wine Official Gazzette of the Republic of Italy n° 28, (30.01.1974). Available online: http://catalogoviti.politicheagricole.it/scheda_denom.php?t=dsc&q=2175 (accessed on 22 January 2018).
- Muratore, G.; Nicolosi Asmundo, C.; Lanza, C.M.; Caggia, C.; Licciardello, F.; Restuccia, C. Influence of Saccharomyces uvarum on volatile acidity, aromatic and sensory profile of Malvasia delle Lipari wine. Food Technol. Biotech. 2007, 45, 101–106. [Google Scholar]
- Belitz, H.B.; Grosch, W.; Schieberle, P. Food Chemistry, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 258–282. [Google Scholar]
- Rada-Mendoza, M.; Olano, A.; Villamiel, M. Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chem. 2002, 79, 513–516. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Sanz, M.L.; Olano, A.; Villamiel, M. Study on nonenzymatic browning in cookies, crackers and breakfast cereals by maltulose and furosine determination. Food Chem. 2004, 85, 605–609. [Google Scholar] [CrossRef]
- Arena, E.; Fallico, B.; Maccarone, E. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem. 2001, 74, 423–427. [Google Scholar] [CrossRef]
- Arena, E.; Muccilli, S.; Mazzaglia, A.; Giannone, V.; Brighina, S.; Rapisarda, P.; Fallico, B.; Allegra, M.; Spina, A. Development of Durum Wheat Breads Low in Sodium Using a Natural Low-Sodium Sea Salt. Foods 2020, 9, 752. [Google Scholar] [CrossRef] [PubMed]
- Zappalà, M.; Fallico, B.; Arena, E.; Verzera, A. Methods for the determination of HMF in honey: A comparison. Food Control 2005, 16, 273–277. [Google Scholar] [CrossRef]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Rapisarda, P.; Fallico, B.; Arena, E. Partial Replacement of NaCl in Bread from Durum Wheat (Triticum turgidum L. subsp. durum Desf.) with KCl and Yeast Extract: Evaluation of Quality Parameters During Long Storage. Food Bioprocess Technol. 2015, 8, 1089–1101. [Google Scholar] [CrossRef]
- Spina, A.; Brighina, S.; Muccilli, S.; Mazzaglia, A.; Fabroni, S.; Fallico, B.; Rapisarda, P.; Arena, E. Wholegrain Durum Wheat Bread Fortified With Citrus Fibers: Evaluation of Quality Parameters During Long Storage. Front. Nutr. 2019, 6, 13. [Google Scholar] [CrossRef][Green Version]
- Pereira, V.; Albuquerque, F.M.; Ferreira, A.C.; Cacho, J.; Marques, J.C. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef]
- Cutzach, I.; Chatonnet, P.; Henry, R.; Pons, M.; Dubourdieu, D. Etude de l’arome des vins doux naturels non muscatés. 2eme Partie: Dosage de certains composés volatils intervenant dans l’arome des vins doux naturels au cours de leur vieillissement. J. Int. Scie de la Vigne et du Vin 1998, 34, 211–221. (In French) [Google Scholar]
- Lee, Y.C.; Shlyankevich, M.; Jeong, H.K.; Douglas, J.S.; Surh, Y.J. Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylicsulfuric acid ester. Biochem. Biophys. Res. Commun. 1995, 209, 996–1002. [Google Scholar] [CrossRef]
- Surh, Y.J.; Liem, A.; Miller, J.A.; Tannenbaum, S.R. 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxymethylfurfural. Carcinogenesis 1994, 15, 2375–2377. [Google Scholar] [CrossRef] [PubMed]
- Durling, L.J.K.; Busk, L.; Hellman, B.E. Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem. Toxicol. 2009, 47, 880–884. [Google Scholar] [CrossRef]
- Li, Y.-H.; Lu, X.Y. Investigation on the origin of 5-HMF in Shengmaiyin decoction by RP-HPLC method. J. Zhejiang Univ. Sci. B 2005, 6, 1015–1021. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rizzo, V.; Torri, L.; Licciardello, F.; Piergiovanni, L.; Muratore, G. Quality changes of extra virgin olive oil packaged in coloured PET bottles stored under different lighting conditions. Packag. Technol. Sci. 2014, 27, 437–448. [Google Scholar] [CrossRef]
- OIV International Organization of Vine and Wine. Compendium of International Methods of Analysis of Wines and Musts (2 vol.). Available online: https://www.oiv.int/en/technical-standards-and-documents/methods-of-analysis/compendium-of-international-methods-of-analysis-of-wines-and-musts-2-vol (accessed on 22 January 2018).
