Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bird Management and Experimental Design
2.2. Growth Performance, Carcass Characteristics and Sample Collection
2.3. Determination of Profiles of Fatty and Amino Acids in Breast Muscles
2.4. Analysis of Oxidative Stress Biomarkers and Antioxidants in the Liver and Breast Muscle Tissues
2.5. Determination of ATP, ADP and AMP Contents in Liver and Muscle Tissues
2.6. Determination of Meat Quality Parameters
2.7. Statistical Analyses
3. Results
3.1. Growth Performance and Carcass Characteristics
3.2. Profiles of Fatty and Amino Acids in Breast Muscles
3.3. Oxidative Stress Biomarkers and Antioxidants in Liver and Muscle Tissues
3.4. ATP, ADP and AMP Contents in Liver and Muscle Tissues
3.5. Meat Quality Parameters
4. Discussion
4.1. Growth Performance and Carcass Characteristics
4.2. Profiles of Fatty and Amino Acids in Breast Muscles
4.3. Oxidative Stress Biomarkers and Antioxidants in Liver and Muscle Tissues
4.4. ATP, ADP and AMP Contents in Liver and Muscle Tissues
4.5. Meat Quality Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Giedrimiene, D.; King, R. Burden of cardiovascular disease (CVD) on economic cost. Comparison of outcomes in US and Europe. Circ. Cardiovasc. Qual. Outcomes 2017, 10, A207. [Google Scholar]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoreyshi, S.M.; Omri, B.; Chalghoumi, R.; Bouyeh, M.; Seidavi, A.; Dadashbeiki, M.; Lucarini, M.; Durazzo, A.; van den Hoven, R.; Santini, A. Effects of Dietary Supplementation of L-Carnitine and Excess Lysine-Methionine on Growth Performance, Carcass Characteristics, and Immunity Markers of Broiler Chicken. Animals 2019, 9, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Quality of Chicken Meat. In Animal Husbandry and Nutrition; Yucel, B., Ed.; Intechopen: London, UK, 2018; p. 63. [Google Scholar] [CrossRef]
- Crespo, N.; Esteve-Garcia, E. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult. Sci. 2001, 80, 71–78. [Google Scholar] [CrossRef]
- Hargis, P.S.; Van Elswyk, M.E. Manipulating the fatty acid composition of poultry meat and eggs for the health conscious consumer. Worlds Poult. Sci. J. 1993, 49, 251–264. [Google Scholar] [CrossRef]
- Harper, C.R.; Edwards, M.J.; DeFilipis, A.P.; Jacobson, T.A. Flaxseed Oil Increases the Plasma Concentrations of Cardioprotective (n-3) Fatty Acids in Humans. J. Nutr. 2006, 136, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Petit, H. Feed intake, milk production and milk composition of dairy cows fed flaxseed. Can. J. Anim. Sci. 2010, 90, 115–127. [Google Scholar] [CrossRef]
- Noci, F.; French, P.; Monahan, F.J.; Moloney, A.P. The fatty acid composition of muscle fat and subcutaneous adipose tissue of grazing heifers supplemented with plant oil-enriched concentrates1. J. Anim. Sci. 2007, 85, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, J.; Schneiderova, D.; Mrkvicova, E.; Dolezal, P. The effect of dietary linseed oils with different fatty acid pattern on the content of fatty acids in chicken meat. Vet. Med. Praha 2008, 53, 77. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Grashorn, M.A. n-3 enrichment of chicken meat using fish oil: Alternative substitution with rapeseed and linseed oils. Poult. Sci. 1999, 78, 356–365. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.; Shousha, S.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; Sabike, I.; El-Garhy, O.; Albokhadaim, I.; Albosadah, K. Effect of Dietary Microalgae on Growth Performance, Profiles of Amino and Fatty Acids, Antioxidant Status, and Meat Quality of Broiler Chickens. Animals 2020, 10, 761. [Google Scholar] [CrossRef]
