Diversifying the Utilization of Maize at Household Level in Zambia: Quality and Consumer Preferences of Maize-Based Snacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Processing Maize Grain to Flour
2.3. Processing Soybean to Flour
2.4. Maize-Based Products
2.4.1. Processing Maize Finger (Kokoro)
2.4.2. Processing Maize Finger Fortified with Soy Flour
2.4.3. Processing Maize Chin-Chin
2.4.4. Processing Maize-Soy Chin-Chin
2.4.5. Processing Spicy Maize Finger (Kokoro)
2.5. Determination of Nutritional and Physico-Chemical Properties of Maize Snacks
- Moisture content determination: The pulverized samples were used to determine the moisture content using the method reported by Alamu et al. [25].
- Protein content determination: The Kjeldahl method was used to determine the protein content by multiplying the nitrogen value with a conversion factor of 6.25, as described by Alamu et al. [25].
- Crude fat content determination: The Soxhlet extraction method was used as described by Alamu et al. [27].
- Carbohydrate content: This was derived by calculating the difference, %CHO = 100—(sum of the percentages of moisture, ash, fat, protein, and crude fiber)
2.6. Determination of Antinutritional Properties of Maize Snacks
2.7. Determination of Functional Properties of Maize Snacks
- pH determination: This was done using 10 g of pulverized maize finger and maize chin-chin dispersed in 20 mL of deionized water to detect the suspension’s pH using a table-top pH meter [33].
- Bulk density determination: Bulk density was determined using the method recommended by AOAC [26]. The sample (7 g) was placed into a 50 mL graduated measuring cylinder and then tapped gently against the palm until a constant volume was obtained.
- Color parameters: Color measurements were performed on pulverized samples using a color meter. The color of products was expressed as the average of three L*, a*, and b* readings, where L* stands for brightness, a* redness, a* greenness, b* yellowness, and b* blueness. A white calibration plate was used to standardize the equipment before color measurements [34].
2.8. Sensory Evaluation and Consumer Preferences of Maize Snacks
2.9. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Properties of Deep-Fried Maize-Based Snacks
3.2. Demographic Information of the Respondents for Maize Products
3.3. Consumer Preference Ratings for Maize Chin-Chin and Maize Finger
3.4. Consumer Preference Ratings for Maize Chin-Chin Products by District and across Districts
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Manda, J.; Gardebroek, C.; Kuntashula, E.; Alene, A.D. Impact of improved maize varieties on food security in Eastern Zambia: A doubly robust analysis. Rev. Dev. Econ. 2018, 22, 1709–1728. [Google Scholar] [CrossRef] [Green Version]
- Melkani, A.; Mason, N.M.; Mather, D.L.; Chisanga, B. Smallholder Maize Market Participation and Choice of Marketing Channel in the Presence of Liquidity Constraints: Evidence from Zambia (No. 1879-2020-467); Michigan State University, Department of Agricultural, Food, and Resource Economics, Feed the Future Innovation Lab for Food Security (FSP). 2019. Available online: http://foodsecuritypolicy.msu.edu/ (accessed on 10 September 2020).
- Timler, C.; Michalscheck, M.; Alvarez, S.; Descheemaeker, K.; Groot, J.C. Exploring options for sustainable intensification through legume integration in different farm types in Eastern Zambia. In Sustainable Intensification in Smallholder Agriculture: An Integrated Systems Research Approach; Earthscan: London, UK, 2017; pp. 196–209. [Google Scholar]
- Amondo, E.; Simtowe, F.; Erenstein, O. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. Int. J. Clim. Chang. Strat. Manag. 2019, 11, 570–591. [Google Scholar] [CrossRef]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of Nitrogen with phosphorus, potassium, and Sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat. Field Crop. Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- FAOSTAT (2014) FAOSTAT. Available online: http://faostat.fao.org (accessed on 4 August 2020).