- Di Stefano, R.; Cravero, M.C.; Gentilini, N. Metodo per lo studio dei polifenoli nei vini. L’Enotecnico 1989, Maggio, 83–89. [Google Scholar]
- Hopfer, H.; Ebeler, S.E.; Heymann, H. The combined effects of storage temperature and packaging type on the sensory and chemical properties of Chardonnay. J. Agric. Food Chem. 2012, 60, 10743–10754. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Dalledonne, S.; Scholz, M.; Catapano, A.; Carlina, S.; Mattivi, F. White wine light-strike fault: A comparison between flint and green glass bottles under the typical supermarket conditions. Food Packag. Shelf Life 2020, 24, 100492. [Google Scholar] [CrossRef]
- Díaz, I.; Castro, R.I.; Ubeda, C.; Loyola, R.; Laurie, V.F. Combined effects of sulfur dioxide, glutathione and light exposure on the conservation of bottled Sauvignon blanc. Food Chem. 2021, 356, 129689. [Google Scholar] [CrossRef] [PubMed]
- Refsgaard, H.H.; Brockhoff, P.B.; Poll, L.; Olsen, C.E.; Rasmussen, M.; Skibsted, L.H. Light-induced sensory and chemical changes in aquavit. LWT 1995, 28, 425–435. [Google Scholar] [CrossRef]
- Guerrini, L.; Pantani, O.; Politi, S.; Angeloni, G.; Masella, P.; Calamai, L.; Parenti, A. Does bottle color protect red wine from photo-oxidation? Packag. Technol. Sci. 2019, 32, 259–265. [Google Scholar] [CrossRef]
- Muratore, G.; Licciardello, F.; Restuccia, C.; Puglisi, M.L.; Giudici, P. Role of Different Factors Affecting the Formation of 5-Hydroxymethyl-2-furancarboxaldehyde in Heated Grape Must. J. Agric. Food Chem. 2006, 54, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Cutzach, I.; Chatonnet, P.; Dubourdieu, D. Study of the formation mechanisms of some volatile compounds during the aging of sweet fortified wines. J. Agric. Food Chem. 1999, 47, 2837–2846. [Google Scholar] [CrossRef] [PubMed]
- Fracassetti, D.; Di Canito, A.; Bodon, R.; Messina, N.; Vigentini, I.; Foschino, R.; Tirelli, A. Light-struck taste in white wine: Reaction mechanisms, preventive strategies and future perspectives to preserve wine quality. Trends Food Sci. Technol. 2021, 112, 547–558. [Google Scholar] [CrossRef]
- Benucci, I. Impact of post-bottling storage conditions on colour and sensory profile of a rosé sparkling wine. LWT 2019, 118, 108732. [Google Scholar] [CrossRef]
