The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Samples
2.2. Standards and Chemicals
2.3. Solar Drying
2.4. Moisture Content and Water Activity
2.5. Microbial Load Determination
2.6. Color and Browning Index
2.7. Titratable Acidity
2.8. Vitamin C Determination
2.9. Carotenoids Determination
2.10. Lycopene Determination
2.11. Phenolic Content and In Vitro Antioxidant Activity
Extraction of Antioxidants
2.12. Determination of Total Phenolic Content
2.13. Determination of Total Flavonoid Content
2.14. 2,2-Diphenyl-1-Picrylhydrazyl Radical Scavenging
2.15. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content and Water Activity of Fresh and Solar-Dried Tomato Slices
3.2. Microbial Load of Fresh and Solar-Dried Tomato Slices
3.3. Color Values of Fresh and Solar-Dried Tomato Slices
3.4. Total Acidity, Vitamin C, Total Carotenoid, and Lycopene Content of Fresh and Solar-Dried Tomato Slices
3.5. Total Phenolic and Flavonoid Content and Antioxidant Activity of Fresh and Solar-Dried Tomato Slices
3.6. Principal Component Analysis and Partial Least Squares Regression Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovanelli, G.; Paradise, A. Stability of dried and intermediate moisture tomato pulp during storage. J. Agric. Food Chem. 2002, 50, 7277–7281. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Chiou, A.; Pyriochou, V.; Peristeraki, A.; Karathanos, V.T. Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT Food Sci. Technol. 2012, 49, 213–216. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.; Flessa, S.; Gillespie, D.M.; Jewell, W.T.; Huebner, B.; Bertow, D.; Ebeler, S.E. Processing Effects on Lycopene Content and Antioxidant Activity of Tomatoes. J. Agric. Food Chem. 2001, 49, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Klipstein-Grobusch, K.; Launer, L.J.; Geleijnse, J.M.; Boeing, H.; Hofman, A.; Witteman, J.C. Serum carotenoids and atherosclerosis. The Rotterdam Study. Atherosclerosis 2000, 148, 49–56. [Google Scholar] [CrossRef]
- Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl. Cancer Inst. 2002, 94, 391–398. [Google Scholar] [CrossRef]
- Adejo, G.O.; Agbali, F.A.; Otokpa, O.S. Antioxidant, Total Lycopene, Ascorbic Acid and Microbial Load Estimation in Powdered Tomato Varieties Sold in Dutsin-Ma Market. Open Access Libr. J. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Borguini, R.G.; Torres, E.A.F.D. Tomatoes and Tomato Products as Dietary Sources of Antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Sheikh, S.A.; Soomro, A.H.; Panhwar, A.A.; Khaskheli, S.G. Quality characteristics of tomatoes (Lycopersicon esculentum) stored in various wrapping materials. Afr. J. Food Sci. Technol. 2012, 3, 123–128. [Google Scholar]
- Jayathunge, K.G.L.R.; Kapilarathne, R.A.N.S.; Thilakarathne, B.M.K.S.; Fernando, M.D.; Palipane, K.B.; Prasanna, P.H.P. Development of a methodology for production of dehydrated tomato powder and study the acceptability of the product. J. Agric. Technol. 2012, 8, 765–773. [Google Scholar]