- Mudenda, E.M.; Phiri, E.; Chabala, L.M.; Sichingabula, H.M. Water use efficiency of maize varieties under rain-Fed conditions in Zambia. Sustain. Agric. Res. 2017, 6. [Google Scholar] [CrossRef]
- Menkir, A.; Palacios-Rojas, N.; Alamu, O.; Dias Paes, M.C.; Dhliwayo, T.; Maziya-Dixon, B.; Rocheford, T. Vitamin A-Biofortified maize: Exploiting Native Genetic Variation for Nutrient Enrichment; (No. 2187-2019-667); CIMMYT.; IITA.; EMBRAPA.; HarvestPlus; Crop Trust: Bonn, Germany, 2018; pp. 1–3. [Google Scholar]
- Alamu, E.O.; Ntawuruhunga, P.; Chileshe, P.; Olaniyan, B.; Mukuka, I.; Maziya-Dixon, B. Nutritional quality of fritters produced from fresh cassava roots, high-quality cassava and soy flour blends, and consumer preferences. Cogent Food Agric. 2019, 5, 1677129. [Google Scholar]
- Harris, J.; Chisanga, B.; Drimie, S.; Kennedy, G. Nutrition transition in Zambia: Changing food supply, food prices, household consumption, diet and nutrition outcomes. Food Secur. 2019, 11, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Farràs, M.; Chandwe, K.; Mayneris-Perxachs, J.; Amadi, B.; Louis-Auguste, J.; Besa, E.; Swann, J.R. Characterizing the metabolic phenotype of intestinal villus blunting in Zambian children with severe acute malnutrition and persistent diarrhea. PLoS ONE 2018, 13, e0192092. [Google Scholar] [CrossRef] [Green Version]
- Maila, G.; Audain, K.; Marinda, P.A. Association between dietary diversity, health and nutritional status of older persons in rural Zambia. S. Afr. J. Clin. Nut. 2019, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Miyoba, N.; Musowoya, J.; Mwanza, E.; Malama, A.; Murambiwa, N.; Ogada, I.; Liswaniso, D. Nutritional risk and associated factors of adult inpatients at a teaching hospital in the Copperbelt province in Zambia; A hospital-based cross-sectional study. BMC Nutr. 2018, 4, 1–6. [Google Scholar]
- Anaemene, D.I.; Fadupin, G.T. Effect of Fermentation, Germination and Combined Germination-Fermentation Processing Methods on the Nutrient and Anti-nutrient Contents of Quality Protein Maize (QPM) Seeds. J. Appl. Sci. Environ. Manag. 2020, 24, 1625–1630. [Google Scholar] [CrossRef]
- Nissar, J.; Ahad, T.; Naik, H.R.; Hussain, S.Z. A review phytic acid: As antinutrient or nutraceutical. J. Pharm. Phytochem. 2017, 6, 1554–1560. [Google Scholar]
- Otunola, E.T.; Sunny-Roberts, E.O.; Adejuyitan, J.A.; Famakinwa, A.O. Effects of addition of partially defatted groundnut paste on some Properties of ‘kokoro’ (a popular snack made from maize paste). Agric. Biol. J. N. Am. 2012, 3, 280–286. [Google Scholar] [CrossRef]
- Idowu, A.O. Nutrient composition and sensory properties of ‘kokoro’ (a Nigerian snack) made from Maize and African yam bean flour blends. Int. Food Res. J. 2015, 22, 739. [Google Scholar]