- Jung, R.; Kumar, K.; Patz, C.; Rauhut, D.; Tarasov, A.; Schüßler, C. Influence of transport temperature profiles on wine quality. Food Packag. Shelf Life 2021, 29, 100706. [Google Scholar] [CrossRef]
- Lan, H.; Li, S.; Yang, J.; Li, J.; Yuan, C.; Guo, A. Effects of light exposure on chemical and sensory properties of storing Meili Rose wine in colored bottles. Food Chem. 2021, 345, 128854. [Google Scholar] [CrossRef] [PubMed]
Storage Conditions | Bottle Color | Storage Time | |
---|---|---|---|
CWF Lamp | Temperature | ||
n = 4 | n = 4 | n = 3 | n = 6 |
0 (control) | 25 °C (control) | Colorless | 30 |
1 | 30 | Green | 60 |
4 | 35 | Amber | 90 |
6 | 40 | 120 | |
150 | |||
180 |
Storage Condition | Illuminance (lux) | UVA (W m−2) | UVB (W m−2) |
---|---|---|---|
1 CWF lamp | 2671 ± 9 | 101.4−3 ± 0.1 | 10.71−3 ± 0.03 |
4 CWF lamps | 9028 ± 16 | 284.5−3 ± 0.6 | 31.53−3 ± 0.06 |
6 CWF lamps | 16127 ± 13 | 478.2−3 ± 0.8 | 53.91−3 ± 0.07 |
Time (Days) | CWF Lamp | Bottle Color | TP (mg L−1) | C | h | L* | a* | b* | HMF (mg L−1) | 2F (mg L−1) |
---|---|---|---|---|---|---|---|---|---|---|
30 | 1 | A | 163.90 ± 3.40 mn | 18.76 ±0.3 de | −0.11 ± 0.02 c | 94.22 ± 0.44 bc | −2.14 ± 0.06 b | 18.63 ± 0.07 de | 2.08 ± 0.07 g | 1.02 ± 0.04 f |
G | 168.62 ± 0.88 l | 18.06 ± 1.1 e | −0.09 ± 0.01 cd | 93.78 ± 0.55 bcd | −1.62 ± 0.00 a | 17.99 ± 0.15 e | 2.23 ± 0.07 g | 1.24 ± 0.08 ef | ||
C | 158.31 ± 0.46 o | 17.41 ± 0.4 e | −0.12 ± 0.01 bc | 94.60 ± 0.69 bc | −2.01 ± 0.04 b | 17.29 ± 0.38 e | 1.89 ± 0.08 gh | 1.32 ± 0.09 e | ||
4 | A | 179.40 ± 2.25 i | 19.97 ± 0.4 d | −0.12 ± 0.2 bc | 93.69 ± 0.92 bcd | −2.38 ± 0.08 bc | 19.82 ± 1.18 d | 4.62 ± 0.05 ef | 1.57 ± 0.09 d | |
G | 160.94 ± 1.33 m | 19.06 ± 0.0 d | −0.11 ± 0.01 c | 95.04 ± 2.56 b | −2.00 ± 0.20 b | 18.96 ± 0.68 de | 3.51 ± 0.08 fg | 1.90 ± 0.09 c | ||
C | 144.06 ± 2.01 p | 18.79 ± 1.4 de | −0.16 ± 0.3 ab | 94.79 ± 1.32 bc | −3.00 ± 0.42 bc | 18.55 ± 1.66 de | 3.75 ± 0.07 fg | 1.50 ± 0.07 ed | ||
6 | A | 193.26 ± 4.21 gh | 19.81 ± 2.0 d | −0.11 ± 0.01 c | 93.23 ± 0.34 bcd | −2.07 ± 0.01 b | 19.70 ± 0.49 d | 4.23 ± 0.05 f | 1.85 ± 0.09 c | |
G | 190.31 ± 1.56 g | 19.50 ± 1.0 d | −0.15 ± 0.1 b | 98.64 ± 6.29 a | −2.85 ± 0.42 bc | 19.29 ± 0.36 d | 4.55 ± 0.08 f | 1.61 ± 0.07 d | ||
C | 192.51 ± 2.06 gh | 18.13 ± 0.2 de | −0.16 ± 0.1 ab | 94.73 ± 0.51 bc | −2.95 ± 0.39 bc | 17.89 ± 0.54 e | 3.98 ± 0.07 efg | 1.34 ± 0.09 e | ||