- Wakholi, C.; Cho, B.-K.; Mo, C.; Kim, M.S. Current State of Post-harvest Fruit and Vegetable Management in East Africa. J. Biosyst. Eng. 2015, 40, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Perumal, R. Comparative Performance of Solar Cabinet, Vacuum Assisted Solar and Open Sun Drying Methods. Master’s Thesis, McGill University, Montreal, QC, Canada, 2007; p. 100. [Google Scholar]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low–Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Chong, C.H.; Law, C.L. Drying of Exotic Fruits, Vegetables and Fruits; Jangam, S.V., Law, C.L., Mujumdar, A.S., Eds.; National University of Singapore: Singapore, 2010; Volume 2, pp. 1–42. ISBN 978-981-08-7985-3. [Google Scholar]
- Sagar, V.R.; Kumar, P.S. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Sokhansanj, S.; Jayas, D.S. Drying of Foodstuffs. In Handbook of Industrial Drying, 4th ed.; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 521–544, ISBN-13 978-1-4665-9666-5. [Google Scholar]
- Chan, E.W.C.; Lye, P.Y.; Tan, L.N.; Eng, S.Y.; Tan, Y.P.; Wong, Z.C. Effects of drying method and particle size on the antioxidant properties of leaves and teas of (Morus alba, Lagerstroemia speciosa and Thunbergia laurifolia). Chem. Ind. Chem. Eng. Q. 2012, 18, 465–472. [Google Scholar]
- Belessiotis, V.; Delyannis, E. Solar drying. Sol. Energy 2011, 85, 1665–1691. [Google Scholar] [CrossRef]
- Arifin, U.F.; Djaeni, M. Degradation rate of vitamin B6 on red chili pepper drying by blanching-brine-calcium pretreatment. Commun. Sci. Technol. 2017, 2, 37–41. [Google Scholar] [CrossRef]
- Condorí, M.; Echazú, R.; Saravia, L. Solar drying of sweet pepper and garlic using the tunnel greenhouse drier. Renew. Energy 2001, 22, 447–460. [Google Scholar] [CrossRef]
- Abrol, G.S.; Vaidya, D.; Sharma, A.; Sharma, S. Effect of Solar Drying on Physico-chemical and Antioxidant Properties of Mango, Banana and Papaya. Natl. Acad. Sci. Lett. 2014, 37, 51–57. [Google Scholar] [CrossRef]
- Azeez, L.; Adebisi, S.A.; Oyedeji, A.O.; Adetoro, R.O.; Tijani, K.O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. Agric. Sci. 2019, 18, 120–126. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- International Organization for Standardization “ISO”. Laboratory Protocol “Isolation of Salmonella spp. from Food and Animal Faces”. Available online: https://www.iso.org/obp/ui/#iso (accessed on 2 May 2016).
- APHA. Standard Methods for the Examination of Dairy Products, 16th ed.; Marshall, R.T., Ed.; American Public Health Association: Washington, DC, USA, 1993. [Google Scholar]
- Xiao, H.-W.; Law, C.-L.; Sun, D.-W.; Gao, Z.-J. Color Change Kinetics of American Ginseng (Panax quinquefolium) Slices During Air Impingement Drying. Dry. Technol. 2014, 32, 418–427. [Google Scholar] [CrossRef]
- Maskan, M. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods: Colourdegradation and kinetics. J. Food Eng. 2006, 72, 218–224. [Google Scholar] [CrossRef]
- Jacques, A.C.; Pertuzatti, P.B.; Barcia, M.T.; Zambiazi, R.C. Bioactive compounds in small fruits cultivated in the southern region of Brazil. Braz. J. Food Technol. 2009, 12, 123–127. [Google Scholar] [CrossRef]
- Sadler, G.; Davis, J.; Dezman, D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of total phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, 1.1.1–1.1.8. [Google Scholar]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Chan, E.; Lim, Y.; Wong, S.; Lim, K.; Tan, S.; Lianto, F.; Yong, M. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 2009, 113, 166–172. [Google Scholar] [CrossRef]