- Abegunde, T.A.; Bolaji, O.T.; Adeyemo, T.B. Quality evaluation of maize chips (Kokoro) fortified with cowpea flour. Niger. Food J. 2014, 32, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Ndife, J.; Abasiekong, K.S.; Nweke, B.; Linus-Chibuezeh, A.; Ezeocha, V.C. Production and comparative quality evaluation of chin-chin snacks from maize, soybean, and orange-fleshed sweet potato flour blends. FUDMA J. Sci. 2020, 4, 300–307. [Google Scholar] [CrossRef]
- Adebowale, O.J.; Komolafe, O.M. Effect of supplementation with defatted coconut paste on proximate composition, physical and sensory qualities of a maize-based snack. J. Culin. Sci. Technol. 2018, 16, 40–51. [Google Scholar] [CrossRef]
- Akoja, S.S.; Adebowale, O.J.; Makanjuola, O.M.; Salaam, H. Functional properties, nutritional and sensory qualities of maize-based snack (kokoro) supplemented with protein hydrolysate prepared from pigeon pea (Cajanus cajan) seed. J. Culin. Sci. Technol. 2017, 15, 306–319. [Google Scholar] [CrossRef]
- Adelakun, O.E.; Adejuyitan, J.A.; Olajide, J.O.; Alabi, B.K. Effect of soybean substitution on some physical, compositional, and sensory properties of kokoro (a local maize snack). Eur. Food Res. Technol. 2005, 220, 79–82. [Google Scholar] [CrossRef]
- Adegunwa, M.O.; Adeniyi, O.D.; Adebowale, A.A.; Bakare, H.A. Quality Evaluation of Kokoro Produced from Maize–Pigeon Pea Flour Blends. J. Culin. Sci. Technol. 2015, 13, 200–213. [Google Scholar] [CrossRef]
- Adeola, A.A.; Olunlade, B.A.; Ajagunna, A.J. Effect of pigeon pea or soybean substitution for maize on nutritional and sensory attributes of kokoro. Ann. Sci. Biotechnol. 2011, 2, 61–66. [Google Scholar]
- Alamu, E.O.; Maziya-Dixon, B.; Popoola, I.; Gondwe, T.N.P.; Chikoye, D. Nutritional evaluation and consumer preference of legume fortified maize-meal porridge. J. Food Nutr. Res. 2016, 4, 664–670. [Google Scholar]
- AOAC, A. of Official Analytical Chemists. Coffee and tea. In Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, Maryland, 2000. [Google Scholar]
- Alamu, E.O.; Popoola, I.; Maziya-Dixon, B. Effect of Soybean (Glycine max (L.) Merr.) flour inclusion on the nutritional properties and consumer preference of fritters for improved household nutrition. Food Sci. Nutr. 2018, 6, 1811–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Williams, V.R.; Wu, W.T.; Tsai, H.Y.; Bates, H.G. Varietal differences in amylose content of rice starch. J. Agric. Food Chem. 1958, 6, 47–48. [Google Scholar] [CrossRef]
- Wheeler, E.L.; Ferrel, R.E. A method for phytic acid determination in wheat and wheat fractions. Cereal Chem. 1971, 48, 312–320. [Google Scholar]
- Okukpe, K.M.; Adeloye, A.A. Evaluation of the nutritional and antinutritional constituents of some selected browse plants in Kwara State, Nigeria. Niger Soc. Exp. Biol. J. 2019, 11, 161–165. [Google Scholar]