- El-Bahr, S.M.; Shousha, S.; Khattab, W.; Shehab, A.; El-Garhy, O.; El-Garhy, H.; Mohamed, S.; Ahmed-Farid, O.; Hamad, A.; Sabike, I. Impact of Dietary Betaine and Metabolizable Energy Levels on Profiles of Proteins and Lipids, Bioenergetics, Peroxidation and Quality of Meat in Japanese Quail. Animals 2021, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.M.; Shousha, S.; Albokhadaim, I.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; El-Garhy, O.; Abdelgawad, A.; El-Naggar, M.; Moustafa, M.; et al. Impact of dietary zinc oxide nanoparticles on selected serum biomarkers, lipid peroxidation and tissue gene expression of antioxidant enzymes and cytokines in Japanese quail. BMC Vet. Res. 2020, 16, 349. [Google Scholar] [CrossRef] [PubMed]
- NRC (National Research Council). Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Waguespack, A.M.; Powell, S.; Bidner, T.D.; Payne, R.L.; Southern, L.L. Effect of incremental levels of L-lysine and determination of the limiting amino acids in low crude protein corn-soybean meal diets for broilers1. Poult. Sci. 2009, 88, 1216–1226. [Google Scholar] [CrossRef]
- Cemin, H.S.; Vieira, S.L.; Stefanello, C.; Kipper, M.; Kindlein, L.; Helmbrecht, A. Digestible lysine requirements of male broilers from 1 to 42 days of age reassessed. PLoS ONE 2017, 12, e0179665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclercq, B. Lysine: Specific effects of lysine on broiler production: Comparison with threonine and valine. Poult. Sci. 1998, 77, 118–123. [Google Scholar] [CrossRef]
- Tesseraud, S.; Temim, S.; Le Bihan-Duval, E.; Chagneau, A. Increased responsiveness to dietary lysine deficiency of pectoralis major muscle protein turnover in broilers selected on breast development. J. Anim. Sci. 2001, 79, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Sterling, K.; Pesti, G.; Bakalli, R. Performance of different broiler genotypes fed diets with varying levels of dietary crude protein and lysine. Poult. Sci. 2006, 85, 1045–1054. [Google Scholar] [CrossRef]
- Ferrini, G.; Baucells, M.D.; Esteve-Garcia, E.; Barroeta, A.C. Dietary polyunsaturated fat reduces skin fat as well as abdominal fat in broiler chickens. Poult. Sci. 2008, 87, 528–535. [Google Scholar] [CrossRef]
- Wiley, J. The Meat Buyer’s Guide; North American Meat Processors Association: Reston, VA, USA, 2007. [Google Scholar]
- Salah, A.S.; Ahmed-Farid, O.A.; El-Tarabany, M.S. Carcass yields, muscle amino acid and fatty acid profiles, and antioxidant indices of broilers supplemented with synbiotic and/or organic acids. J. Anim. Physio.l Anim. Nutr. 2019, 103, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Radwan, O.K.; Ahmed, R.F. Amendment effect of resveratrol on diclofenac idiosyncratic toxicity: Augmentation of the anti-inflammatory effect by assessment of Arachidonic acid and IL-1β levels. J. Appl. Pharm. Sci. 2016, 6, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Ali, E.H.; Elgoly, A.H.M. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol. Biochem. Behav. 2013, 111, 102–110. [Google Scholar] [CrossRef]
- Hughes, M.C.; Kerry, J.P.; Arendt, E.K.; Kenneally, P.M.; McSweeney, P.L.; O’Neill, E.E. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Sci. 2002, 62, 205–216. [Google Scholar] [CrossRef]
- Abd-Elrazek, A.M.; Ahmed-Farid, O.A.H. Protective effect of L-carnitine and L-arginine against busulfan-induced oligospermia in adult rat. Andrologia 2018, 50, e12806. [Google Scholar] [CrossRef]
- Ahmed-Farid, O.A.H.; Nasr, M.; Ahmed, R.F.; Bakeer, R.M. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: Enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content. J. Biomed. Sci. 2017, 24, 66. [Google Scholar] [CrossRef] [PubMed]
- Jayatilleke, E.; Shaw, S. A high-performance liquid chromatographic assay for reduced and oxidized glutathione in biological samples. Anal. Biochem. 1993, 214, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T. Determination of reduced and oxidized glutathione in erythrocytes by high-performance liquid chromatography with ultraviolet absorbance detection. J. Chromatogr. B Biomed. Appl. 1996, 678, 157–164. [Google Scholar] [CrossRef]