- Mdziniso, P.; Hinds, M.J.; Bellmer, D.D.; Brown, B.; Payton, M.E. Physical Quality and Carotene Content of Solar-Dried Green Leafy and Yellow Succulent Vegetables. Plant Foods Hum. Nutr. 2006, 61, 12–20. [Google Scholar] [CrossRef]
- Ntuli, V.; Chatanga, P.; Kwiri, R.; Gadaga, H.T.; Gere, J.; Matsepo, T.; Potloane, R.P.; Victor, N.; Peter, C.; Raphael, K.; et al. Microbiological quality of selected dried fruits and vegetables in Maseru, Lesotho. Afr. J. Microbiol. Res. 2017, 11, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Soysal, Y.; Ayhan, Z.; Estürk, O.; Arıkan, M. Intermittentmicrowave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosyst. Eng. 2009, 103, 455–463. [Google Scholar] [CrossRef]
- Ahmed, J.; Shivhare, U.; Raghavan, G. Thermal degradationkinetics of anthocyanin and visual colour of plum puree. Eurian Food Res. Technol. 2004, 218, 525–528. [Google Scholar] [CrossRef]
- Chong, C.H.; Law, C.L.; Cloke, M.; Abdullah, L.C.; Daud, W.R.W. Drying kinetics, texture, color, and determination ofeffective diffusivities during sun drying of Chempedak. Dry. Technol. 2008, 26, 1286–1293. [Google Scholar] [CrossRef]
- Nyangena, I.O.; Owino, W.O.; Imathiu, S.; Ambuko, J. Effect of pretreatments prior to drying on antioxidant properties of dried mango slices. Sci. Afr. 2019, 6, e00148. [Google Scholar] [CrossRef]
- Ndawula, J.; Kabasa, J.D.; Byaruhanga, Y.B. Alterations in fruit and vegetable ß-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers. Afr. Health Sci. 2004, 4, 125–130. [Google Scholar] [PubMed]
- Sahlin, E.; Savage, G.; Lister, C. Investigation of the antioxidant properties of tomatoes after processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Arslan, D.; Özcan, M.M. Drying of tomato slices: Changes in drying kinetics, mineral contents, antioxidant activity and color parameters Secado de rodajas de tomate: Cambios en cinéticos del secado, contenido en minerales, actividad antioxidante y parámetros de color. CyTA J. Food 2011, 9, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Das Purkayastha, M.; Nath, A.; Deka, B.C.; Mahanta, C.L. Thin layer drying of tomato slices. J. Food Sci. Technol. 2011, 50, 642–653. [Google Scholar] [CrossRef]
- Xianquan, S.; Shi, J.; Kakuda, Y.; Yueming, J. Stability of Lycopene During Food Processing and Storage. J. Med. Food 2005, 8, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Xue, S. Stability of Lycopene during Food Processing and Storage. In Lycopene. Nutritional, Medicinal and Therapeutic Properties; Preedy, V.R., Watson, R.R., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2009; pp. 17–36. [Google Scholar] [CrossRef]
- Boateng, J.; Verghese, M.; Walker, L.T.; Ogutu, S. Effect of processing on antioxidant cntents in selected dry beans (Phaseolus vulgaris L.). LWT Food Sci. Technol. 2008, 41, 1541–1547. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Van, G.A.; Joubert, E.; Hannsman, C.T. Comparison of the antioxidant activity of aspalathin with that of other plant phenols of roolbos tea (Aspalathus linearis) tocoferol, BHT and BHA. J. Agric. Food Chem. 1997, 45, 623–638. [Google Scholar]