- da Silva Lins, T.R.; Braz, R.L.; Silva, T.C.; Araujo, E.C.G.; De Medeiros, J.X.; Reis, C.A. Tannin content of the bark and branch of Caatinga species. J. Exp. Agric. Int. 2019, 31, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Miranda, J.; Ruiz-López, I.I.; Herman-Lara, E.; Martínez-Sánchez, C.E.; Delgado-Licon, E.; Vivar-Vera, M.A. Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT Food Sci. Technol. 2011, 44, 673–680. [Google Scholar] [CrossRef]
- Dauda, A.O.; Kayode, R.M.O.; Salami, K.O. Quality Attributes of Snack made from Maize Substituted with Groundnut. Ceylon J. Sci. 2020, 49, 21–27. [Google Scholar] [CrossRef]
- Altamore, L.; Ingrassia, M.; Chironi, S.; Columba, P.; Sortino, G.; Vukadin, A.; Bacarella, S. Pasta experience: Eating with the five senses-A pilot study. AIMS Agric. Food. 2018, 3, 493–520. [Google Scholar]
- Aletor, O.; Ojelabi, A. Comparative evaluation of the nutritive and functional attributes of some traditional Nigerian snacks and oil seed cakes. Pak. J. Nutr. 2007, 6, 99–103. [Google Scholar]
- Arise, A.K.; Oyeyinka, S.A.; Dauda, A.O.; Malomo, S.A.; Allen, B.O. Quality evaluation of maize snacks fortified with bambara groundnut flour. Ann. Food Sci. Technol. 2018, 19, 283–291. [Google Scholar]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Akoja, S.S.; Ogunsina, T.I. Chemical Composition, Functional and Sensory Qualities of Maize-Based Snacks (Kokoro) Fortified with Pigeon Pea Protein Concentrate. IOSR J. Environ. Sci. Toxicol. Food Technol. 2018, 12, 42–49. [Google Scholar]
- Panel on the Definition of Dietary Fiber Staff, Food and Nutrition Board Staff, & Institute of Medicine Staff. Dietary Reference Intakes: Proposed Definition of Dietary Fiber: A Report of the Panel on the Definition of Dietary Fiber and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Martin, K.E. Glycaemic Response to Varying the Proportions of Starchy Foods and Non-Starchy Vegetables within a Meal: A Randomized Controlled Trial. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2017. [Google Scholar]
- Alexander, C.; Swanson, K.S.; Fahey, G.C., Jr.; Garleb, K.A. Perspective: Physiologic importance of short-chain fatty acids from non-digestible carbohydrate fermentation. Adv. Nutr. 2019, 10, 576–589. [Google Scholar] [CrossRef]
- Sharma, K.; Vikas, K.; Jaspreet, K.; Beenu, T.; Ankit, G.R.S.; Yogesh, G.; Ashwani, K. Health effects, sources, utilization and safety of tannins: A critical review. Toxin Rev. 2019, 1–13. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Shah, F.U.H.; Sharif, M.K.; Butt, M.S.; Shahid, M. Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks. J. Texture Stud. 2017, 48, 221–230. [Google Scholar] [CrossRef]
- Alamu, E.O.; Maziya-Dixon, B.; Olaniyan, B.; Pheneas, N.; Chikoye, D. Evaluation of nutritional properties of cassava-legumes snacks for domestic consumption—Consumer acceptance and willingness to pay in Zambia. AIMS Agric. Food 2020, 5, 500. [Google Scholar] [CrossRef]