60 | 1 | A | 190.58 ± 0.94 g | 22.33 ± 0.1 c | −0.17 ± 0.2 ab | 94.31 ± 0.02 bc | −3.75 ± 0.01 cd | 22.01 ± 0.00 c | 4.26 ± 0.47 f | 1.06 ± 0.01 f |
G | 189.52 ± 1.10 g | 21.74 ± 0.1 cd | −0.16 ± 0.01 ab | 94.23 ± 0.00 bc | −3.41 ±0.00 c | 21.47 ± 0.01 cd | 4.28 ± 0.20 f | 1.62 ± 0.33 d | ||
C | 225.34 ± 2.95 c | 21.02 ± 2.3 cd | −0.18 ± 0.0.14 a | 94.79 ± 0.01 bc | −3.70 ± 0.01 cd | 20.70 ± 0.02 cd | 3.68 ± 0.12 fg | 1.70 ± 0.22 cd | ||
4 | A | 205.22 ± 4.21 f | 24.83 ± 0.4 bc | −0.20 ± 0.1 a | 95.29 ± 0.14 b | −4.90 ± 0.02 de | 24.34 ± 0.01 bc | 18.56 ± 0.37 c | 2.03 ± 0.26 bc | |
G | 210.42 ± 3.05 e | 24.61 ± 2.1 bc | −0.18 ± 0.1 a | 94.54 ± 0.10 bc | −4.25 ± 0.01 d | 24.24 ± 0.00 bc | 12.65 ± 2.24 cd | 2.65 ± 0.04 bc | ||
C | 220.26 ± 0.45 d | 22.83 ± 0.1 c | −0.19 ± 0.02 a | 95.18 ± 0.10 b | −4.31 ± 0.31 d | 22.42 ± 0.30 c | 14.01 ± 0.93 cd | 2.23 ± 0.04 bc | ||
6 | A | 210.22 ± 2.01 e | 24.03 ± 0.4 bc | −0.18 ± 0.1 a | 94.62 ± 0.01 bc | −4.19 ± 0.00 d | 23.32 ± 0.02 bc | 11.37 ± 1.04 cd | 2.92 ± 0.53 ab | |
G | 219.75 ± 1.32 de | 22.98 ± 0.2 c | −0.18 ± 0.1 a | 94.70 ± 0.00 bc | −4.15 ± 0.01 d | 22.70 ± 0.00 c | 10.44 ± 0.71 d | 2.32 ± 0.10 b | ||
C | 197.33 ± 0.47 fg | 25.25 ± 1.4 bc | −0.19 ± 0.1 a | 95.11 ± 0.11 b | −4.34 ± 0.00 d | 23.56 ± 0.01 bc | 10.80 ± 0.05 d | 1.83 ± 0.04 c | ||
90 | 1 | A | 236.10 ± 0.70 b | 29.59 ± 0.4 ab | −0.11 ± 0.1 c | 91.89 ± 0.21 d | −3.20 ± 0.23 cd | 29.42 ± 0.11 ab | 7.81 ± 1.21 e | 1.70 ± 0.09 cd |
G | 216.32 ± 1.74 de | 26.28 ± 0.1 b | −0.15 ± 0.1 b | 93.49 ± 0.20 bcd | −3.96 ± 0.12 cd | 25.98 ± 0.20 b | 9.92 ± 0.87 de | 1.81 ± 0.02 c | ||
C | 297.54 ± 0.40 a | 26.64 ± 0.2 b | −0.14 ± 0.1 bc | 93.35 ± 0.20 bcd | −3.76 ± 0.14 cd | 26.37 ± 0.41 b | 8.35 ± 0.47 de | 1.68 ± 0.18 cd | ||
4 | A | 227.30 ± 3.74 c | 32.05 ± 0.4 a | −0.16 ± 0.1 ab | 93.08 ±0.22 bcd | −4.95 ±0.11 de | 31.66 ± 0.30 ab | 26.82 ± 0.87 b | 3.26 ± 0.05 a | |
G | 228.84 ± 2.31 c | 29.94 ± 0.5 ab | −0.15 ± 0.01 b | 93.01 ± 0.30 bcd | −4.31 ± 0.10 d | 29.62 ± 0.21 ab | 27.35 ± 0.38 b | 2.97 ± 0.21 ab | ||
C | 236.14 ± 1.08 b | 35.94 ± 1.4 a | −0.04 ± 0.01 d | 88.12 ± 0.43 de | −1.60 ±0.00 a | 35.90 ± 0.20 a | 26.58 ± 0.85 b | 3.58 ± 0.15 a | ||
6 | A | 224.31 ± 0.85 cd | 30.24 ± 2.1 ab | −0.16 ± 0.1 ab | 93.39 ± 0.51 bcd | −4.84 ± 0.31 de | 29.85 ± 1.10 ab | 36.43 ± 0.97 a | 3.00 ± 0.10 ab | |