- Yan, W.; Fregeau-Reid, J. Breeding Line Selection Based on Multiple Traits. Crop. Sci. 2008, 48, 417–423. [Google Scholar] [CrossRef]
Parameters | Fresh Fruit | Stored Solar-Dried Fruit | ||
---|---|---|---|---|
0 Day | 90 Days | 180 Days | ||
MC | 94.42 ± 0.28 a | 3.93 ± 0.57 b | 3.51 ± 0.30 b | 3.44 ± 0.33 b |
aw | 0.93 ± 0.02 a | 0.31 ± 0.001 b | 0.31 ± 0.002 b | 0.32 ± 0.001 b |
Microorganism Log cfu/g | Fresh Fruit | Stored Solar-Dried Fruit | ||
---|---|---|---|---|
0 Day | 90 Days | 180 Days | ||
Staphylococcus aureus | 3.38 ± 0.40 a | 3.0 ± 0.01 b | 1.5 ± 0.03 c | 1.5 ± 0.01 c |
Staphylococcus saprophyticus | 3.60 ± 0.02 a | 3.0 ± 0.01 b | 0.0 ± 0.00 c | 0.0 ± 0.00 c |
Escherichia coli | nd | nd | nd | nd |
Mold | nd | nd | nd | nd |
Yeast | nd | 5.09 ± 0.09 a | nd | nd |
Parameters | Fresh Fruit | Stored Solar-Dried Fruit | ||
---|---|---|---|---|
0 Day | 90 Days | 180 Days | ||
L* | 56.4 ± 0.84 a | 30.0 ± 0.73 b | 27.4 ± 1.31 c | 24.9 ± 0.90 d |
a* | 18.4 ± 0.22 a | 15.6 ± 0.73 b | 11.7 ± 1.00 c | 8.81 ± 1.15 d |
b* | 39.4 ± 0.02 a | 16.4 ± 0.76 b | 13.2 ± 1.60 c | 11.4 ± 0.50 d |
ΔE | 0.00 ± 0.00 d | 35.2 ± 0.74 c | 39.7 ± 1.30 b | 43.3 ± 0.85 a |
BI | 135.9 ± 0.00 a | 113.5 ± 0.09 b | 94.7 ± 0.97 c | 85.3 ± 0.89 d |
Parameters | Fresh Fruit | Stored Solar-Dried Fruit | ||
---|---|---|---|---|
0 Day | 90 Days | 180 Days | ||
Total acidity | 4.19 ± 0.19 b | 4.37 ± 0.05 b | 8.83 ± 0.29 a | 8.87 ± 0.23 a |
Vitamin C | 63.6 ± 0.126 a | 53.1 ± 0.46 b | 52.2 ± 0.53 c | 52.1 ± 0.16 c |
Carotenoid | 41.9 ± 0.42 c | 63.7 ± 0.15 b | 88.6 ± 0.08 a | 88.9 ± 0.10 a |
Lycopene | 26.8 ± 0.45 c | 30.5 ± 0.04 a | 30.4 ± 0.08 a | 29.6 ± 0.06 b |
Parameters | Fresh Fruit | Stored Solar-Dried Fruit | ||
---|---|---|---|---|
0 Day | 90 Days | 180 Days | ||
TPC | 2.11 ± 0.12 c | 2.15 ± 0.07 c | 2.68 ± 0.20 b | 3.18 ± 0.27 a |
TFC | 1.90 ± 0.26 d | 2.46 ± 0.09 c | 3.77 ± 0.23 b | 4.48 ± 0.53 a |
AA | 2.71 ± 0.03 c | 2. 75 ± 0.06 c | 2.91 ± 0.00 b | 3.55 ± 0.10 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Maiman, S.A.; Albadr, N.A.; Almusallam, I.A.; Al-Saád, M.J.; Alsuliam, S.; Osman, M.A.; Hassan, A.B. The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits. Foods 2021, 10, 734. https://doi.org/10.3390/foods10040734
Al Maiman SA, Albadr NA, Almusallam IA, Al-Saád MJ, Alsuliam S, Osman MA, Hassan AB. The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits. Foods. 2021; 10(4):734. https://doi.org/10.3390/foods10040734
Chicago/Turabian StyleAl Maiman, Salah A., Nawal A. Albadr, Ibrahim A. Almusallam, Mohammed Jawad Al-Saád, Sarah Alsuliam, Magdi A. Osman, and Amro B. Hassan. 2021. "The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits" Foods 10, no. 4: 734. https://doi.org/10.3390/foods10040734
APA StyleAl Maiman, S. A., Albadr, N. A., Almusallam, I. A., Al-Saád, M. J., Alsuliam, S., Osman, M. A., & Hassan, A. B. (2021). The Potential of Exploiting Economical Solar Dryer in Food Preservation: Storability, Physicochemical Properties, and Antioxidant Capacity of Solar-Dried Tomato (Solanum lycopersicum) Fruits. Foods, 10(4), 734. https://doi.org/10.3390/foods10040734