- Uhlířová, L.; Tůmová, E.; Chodová, D.; Vlčková, J.; Ketta, M.; Volek, Z.; Skřivanová, V. The effect of age, genotype and sex on carcass traits, meat quality and sensory attributes of geese. Asian Australas. J. Anim. Sci. 2018, 31, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netshishivhe, M.; Omolola, A.O.; Beswa, D.; Mashau, M.E. Physical properties and consumer acceptance of maize-baobab snacks. Heliyon 2019, 5, e01381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworska, D.; Hoffmann, M. Relative importance of texture properties in the sensory quality and acceptance of commercial crispy products. J. Sci. Food Agric. 2008, 88, 1804–1812. [Google Scholar] [CrossRef]
- Kavitha, S.; Parimalavalli, R. Effect of processing methods on proximate composition of cereal and legume flours. J. Hum. Nut. Food Sci. 2014, 2, 1051. [Google Scholar]
- Uzor-Peters, P.I.; Arisa, N.U.; Lawrence, C.O.; Osondu, N.S.; Adelaja, A. Effect of partially defatted soybeans or groundnut cake flours on proximate and sensory characteristics of kokoro. Afr. J. Food Sci. 2008, 2, 98–101. [Google Scholar]
- Seifu, M.; Tola, Y.B.; Mohammed, A.; Astatkie, T. Effect of variety and drying temperature on physicochemical quality, functional property, and sensory acceptability of dried onion powder. Food Sci. Nutr. 2018, 6, 1641–1649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients/Quantity | Products | ||||
---|---|---|---|---|---|
Plain maize finger | Spiced maize finger | Maize-soy finger | Maize chin-chin | Maize-soy chin-chin | |
Maize flour | 500 g | 500 g | 500 g | 500 g | 500 g |
Soy flour | – | – | 125 g | – | 125 g |
Salt | 5 g | 5 g | 5 g | – | – |
Water | 625 mL | 620 mL | 625 mL | 250 mL | 500 mL |
Sugar | – | – | – | 100 g | 100 g |
Baking powder | –- | – | – | 10 g | 10 g |
Margarine | – | – | – | 40 g | 40 g |
Eggs | – | – | – | 2 medium-sized | 2 medium-sized |
Onions | – | 2 medium-sized | – | – | – |
Parameters | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Products | MC (%) | Ash (%) | Fat (%) | Protein (%) | Amylose (%) | Amylopectin (%) | Sugar (%) | Starch (%) | TCHO (%) | TDCHO (%) | TNDCHO (%) | Energy Value (Kcal/100 g) | Tannin (mg/g) | Phytate (%) |
100% maize kokoro | 2.191 a | 1.611 c | 15.555 b | 9.750 ab | 20.494 c | 79.506 b | 1.881 c | 62.730 a | 70.893 b | 64.611 a | 6.282 e | 462.565 b | 1.130 c | 1.454 d |
Spiced 100% maize kokoro | 2.443 a | 1.653 c | 12.852 c | 9.650 b | 24.259 b | 75.741 c | 2.695 b | 51.952 c | 73.402 a | 54.648 c | 18.755 b | 447.874 c | 1.410 b | 1.644 c |
Spiced 20% soy-maize kokoro | 2.342 a | 2.453 a | 15.431 b | 10.656 a | 25.475 a | 74.525 d | 3.411 a | 48.712 d | 69.117 c | 52.124 d | 16.994 c | 457.976 b | 1.552 b | 2.332 a |
100% maize chin-chin | 1.332 b | 2.340 b | 18.619 a | 8.605 c | 20.114 d | 79.886 a | 3.450 a | 56.126 b | 69.104 c | 59.576 b | 9.528 d | 478.411 a | 1.538 b | 1.236 e |