- Lodovici, M.; Casalini, C.; Briani, C.; Dolara, P. Oxidative liver DNA damage in rats treated with pesticide mixtures. Toxicology 1997, 117, 55–60. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods Enzymol; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Luo, Y.; Jiang, W. A Simple and Rapid Determination of ATP, ADP and AMP Concentrations in Pericarp Tissue of Litchi Fruit by High Performance Liquid Chromatography. Food Technol. Biotechnol. 2006, 44, 531–534. [Google Scholar]
- El-Attrouny, M.M.; Iraqi, M.M.; Sabike, I.I.; Abdelatty, A.M.; Moustafa, M.M.; Badr, O.A. Comparative evaluation of growth performance, carcass characteristics and timed series gene expression profile of GH and IGF-1 in two Egyptian indigenous chicken breeds versus Rhode Island Red. J. Anim. Breed. Genet. 2020. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- American Meat Science Association (AMSA). Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Fresh Meat, (Version 1.0), 2nd ed.; American Meat Science Association: Savoy, IL, USA, 2015. [Google Scholar]
- Corzo, A.; Moran, E.T.; Hoehler, D. Lysine need of heavy broiler males applying the ideal protein concept. Poult. Sci. 2002, 81, 1863–1868. [Google Scholar] [CrossRef]
- Kiani, A.; Sharifi, S.D.; Ghazanfari, S. Influence of Canola Oil and Lysine Supplementation Diets on Growth Performance and Fatty Acid Composition of Meat in Broiler Chicks. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2017, 11, 134–140. [Google Scholar]
- Garcia, A.R.; Batal, A.B.; Baker, D.H. Variations in the digestible lysine requirement of broiler chickens due to sex, performance parameters, rearing environment, and processing yield characteristics. Poult. Sci. 2006, 85, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S.; Caston, L.; Summers, J. Broiler response to diet energy. Poult. Sci. 1996, 75, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Poorghasemi, M.; Seidavi, A.; Qotbi, A.A.A.; Laudadio, V.; Tufarelli, V. Influence of Dietary Fat Source on Growth Performance Responses and Carcass Traits of Broiler Chicks. Asian Australas J. Anim. Sci. 2013, 26, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Sridhar, K.; Lavanya, G.; Prakash, B.; Rama Rao, S.V.; Raju, M.V.L.N. Growth performance, carcass characteristics, fatty acid composition and sensory attributes of meat of broiler chickens fed diet incorporated with linseed oil. Indian J. Anim. Sci. 2015, 85, 1354–1357. [Google Scholar]
- Mašek, T.; Starčević, K.; Filipović, N.; Stojević, Z.; Brozić, D.; Gottstein, Ž.; Severin, K. Tissue fatty acid composition and estimated ∆ desaturase activity after castration in chicken broilers fed with linseed or sunflower oil. J. Anim. Physiol. Anim. Nutr. (Berl.) 2014, 98, 384–392. [Google Scholar] [CrossRef]
- Crespo, N.; Esteve-Garcia, E. Nutrient and fatty acid deposition in broilers fed different dietary fatty acid profiles. Poult. Sci. 2002, 81, 1533–1542. [Google Scholar] [CrossRef]
- González-Ortiz, G.; Sala, R.; Cánovas, E.; Abed, N.; Barroeta, A.C. Consumption of dietary n-3 fatty acids decreases fat deposition and adipocyte size, but increases oxidative susceptibility in broiler chickens. Lipids 2013, 48, 705–717. [Google Scholar] [CrossRef]
- Mirshekar, R.; Boldaji, F.; Dastar, B.; Yamchi, A.; Pashaei, S. Longer consumption of flaxseed oil enhances n-3 fatty acid content of chicken meat and expression of FADS2 gene. Eur. J. Lipid Sci. Technol. 2015, 117, 810–819. [Google Scholar] [CrossRef]