G | 220.57 ± 2.45 d | 28.03 ± 0.2 ab | −0.15 ± 0.1 b | 92.78 ± 0.20 d | −4.26 ± 0.30 d | 27.70 ± 1.00 b | 33.74 ± 0.10 ab | 2.82 ± 0.06 b | ||
C | 204.18 ± 1.04 f | 25.39 ± 0.4 bc | −0.17 ± 0.1 ab | 94.26 ± 0.90 bc | −4.35 ± 0.33 d | 25.01 ± 1.5 b | 30.75 ± 0.90 ab | 3.04 ± 0.18 ab |
5-Hydroxymethylfurfural | ||||||
1 CWF Lamp | 4 CWF Lamps | 6 CWF Lamps | ||||
k (min) | R2 | k (min) | R2 | k (min) | R2 | |
Control | 0.0116 | 0.91296 | 0.0116 | 0.91296 | 0.0116 | 0.91296 |
Amber | 0.0164 | 0.95525 | 0.0363 | 0.98405 | 0.0316 | 0.99903 |
Green | 0.0183 | 0.95012 | 0.0333 | 0.98975 | 0.0315 | 0.99805 |
Colorless | 0.016 | 0.90128 | 0.0333 | 0.98967 | 0.0312 | 0.99953 |
2-Furaldehyde | ||||||
1 CWF Lamp | 4 CWF Lamps | 6 CWF Lamps | ||||
k (min) | R2 | k (min) | R2 | k (min) | R2 | |
Control | 0.0044 | 0.7529 | 0.0044 | 0.7529 | 0.0044 | 0.7529 |
Amber | 0.0048 | 0.9999 | 0.0115 | 0.9855 | 0.013 | 0.8765 |
Green | 0.0056 | 0.967 | 0.0125 | 0.8969 | 0.0111 | 0.9769 |
Colorless | 0.0054 | 0.8776 | 0.0125 | 0.9878 | 0.0101 | 0.9429 |
Time (Days) | T °C | HMF mg L−1 | 2F mg L−1 | TP mg L−1 | C | h | L* |
---|---|---|---|---|---|---|---|
90 | 30 | 8.69 ± 1.10 h | 1.73 ± 0.07 e | 259.12 ± 1.62 bc | 31.95 ± 0.70 g | −0.14 ± 0.00 a | 92.15 ± 0.27 a |
35 | 26.92 ± 0.40 fgh | 3.27 ± 0.30 cde | 263.92 ± 9.23 bc | 37.61 ± 2.97 de | −0.12 ± 0.00 bc | 91.13 ± 0.49 a | |
40 | 33.64 ± 2.84 fg | 2.95 ± 0.12 de | 250.02 ± 9.06 c | 35.75 ± 3.46 e | −0.12 ±0.00 bc | 90.88 ± 0.86 ab | |
120 | 30 | 17.60 ± 0.56 gh | 2.10 ±0.54 e | 257.62 ± 26.1 bc | 33.19 ± 0.15 ef | −0.13 ± 0.01 ab | 91.98 ± 0.49 a |
35 | 55.86 ± 2.19 de | 3.71 ± 0.33 cde | 249.62 ± 10.6 cd | 41.82 ± 0.41 c | −0.10 ± 0.01 cd | 90.00 ± 0.39 ab | |
40 | 68.23 ±3.50 d | 4.71 ± 0.31 bcd | 284.77 ± 0.90 a | 38.47 ± 0.31 d | −0.11 ± 0.01 c | 90.13 ± 1.33 ab | |
150 | 30 | 29.70 ± 1.18 fg | 1.88 ± 0.19 e | 231.00 ± 4.53 ef | 34.62 ± 1.11 ef | −0.13 ± 0.02 ab | 91.64 ± 0.48 a |
35 | 101.43 ± 3.0 c | 5.24 ± 0.45 abc | 234.76 ± 30.48 e | 50.58 ± 1.94 ab | −0.06 ± 0.02 e | 87.89 ± 1.13 bc | |
40 | 107.25 ± 9.7 bc | 5.07 ± 0.32 abcd | 246.72 ± 3.44 cd | 41.04 ± 4.32 c | −0.09 ± 0.00 d | 89.86 ± 0.28 b | |
30 | 37.13 ± 1.86 ef | 2.02 ± 0.31 e | 238.42 ± 10.37 d | 40.76 ± 7.42 cd | −0.06 ± 0.11 e | 87.24 ± 8.10 bc | |