20% Soy-maize chin-chin | 1.346 b | 2.455 d | 18.322 a | 9.188 bc | 20.722 c | 79.278 b | 3.393 a | 42.137 e | 69.689 c | 45.530 e | 24.158 a | 480.407 a | 1.975 a | 1.869 b |
Minimum | 1.298 | 1.447 | 12.631 | 8.560 | 20.076 | 74.449 | 1.843 | 42.137 | 69.034 | 45.511 | 6.066 | 446.137 | 1.111 | 1.234 |
Maximum | 2.598 | 2.475 | 18.668 | 10.938 | 25.551 | 79.924 | 3.488 | 62.810 | 73.654 | 64.653 | 24.284 | 480.816 | 2.050 | 2.362 |
Mean | 1.931 | 1.902 | 16.156 | 9.570 | 22.213 | 77.787 | 2.966 | 52.332 | 70.441 | 55.298 | 15.143 | 465.447 | 1.521 | 1.707 |
Std. deviation | 0.529 | 0.433 | 2.244 | 0.735 | 2.330 | 2.330 | 0.645 | 7.299 | 1.715 | 6.847 | 6.800 | 13.074 | 0.291 | 0.397 |
Pr > F (Products) | ** | *** | *** | ** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Products | pH | Bulk Density (g/mL) | L* | a* | b* |
---|---|---|---|---|---|
100% maize finger | 6.740 c | 0.853 a | 5620 a | 760.0 a | 3003.5 a |
spiced 100% maize finger | 6.790 c | 0.846 a | 5724 a | 638.5 a | 3083.5 a |
Spiced 20% soy-maize finger | 6.515 d | 0.863 a | 5106 a | 854.5 a | 2803.5 a |
100% maize chin-chin | 7.130 b | 0.780 a | 5361 a | 732.5 a | 2796.5 a |
20% soy-maize chin-chin | 7.430 a | 0.782 a | 5374 a | 719.0 a | 2720.5 a |
Minimum | 6.510 | 0.760 | 4991 | 389 | 2693 |
Maximum | 7.440 | 0.939 | 5814 | 907 | 3339 |
Mean | 6.921 | 0.825 | 5437 | 741 | 2882 |
Std. deviation | 0.340 | 0.054 | 240 | 141 | 197 |
Pr > F (Products) | *** | Ns | ** | Ns | Ns |
Maize Chin-Chin | Monze | Katete | Serenje | Mkushi | |
Variables | N (%) | N (%) | N (%) | N (%) | |
Gender | Female | 42 (10.17) | 30 (7.26) | 61 (14.77) | 35 (8.47) |
Male | 62 (15.01) | 79 (19.13) | 47 (11.38) | 57 (13.8) | |
Age (year) | Mean ± SD | 35.1 ± 13.27 | 38.3 ± 12.33 | 43.8 ± 12.26 | 41.0 ± 11.42 |
Minimum | 14 | 18 | 21 | 20 | |
Maximum | 72 | 105 | 76 | 73 | |
Awareness of maize chin-chin N(%) Yes No | Female Male | 8(1.94) 96(23.3) | 11.6(2.67) 98(23.73) | 8(1.94) 99(24.03) | 11(2.67) 81(19.66) |
Maize Kokoro | Monze | Katete | Serenje | Mkushi | |
Variables | N (%) | N (%) | N (%) | N (%) | |
Gender | Female | 59 (14.54) | 77 (19.11) | 40 (9.93) | 59 (14.64) |
Male | 43 (10.67) | 29 (7.2) | 65 (16.13) | 31 (7.69) | |
Age (year) | Mean ± SD | 35.6 ± 14.27 | 38.3 ± 11.24 | 42.9 ± 12.91 | 40.7 ± 12.1 |
Minimum | 14 | 21 | 18 | 15 | |
Maximum | 72 | 84 | 79 | 73 | |
Gender | Female Male | 59(14.54) 43(10.67) | 77(19.11) 29(7.2) | 40(9.93) 65(16.13) | 59(14.64) 31(7.69) |
Maize Chin-Chin | Product Attributes | |||||
Source | DF | Appearance | Aroma | Taste | Texture | Overall acceptability |
Gender | 1 | 2.2196 ** | 5.3176 *** | 8.1343 *** | 6.7947 *** | 7.7645 *** |
Product | 1 | 1.1634 | 17.4334 *** | 22.7228 *** | 17.1441 *** | 15.1864 *** |
District | 3 | 2.5717 ** | 1.27899 | 3.27146 ** | 3.3450 ** | 5.2905 *** |