- Wang, T.; Crenshaw, M.A.; Regmi, N.; Rude, B.J.; Shamimul Hasan, M.; Sukumaran, A.T.; Dinh, T.; Liao, S.F. Effects of dietary lysine level on the content and fatty acid composition of intramuscular fat in late-stage finishing pigs. Can. J. Anim. Sci. 2017, 98, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Missotten, J.; De Smet, S.; Raes, K.; Doran, O. Effect of supplementation of the maternal diet with fish oil or linseed oil on fatty-acid composition and expression of Δ5-and Δ6-desaturase in tissues of female piglets. Animal 2009, 3, 1196–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doran, O.; Moule, S.; Teye, G.; Whittington, F.; Hallett, K.; Wood, J. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br. J. Nutr. 2006, 95, 609–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensink, R.P.; World Health Organization. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Fattore, E.; Bosetti, C.; Brighenti, F.; Agostoni, C.; Fattore, G. Palm oil and blood lipid-related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014, 99, 1331–1350. [Google Scholar] [CrossRef] [Green Version]
- Kalakuntla, S.; Nagireddy, N.K.; Panda, A.K.; Jatoth, N.; Thirunahari, R.; Vangoor, R.R. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat. Anim. Nutr. 2017, 3, 386–391. [Google Scholar] [CrossRef]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed. Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Lee, S.A.; Whenham, N.; Bedford, M.R. Review on docosahexaenoic acid in poultry and swine nutrition: Consequence of enriched animal products on performance and health characteristics. Anim. Nutr. 2019, 5, 11–21. [Google Scholar] [CrossRef]
- López-Ferrer, S.; Baucells, M.D.; Barroeta, A.C.; Galobart, J.; Grashorn, M.A. n-3 enrichment of chicken meat. 2. Use of precursors of long-chain polyunsaturated fatty acids: Linseed oil. Poult. Sci. 2001, 80, 753–761. [Google Scholar] [CrossRef]
- Patenaude, A.; Rodriguez-Leyva, D.; Edel, A.L.; Dibrov, E.; Dupasquier, C.M.C.; Austria, J.A.; Richard, M.N.; Chahine, M.N.; Malcolmson, L.J.; Pierce, G.N. Bioavailability of α-linolenic acid from flaxseed diets as a function of the age of the subject. Eur. J. Clin. Nutr. 2009, 63, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Kanakri, K.; Carragher, J.; Hughes, R.; Muhlhausler, B.; Gibson, R. The effect of different dietary fats on the fatty acid composition of several tissues in broiler chickens. Eur. J. Lipid Sci. Technol. 2018, 120, 1700237. [Google Scholar] [CrossRef]
- Moghadam, M.B.; Shehab, A.; Cherian, G. Methionine supplementation augments tissue n-3 fatty acid and tocopherol content in broiler birds fed flaxseed. Anim. Feed. Sci. Technol. 2017, 228, 149–158. [Google Scholar] [CrossRef]
- Smink, W.; Gerrits, W.; Hovenier, R.; Geelen, M.; Verstegen, M.; Beynen, A. Effect of dietary fat sources on fatty acid deposition and lipid metabolism in broiler chickens. Poult. Sci. 2010, 89, 2432–2440. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Bryden, W.; Kornegay, E. Phytates: Occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 1995, 6, 125–143. [Google Scholar]
- Palmer, I.S.; El Olson, O.; Halverson, A.W.; Miller, R.; Smith, C. Isolation of factors in linseed oil meal protective against chronic selenosis in rats. J. Nutr. 1980, 110, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Antoszkiewicz, Z.; Lipiński, K.; Kaliniewicz, J.; Kotlarczyk, S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Arch. Anim. Breed. 2019, 62, 287–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matics, Z.; Cullere, M.; Szín, M.; Gerencsér, Z.; Szabó, A.; Fébel, H.; Odermatt, M.; Radnai, I.; Dalle Zotte, A.; Szendrő, Z. Effect of a dietary supplementation with linseed oil and selenium to growing rabbits on their productive performances, carcass traits and fresh and cooked meat quality. J. Anim. Physiol. Anim. Nutr. (Berl.) 2017, 101, 685–693. [Google Scholar] [CrossRef]
