Effects of Algae Meal Supplementation in Feedlot Lambs with Competent Reticular Groove Reflex on Growth Performance, Carcass Traits and Meat Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Growth Performance and Carcass Traits
3.2. Meat Quality Characteristics and Oxidative Stability
4. Discussion
4.1. Growth Performance and Carcass Characteristics
4.2. Meat Quality Characteristics and Oxidative Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McAfee, A.J.; McSorley, E.M.; Cuskelly, G.J.; Moss, B.W.; Wallace, J.M.W.; Bonham, M.P.; Fearon, A.M. Red meat consumption: An overview of the risks and benefits. Meat Sci. 2010, 84, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Avilés Ramírez, C.; Peña Blanco, F.; Horcada Ibáñez, A.; Núñez Sánchez, N.; Requena Domenech, F.; Guzmán Medina, P.; Martínez Marín, A.L. Effects of concentrates rich in by-products on growth performance, carcass characteristics and meat quality traits of light lambs. Anim. Prod. Sci. 2019, 59, 593–599. [Google Scholar] [CrossRef]
- Cooper, S.L.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. J. Anim. Sci. 2004, 82, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.T.; Álvarez, I.; De la Fuente, J.; Sañudo, C.; Campo, M.M.; Oliver, M.A.; Font i Furnols, M.; Montossi, F.; San Julián, R.; Nute, G.R.; et al. Fatty acid composition of meat from typical lamb production systems of Spain, United Kingdom, Germany and Uruguay. Meat Sci. 2005, 71, 256–263. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Butler, K.L.; Pearce, K.M.; Mortimer, S.I.; Pethick, D.W.; Ball, A.J.; Hopkins, D.L. Sources of variation of health claimable long chain omega-3 fatty Australian lamb slaughtered at similar weights. Meat Sci. 2014, 96, 1095–1103. [Google Scholar] [CrossRef]
- Elizalde, F.; Hepp, C.; Reyes, C.; Tapia, M.; Lira, R.; Morales, R.; Sales, F.; Catrileo, A.; Silva, M. Growth, Carcass and Meat Characteristics of grass-fed lambs weaned from extensive rangeland and grazed on permanent pastures or alfalfa. Animals 2021, 11, 52. [Google Scholar] [CrossRef]
- Burnett, V.F.; Jacobs, J.L.; Norng, S.; Ponnampalam, E.N. Feed intake, liveweight gain and carcass traits of lambs offered pelleted annual pasture hay supplemented with flaxseed (Linum usitatissimum) flakes or algae (Schizochytrium sp.). Anim. Prod. Sci. 2017, 57, 877–883. [Google Scholar] [CrossRef]
- De la Fuente-Vázquez, J.; Díaz-Chirón, M.T.; Pérez-Marcos, C.; Cañeque-Martínez, V.; Sánchez-González, C.I.; Álvarez-Acero, I.; Fernández-Bermejo, C.; Rivas-Cañedo, A.; Lauzurica-Gómez, S. Linseed, microalgae or fish oil dietary supplementation affects performance and quality characteristics of light lambs. Span. J. Agric. Res. 2014, 12, 436–447. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E.O. Supplementation with plant-derived oils rich in omega-3 polyunsaturated fatty acids for lamb production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef]
- Díaz, M.T.; Pérez, C.; Sánchez, C.I.; Lauzurica, S.; Cañeque, V.; González, C.; De La Fuente, J. Feeding microalgae increases omega 3 fatty acids of fat deposits and muscles in light lambs. J. Food Compos. Anal. 2017, 56, 115–123. [Google Scholar] [CrossRef]
- Meale, S.J.; Chaves, A.V.; He, M.L.; McAllister, T.A. Dose-response of supplementing marine algae (Schizochytrium sp.) on production performance, fatty acid profiles, and wool parameters of growing lambs. J. Anim. Sci. 2014, 92, 2202–2213. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Burnett, V.F.; Norng, S.; Hopkins, D.L.; Plozza, T.; Jacobs, J.L. Muscle antioxidant (vitamin E) and major fatty acid groups, lipid oxidation and retail colour of meat from lambs fed a roughage based diet with flaxseed or algae. Meat Sci. 2016, 111, 154–160. [Google Scholar] [CrossRef]