Error | 821 | 0.5644 | 0.6329 | 0.7062 | 0.8538 | 0.5983 |
Maize Kokoro | Product Attributes | |||||
Source | DF | Appearance | Aroma | Taste | Texture | Overall acceptability |
Gender | 1 | 5.3334 ** | 5.5007 *** | 19.2687 *** | 24.3147 *** | 17.0796 *** |
Product | 2 | 8.8309 | 11.9139 *** | 47.2613 *** | 59.0050 *** | 37.2600 *** |
District | 3 | 3.0000 ** | 1.2250 | 0.6070 ** | 1.1879 ** | 3.6325 *** |
Error | 1202 | 0.8500 | 1.0534 | 2.4767 | 1.2176 | 0.9664 |
Attributes | Appearance | Aroma | Taste | Texture | OA | |||||||
District | Sample | N | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV |
Monze | Soy-maize chin-chin | 104 | 4.80 ± 0.44 a | 9.2 | 4.60 ± 0.64 a | 13.7 | 4.60 ± 0.84 a | 18.3 | 4.50 ± 0.87 a | 19.42 | 4.60 ± 0.72 a | 15.55 |
100% maize chin-chin | 104 | 4.80 ± 0.45 a | 21.5 | 4.20 ± 0.92 a | 21.9 | 4.40 ± 0.79 a | 18.1 | 4.10 ± 1.08 a | 26.29 | 4.30 ± 0.83 a | 19.42 | |
Katete | Soy-maize chin-chin | 109 | 4.80 ± 0.46 a | 15.5 | 4.60 ± 0.74 a | 16.2 | 4.60 ± 0.72 a | 15.6 | 4.50 ± 0.75 a | 16.72 | 4.60 ± 0.63 a | 13.6 |
100% maize chin-chin | 109 | 4.80 ± 0.47 a | 15.8 | 4.30 ± 0.93 a | 21.6 | 4.40 ± 0.89 a | 20.4 | 4.30 ± 0.98 a | 22.7 | 4.50 ± 0.76 a | 17.14 | |
Serenje | Soy-maize chin-chin | 108 | 4.80 ± 0.48 b | 19.3 | 4.30 ± 0.76 a | 17.5 | 4.40 ± 0.75 b | 17 | 4.10 ± 0.94 b | 22.55 | 4.30 ± 0.84 b | 19.62 |
100% maize chin-chin | 108 | 4.80 ± 0.49 b | 17.2 | 4.20 ± 0.82 a | 19.3 | 4.10 ± 0.99 b | 24.4 | 4.10 ± 1 b | 24.59 | 4.10 ± 1.01 b | 24.4 | |
Mkushi | Soy-maize chin-chin | 92 | 4.80 ± 0.50 a | 15.7 | 4.70 ± 0.52 a | 11.1 | 4.70 ± 0.6 a | 12.8 | 4.60 ± 0.68 a | 14.73 | 4.80 ± 0.44 a | 9.21 |
100% maize chin-chin | 92 | 4.80 ± 0.51 a | 15.8 | 4.20 ± 0.9 a | 21.6 | 4.10 ±1.04 a | 25.3 | 4.10 ± 0.99 a | 24.36 | 4.30 ± 0.77 a | 18.04 | |
Ratings across the districts Attributes | Appearance | Aroma | Taste | Texture | OA | |||||||
Sample | N | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | |
Soy-maize chin chin | 413 | 4.6 ± 0.72 a | 15.8 | 4.5 ± 0.69 a | 15.2 | 4.6 ± 0.74 a | 16.3 | 4.4 ± 0.83 a | 18.85 | 4.6 ± 0.7 a | 15.4 | |
100% maize chin chin | 413 | 4.5 ± 0.79 a | 17.7 | 4.2 ± 0.89 b | 21 | 4.2 ± 0.94 b | 22.1 | 4.1 ± 1.01 b | 24.5 | 4.3 ± 0.86 b | 19.99 | |
Total | 826 | 4.5 ± 0.76 | 16.8 | 4.4 ± 0.81 | 18.4 | 4.4 ± 0.86 | 19.6 | 4.3 ± 0.94 | 21.93 | 4.4 ± 0.8 | 17.97 |
Attributes | Appearance | Aroma | Taste | Texture | OA | |||||||
District | Sample | N | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV |
Monze | 100% maize finger | 102 | 4.4 ± 0.9 a | 20.21 | 4.0 ± 0.97 a | 23.92 | 3.7 ± 1.11 a | 29.75 | 3.5 ± 1.04 a | 30.06 | 3.9 ± 0.93 a | 23.64 |
Spiced 100% maize finger | 102 | 4.5 ± 0.92 a | 20.3 | 4.3 ± 1.03 a | 23.98 | 4.4 ± 0.9 a | 20.57 | 4.2 ± 0.99 a | 23.7 | 4.5 ± 0.75 a | 16.83 | |
Spiced soy-maize finger | 102 | 4.3 ± 0.9 a | 20.88 | 4.0 ± 1.07 a | 26.92 | 3.9 ± 1.16 a | 29.98 | 3.9 ± 1.17 a | 29.74 | 4.0 ± 1.05 a | 26.33 | |