180 | 35 | 124.49 ± 15.54 b | 7.17 ± 1.76 a | 269.92 ± 16.60 ab | 55.57 ± 5.52 a | 0.05 ± 0.12 e | 76.26 ± 15.5 d |
40 | 152.81 ± 12.18 a | 6.32 ± 1.69 ab | 239.00 ± 6.00 d | 41.67 ± 4.92 c | −0.10 ± 0.02 cd | 89.60 ± 1.34 b |
HMF | 2-Furaldehyde | C | h | L* | a* | b* | ||
---|---|---|---|---|---|---|---|---|
Time (days) | Correlation coefficient | 0.518 * | 0.497 | 0.626 * | 0.718 ** | −0.777 * | 0.791 ** | 0.626 * |
Sig. (2-tailed) | 0.084 | 0.101 | 0.029 | 0.009 | 0.003 | 0.002 | 0.029 | |
T °C | Correlation coefficient | 0.798 ** | 0.739 ** | 0.414 | 0.313 | −0.0325 | 0.312 | 0.414 |
Sig. (2-tailed) | 0.002 | 0.006 | 0.181 | 0.322 | 0.302 | 0.324 | 0.181 | |
HMF | Correlation coefficient | 0.972 ** | ||||||
Sig. (2-tailed) | 0.000 | |||||||
C | Correlation coefficient | 0.919 ** | −0.902 ** | 0.804 ** | 1.000 ** | |||
Sig. (2-tailed) | . | 0.000 | 0.000 | 0.002 | ||||
h | Correlation coefficient | −0.982 ** | 0.942 ** | 0.919 ** | ||||
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | |||||
L* | Correlation coefficient | −0.951 ** | −0.902 ** | |||||
Sig. (2-tailed) | 0.000 | 0.000 | ||||||
a* | Correlation coefficient | −0.804 ** | ||||||
Sig. (2-tailed) | 0.002 |
HMF | 2F | ||||||
---|---|---|---|---|---|---|---|
T (°C) | k days−1 | R2 | Ea kJ mol−1 (kcal mol−1) | T (°C) | k days−1 | R2 | Ea kJ mol−1 (kcal mol−1) |
30 °C | 0.0144 | 0.9538 | 11.7 (2.8) | 30 °C | 0.0038 | 0.6275 | 66.4 (15.9) |
35 °C | 0.0150 | 0.9448 | 35 °C | 0.0070 | 0.9010 | ||
40 °C | 0.0167 | 0.9872 | 40 °C | 0.0088 | 0.9488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arena, E.; Rizzo, V.; Licciardello, F.; Fallico, B.; Muratore, G. Effects of Light Exposure, Bottle Colour and Storage Temperature on the Quality of Malvasia delle Lipari Sweet Wine. Foods 2021, 10, 1881. https://doi.org/10.3390/foods10081881
Arena E, Rizzo V, Licciardello F, Fallico B, Muratore G. Effects of Light Exposure, Bottle Colour and Storage Temperature on the Quality of Malvasia delle Lipari Sweet Wine. Foods. 2021; 10(8):1881. https://doi.org/10.3390/foods10081881
Chicago/Turabian StyleArena, Elena, Valeria Rizzo, Fabio Licciardello, Biagio Fallico, and Giuseppe Muratore. 2021. "Effects of Light Exposure, Bottle Colour and Storage Temperature on the Quality of Malvasia delle Lipari Sweet Wine" Foods 10, no. 8: 1881. https://doi.org/10.3390/foods10081881