- De Lima Valença, R.; da Silva Sobrinho, A.G.; Borghi, T.H.; Meza, D.A.R.; de Andrade, N.; Silva, L.G.; Bezerra, L.R. Performance, carcass traits, physicochemical properties and fatty acids composition of lamb’s meat fed diets with marine microalgae meal (Schizochytrium sp.). Livest. Sci. 2021, 243, 104387. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; de la Fuente, M.A.; Peña Blanco, F.; Nuñez-Sánchez, N.; Requena Domenech, F.; Martínez Marín, A.L. Feeding algae meal to feedlot lambs with competent reticular groove reflex increases omega-3 fatty acids in meat. Foods 2021, 10, 366. [Google Scholar] [CrossRef]
- Dobarganes García, C.; Pérez Hernández, M.; Cantalapiedra, G.; Salas, J.M.; Merino, J.A. Bypassing the rumen in dairy ewes: The reticular groove reflex vs. calcium soap of olive fatty acids. J. Dairy Sci. 2005, 88, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Urrutia, O.; Mendizabal, J.A.; Insausti, K.; Soret, B.; Purroy, A.; Arana, A. Effects of addition of linseed and marine algae to the diet on adipose tissue development, fatty acid profile, lipogenic gene expression, and meat quality in lambs. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnampalam, E.N.; Butler, K.L.; Muir, S.K.; Plozza, T.E.; Kerr, M.G.; Brown, W.G.; Jacobs, J.L.; Knight, M.I. Lipid oxidation and colour stability of lamb and yearling meat (muscle Longissimus lumborum) from sheep supplemented with camelina-based diets after short-, medium-, and long-term storage. Antioxidants 2021, 10, 166. [Google Scholar] [CrossRef]
- Rant, W.; Radzik-Rant, A.; Świątek, M.; Niżnikowski, R.; Szymańska, Ż.; Bednarczyk, M.; Orłowski, E.; Morales-Villavicencio, A.; Ślęzak, M. The effect of aging and muscle type on the quality characteristics and lipid oxidation of lamb meat. Arch. Anim. Breed. 2019, 62, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz-Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Sañudo, C.; Muela, E.; Campo, M.M. Key factors involved in lamb quality from farm to fork in europe. J. Integr. Agric. 2013, 12, 1919–1930. [Google Scholar] [CrossRef]
- European Union. European Community Standards for the Classification of Light Lambs Carcasses, Brochure No. CM84-94-703-ES-D (L-2985); Publishing Bureau of the European Communities: Luxembourg, 1994. [Google Scholar]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L. A distillation method for the quantitative determination of malonaldehyde in rancid foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- European Union. Regulation (EU) No 1151/2012 of the European Parliament and of the Council for the Name ‘Cordero Manchego’ (PGI) (C 242/5); Official Journal of the European Union: Brussels, Belgium, 2019. [Google Scholar]
- Holman, B.W.B.; Kashani, A.; Malau-Aduli, A.E.O. Growth and body conformation responses of genetically divergent australian sheep to spirulina (Arthrospira platensis) supplementation. Am. J. Exp. Agric. 2012, 2, 160–173. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Clayton, E.H.; Lamb, T.A.; van de Ven, R.J.; Refshauge, G.; Kerr, M.J.; Bailes, K.; Lewandowski, P.; Ponnampalam, E.N. The impact of supplementing lambs with algae on growth, meat traits and oxidative status. Meat Sci. 2014, 98, 135–141. [Google Scholar] [CrossRef] [PubMed]
- El-Sabagh, M.R.; Abd Eldaim, M.; Mahboub, H.D.H.; Abdel-Daim, M. Effects of Spirulina platensis algae on growth performance, antioxidative status and blood metabolites in fattening lambs. J. Agric. Sci. 2014, 6, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Jaborek, J.R.; Zerby, H.N.; Moeller, S.J.; Fluharty, F.L. Effect of energy source and level, and sex on growth, performance, and carcass characteristics of lambs. Small Rumin. Res. 2017, 151, 117–123. [Google Scholar] [CrossRef]