Katete | 100% maize finger | 106 | 4.3 ± 0.93 a | 21.56 | 3.9 ± 1.27 a | 32.21 | 3.6 ± 1.26 a | 34.93 | 3.4 ± 1.35 a | 39.92 | 3.7 ± 1.18 a | 31.63 |
Spiced 100% maize finger | 106 | 4.6 ± 0.81 a | 17.46 | 4.5 ± 0.94 a | 20.86 | 4.4 ± 1 a | 22.88 | 4.3 ± 1.08 a | 25.11 | 4.5 ± 0.94 a | 20.72 | |
Spiced soy-maize finger | 106 | 4.4 ± 0.87 a | 19.79 | 4.3 ± 1.01a | 23.37 | 4.2 ± 1.04 a | 24.72 | 4.3 ± 1.03 a | 23.82 | 4.4 ± 0.96 a | 21.97 | |
Serenje | 100% maize finger | 105 | 4.1 ± 0.99 b | 23.94 | 4.0 ± 0.93 a | 23.26 | 3.5 ± 1.19 a | 33.97 | 3.4 ± 1.19 a | 35.44 | 3.6 ± 0.89 b | 24.34 |
Spiced 100% maize finger | 105 | 4.4 ± 0.79 b | 17.97 | 4.3 ± 0.86 a | 20.12 | 4.3 ± 0.92 a | 21.4 | 4.3 ± 0.79 a | 18.51 | 4.4 ± 0.78 b | 17.72 | |
Spiced soy-maize finger | 105 | 4.2 ± 1.02 b | 24.51 | 4.1 ± 0.97 a | 23.53 | 4.2 ± 3.99 a | 96.09 | 4 ± 1.02 a | 25.7 | 3.9 ± 0.98 b | 25.35 | |
Mkushi | 100% maize finger | 90 | 4.4 ± 0.93 a | 21.22 | 4.3 ± 0.95 a | 22.17 | 3.9 ± 1.16 a | 30.08 | 3.8 ± 1.08 a | 28.87 | 4.2 ± 0.93 a | 22.25 |
Spiced 100% maize finger | 90 | 4.6 ± 0.88 a | 19.07 | 4.4 ± 1.00 a | 22.77 | 4.4 ± 0.99 a | 22.63 | 4.1 ± 1.2 a | 29.46 | 4.4 ± 1.09 a | 24.67 | |
Spiced soy-maize finger | 89 | 4.2 ± 1.12 a | 26.4 | 3.9 ± 1.21 a | 30.87 | 4 ± 1.25 a | 31.16 | 3.9 ± 1.16 a | 29.66 | 4.0 ± 1.17 a | 29.27 | |
Ratings across the districts Attributes | Appearance | Aroma | Taste | Texture | OA | |||||||
Sample | N | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | |
100% maize finger | 403 | 4.3 ± 0.94 b | 21.84 | 4.1 ± 1.04 b | 25.77 | 3.7 ± 1.19 c | 32.33 | 3.5 ± 1.18 c | 33.98 | 3.9 ± 1.01 c | 26.1 | |
Spiced 100% maize finger | 403 | 4.5 ± 0.85 a | 18.73 | 4.4 ± 0.96 a | 21.95 | 4.4 ± 0.95 a | 21.8 | 4.2 ± 1.02 a | 24.19 | 4.5 ± 0.89 a | 20.01 | |
Spiced soy-maize finger | 402 | 4.3 ± 0.98 b | 22.84 | 4.1 ± 1.07 b | 26.15 | 4.1 ± 2.26 b | 55.59 | 4 ± 1.1 b | 27.29 | 4.1 ± 1.05 b | 25.9 | |
Total | 1208 | 4.4 ± 0.93 | 21.28 | 4.2 ± 1.04 | 24.8 | 4 ± 1.6 | 39.59 | 11.7 ± 3.3 | 85.46 | 12.5 ± 2.95 | 72.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamu, E.O.; Olaniyan, B.; Maziya-Dixon, B. Diversifying the Utilization of Maize at Household Level in Zambia: Quality and Consumer Preferences of Maize-Based Snacks. Foods 2021, 10, 750. https://doi.org/10.3390/foods10040750
Alamu EO, Olaniyan B, Maziya-Dixon B. Diversifying the Utilization of Maize at Household Level in Zambia: Quality and Consumer Preferences of Maize-Based Snacks. Foods. 2021; 10(4):750. https://doi.org/10.3390/foods10040750
Chicago/Turabian StyleAlamu, Emmanuel Oladeji, Bukola Olaniyan, and Busie Maziya-Dixon. 2021. "Diversifying the Utilization of Maize at Household Level in Zambia: Quality and Consumer Preferences of Maize-Based Snacks" Foods 10, no. 4: 750. https://doi.org/10.3390/foods10040750