- Peña, F.; Avilés, C.; Domenech, V.; González, A.; Martínez, A.; Molina, A. Effects of stress by unfamiliar sounds on carcass and meat traits in bulls from three continental beef cattle breeds at different ageing times. Meat Sci. 2014, 98, 718–725. [Google Scholar] [CrossRef]
- Mordenti, A.L.; Brogna, N.; Canestrari, G.; Bonfante, E.; Eusebi, S.; Mammi, L.M.E.; Giaretta, E.; Formigoni, A. Effects of breed and different lipid dietary supplements on beef quality. Anim. Sci. J. 2019, 90, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Silva Sobrinho, A.G.d.; Purchas, R.W.; Kadim, I.T.; Yamamoto, S.M. Características de qualidade da carne de ovinos de diferentes genótipos e idades ao abate. Rev. Bras. de Zootec. 2005, 34, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Vergara, H.; Gallego, L. Effect of electrical stunning on meat quality of lamb. Meat Sci. 2000, 56, 345–349. [Google Scholar] [CrossRef]
- Nieto, G.; Díaz, P.; Bañón, S.; Garrido, M.D. Dietary administration of ewe diets with a distillate from rosemary leaves (Rosmarinus officinalis L.): Influence on lamb meat quality. Meat Sci. 2010, 84, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Vergara, H.; Bórnez, R.; Linares, M.B. CO2 stunning procedure on Manchego light lambs: Effect on meat quality. Meat Sci. 2009, 83, 517–522. [Google Scholar] [CrossRef]
- Blanco, C.; Bodas, R.; Prieto, N.; Andrés, S.; López, S.; Giráldez, F.J. Concentrate plus ground barley straw pellets can replace conventional feeding systems for light fattening lambs. Small Rumin. Res. 2014, 116, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Ripoll, G.; Joy, M.; Muñoz, F. Use of dietary vitamin E and selenium (Se) to increase the shelf life of modified atmosphere packaged light lamb meat. Meat Sci. 2011, 87, 88–93. [Google Scholar] [CrossRef]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes-A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Warner, R.D.; Rosenvold, K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Anim. Prod. Sci. 2014, 54, 375–395. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science, 7th ed.; Lawrie, R.A., Ed.; Woodhead Publishing: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Shorthose, W.R.; Powell, V.H.; Harris, P.V. Influence of electrical-stimulation, cooling rates aging on the shear force values of chilled lamb. J. Food Sci. 1986, 51, 889–892. [Google Scholar] [CrossRef]
- Linares, M.B.; Bórnez, R.; Vergara, H. Effect of stunning systems on meat quality of Manchego suckling lamb packed under modified atmospheres. Meat Sci. 2008, 78, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Role of calpain system in meat tenderness: A review. Food Sci. Hum. Wellness 2018, 7, 196–204. [Google Scholar] [CrossRef]
- Tapp, W.N.; Yancey, J.W.S.; Apple, J.K. How is the instrumental color of meat measured? Meat Sci. 2011, 89, 1–5. [Google Scholar] [CrossRef]
- Camo, J.; Beltrán, J.A.; Roncalés, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Muiño, I.; Apeleo, E.; de la Fuente, J.; Pérez-Santaescolástica, C.; Rivas-Cañedo, A.; Pérez, C.; Díaz, M.T.; Cañeque, V.; Lauzurica, S. Effect of dietary supplementation with red wine extract or vitamin E, in combination with linseed and fish oil, on lamb meat quality. Meat Sci. 2014, 98, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Luciano, G.; Vasta, V.; Monahan, F.J.; López-Andrés, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Munir, N.; Sharif, N.; Naz, S.; Manzoor, F. Algae: A potent antioxidant source. Sky J. Microbiol. Res. 2013, 1, 22–31. [Google Scholar]
DIET | |||||
---|---|---|---|---|---|
Parameters 1 | NOALG | ALGCON | ALGMILK | SEM | p |
Initial body weight (kg) | 11.4 | 11.6 | 11.8 | 0.24 | 0.86 |
Final body weight (kg) | 25.0 | 25.7 | 25.4 | 0.31 | 0.78 |
Average feed intake (g) | 825 | 801 | 805 | 6.0 | 0.44 |
Average daily gain (g) | 326 | 335 | 324 | 4.2 | 0.33 |
Feed conversion ratio (kg/kg) | 2.54 | 2.43 | 2.49 | 0.030 | 0.13 |
Hot carcass weight (kg) | 10.5 ab | 11.4 a | 10.4 b | 0.16 | <0.05 |
Dressing 2 (%) | 42.2 ab | 44.6a | 40.9 b | 0.60 | <0.05 |
Carcass composition 3: | |||||
Muscle (%) | 60.8 a | 58.0 b | 59.8 ab | 0.38 | <0.05 |
Fat (%) | 14.5 b | 17.2 a | 15.2 ab | 0.39 | <0.05 |
Bone (%) | 24.8 | 24.8 | 24.9 | 0.19 | 0.95 |
Parameters 1 | Ageing Time (A) | Diet (D) | SEM | p | ||||
---|---|---|---|---|---|---|---|---|
NOALG | ALGCON | ALGMILK | D | A | D × A | |||
Meat characteristics | ||||||||
pH24 | 1 | 5.77 | 5.70 | 5.73 | 0.01 | 0.21 | 0.19 | 0.87 |
7 | 5.78 | 5.72 | 5.74 | |||||
Drip Loss (%) | 1 | 1.93 | 1.74 | 1.63 | 0.06 | 0.46 | 0.24 | 0.06 |
7 | 1.49 | 1.86 | 1.59 | |||||
Cooking Loss (%) | 1 | 21.5 | 22.7 | 20.6 | 0.96 | 0.33 | <0.01 | 0.19 |
7 | 19.9 | 12.7 | 15.0 | |||||
WBSF (kg/cm2) | 1 | 7.85 | 7.28 | 7.28 | 0.21 | 0.97 | <0.001 | 0.07 |
7 | 4.85 | 5.18 | 5.38 | |||||
L* | 1 | 37.4 | 38.7 | 38.8 | 0.34 | 0.30 | <0.001 | 0.87 |
7 | 41.6 | 42.7 | 42.6 | |||||
a* | 1 | 6.27 | 5.67 | 6.06 | 0.20 | 0.97 | <0.001 | 0.09 |
7 | 7.87 | 8.55 | 8.29 | |||||
b* | 1 | 16.4 | 16.7 | 16.7 | 0.32 | <0.05 | <0.001 | 0.18 |
7 | 10.0 | 11.1 | 11.1 | |||||
C* | 1 | 17.6 | 17.7 | 17.7 | 0.24 | 0.20 | <0.001 | 0.13 |
7 | 13.0 | 14.2 | 14.0 | |||||
h° | 1 | 69.3 | 71.5 | 70.2 | 1.09 | 0.54 | <0.001 | 0.44 |
7 | 50.7 | 51.6 | 52.5 | |||||
Oxidative stability | ||||||||
TBARS (mg MDA/kg) | 1 | 0.23 | 0.67 | 0.62 | 0.05 | 0.06 | <0.001 | 0.24 |
7 | 0.97 | 1.06 | 1.14 | |||||
DPPH fat (%) | 1 | 24.2 AB,a | 29.0 A,a | 17.5 B | 1.03 | <0.05 | <0.001 | <0.001 |
7 | 14.6 b | 15.0 b | 14.4 | |||||
DPPH water (%) | 1 | 6.28 | 6.76 | 6.63 | 0.31 | 0.78 | <0.01 | 0.96 |
7 | 4.20 | 4.58 | 4.81 | |||||
Polyphenols (mg GAE/100 g) | 1 | 3.72 | 3.93 | 4.34 | 0.07 | 0.19 | 0.92 | 0.21 |
7 | 4.10 | 3.91 | 4.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Sánchez, N.; Avilés Ramírez, C.; Peña Blanco, F.; Gómez-Cortés, P.; de la Fuente, M.Á.; Vioque Amor, M.; Horcada Ibáñez, A.; Martínez Marín, A.L. Effects of Algae Meal Supplementation in Feedlot Lambs with Competent Reticular Groove Reflex on Growth Performance, Carcass Traits and Meat Characteristics. Foods 2021, 10, 857. https://doi.org/10.3390/foods10040857
Núñez-Sánchez N, Avilés Ramírez C, Peña Blanco F, Gómez-Cortés P, de la Fuente MÁ, Vioque Amor M, Horcada Ibáñez A, Martínez Marín AL. Effects of Algae Meal Supplementation in Feedlot Lambs with Competent Reticular Groove Reflex on Growth Performance, Carcass Traits and Meat Characteristics. Foods. 2021; 10(4):857. https://doi.org/10.3390/foods10040857
Chicago/Turabian StyleNúñez-Sánchez, Nieves, Carmen Avilés Ramírez, Francisco Peña Blanco, Pilar Gómez-Cortés, Miguel Ángel de la Fuente, Montserrat Vioque Amor, Alberto Horcada Ibáñez, and Andrés Luis Martínez Marín. 2021. "Effects of Algae Meal Supplementation in Feedlot Lambs with Competent Reticular Groove Reflex on Growth Performance, Carcass Traits and Meat Characteristics" Foods 10, no. 4: 857. https://doi.org/10.3390/foods10040857
APA StyleNúñez-Sánchez, N., Avilés Ramírez, C., Peña Blanco, F., Gómez-Cortés, P., de la Fuente, M. Á., Vioque Amor, M., Horcada Ibáñez, A., & Martínez Marín, A. L. (2021). Effects of Algae Meal Supplementation in Feedlot Lambs with Competent Reticular Groove Reflex on Growth Performance, Carcass Traits and Meat Characteristics. Foods, 10(4), 857. https://doi.org/10.3390/foods10040857