- Crespo, N.; Esteve-Garcia, E. Dietary polyunsaturated fatty acids decrease fat deposition in separable fat depots but not in the remainder carcass. Poult. Sci. 2002, 81, 512–518. [Google Scholar] [CrossRef]
- El Rammouz, R.; Babilé, R.; Fernandez, X. Effect of ultimate pH on the physicochemical and biochemical characteristics of turkey breast muscle showing normal rate of postmortem pH fall. Poult. Sci. 2004, 83, 1750–1757. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.Y.; Ma, Q.G.; Chen, X.D.; Ji, C. Effects of Dietary Metabolizable Energy and Lysine on Carcass Characteristics and Meat Quality in Arbor Acres Broilers. Asian Australas J. Anim. Sci. 2007, 20, 1865–1873. [Google Scholar] [CrossRef]
- Cameron, N.; Penman, J.; Fisken, A.; Nute, G.; Perry, A.; Wood, J. Genotype with nutrition interactions for carcass composition and meat quality in pig genotypes selected for components of efficient lean growth rate. Anim. Sci. 1999, 69, 69–80. [Google Scholar] [CrossRef]
- Apple, J.K.; Maxwell, C.V.; Brown, D.C.; Friesen, K.G.; Musser, R.E.; Johnson, Z.B.; Armstrong, T.A. Effects of dietary lysine and energy density on performance and carcass characteristics of finishing pigs fed ractopamine. J. Anim. Sci. 2004, 82, 3277–3287. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, J.; Schneiderová, D.; Mrkvicová, E. Linseed oils with different fatty acid patterns in the diet of broiler chickens. Czech. J. Anim. Sci. 2006, 51, 117. [Google Scholar] [CrossRef] [Green Version]
Ingredients (g/kg) | Starter | Grower | Finisher | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | Groups | Groups | ||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Corn | 58.97 | 51.97 | 59.24 | 52 | 65.87 | 58.79 | 66.17 | 59.19 | 70.07 | 62.87 | 70.33 | 63.03 |
Soybean Meal | 24.36 | 24.36 | 24.49 | 24.49 | 18.22 | 18 | 18.33 | 18.33 | 14.49 | 14.49 | 14.59 | 14.59 |
Corn gluten meal | 5 | 5 | 4.27 | 4.27 | 3.54 | 3.54 | 2.84 | 2.84 | 4.45 | 4.45 | 3.82 | 3.82 |
Linseed oil | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 |
Poultry by product meal | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Wheat bran | 2 | 7 | 2 | 7.24 | 2 | 7.3 | 2 | 6.98 | 1 | 6.2 | 1 | 6.3 |
Vitamin-mineral premix 1 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Mono calcium phosphate | 1.16 | 1.16 | 1.16 | 1.16 | 1.01 | 1.01 | 1.01 | 1.01 | 0.85 | 0.85 | 0.85 | 0.85 |
Limestone ground | 1.21 | 1.21 | 1.21 | 1.21 | 1.07 | 1.07 | 1.07 | 1.07 | 0.95 | 0.95 | 0.95 | 0.95 |
L-Lysine HCL | 0.28 | 0.28 | 0.61 | 0.61 | 0.30 | 0.30 | 0.59 | 0.59 | 0.25 | 0.25 | 0.52 | 0.52 |
DL-Methionine | 0.28 | 0.28 | 0.28 | 0.28 | 0.26 | 0.26 | 0.26 | 0.26 | 0.21 | 0.21 | 0.21 | 0.21 |
Choline chloride | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.34 | 0.34 | 0.34 | 0.34 | 0.33 | 0.33 | 0.33 | 0.33 | 0.31 | 0.31 | 0.31 | 0.31 |
Nutrient specifications | ||||||||||||
ME (Kcal/kg) | 3035 | 3035 | 3035 | 3035 | 3130 | 3130 | 3130 | 3130 | 3200 | 3200 | 3200 | 3200 |
Crude protein | 21.5 | 21.5 | 21.5 | 21.5 | 19 | 19 | 19 | 19 | 18 | 18 | 18 | 18 |
Calcium | 0.92 | 0.92 | 0.92 | 0.92 | 0.87 | 0.87 | 0.87 | 0.87 | 0.79 | 0.79 | 0.79 | 0.79 |
Available Phosphorus | 0.45 | 0.47 | 0.45 | 0.47 | 0.43 | 0.46 | 0.43 | 0.46 | 0.42 | 0.43 | 0.42 | 0.43 |
Lysine | 1.32 | 1.32 | 1.65 | 1.65 | 1.19 | 1.19 | 1.48 | 1.48 | 1.05 | 1.05 | 1.31 | 1.31 |
Methionine | 0.63 | 0.63 | 0.63 | 0.63 | 0.62 | 0.62 | 0.62 | 0.62 | 0.56 | 0.56 | 0.56 | 0.56 |
Methionine + cysteine | 0.99 | 0.99 | 0.99 | 0.99 | 0.89 | 0.89 | 0.89 | 0.89 | 0.82 | 0.82 | 0.82 | 0.82 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
Initial weight (g/bird) | 98.19 | 97.99 | 97.98 | 98.00 | 0.52 | 0.93 | 0.93 | 0.919 |
Final weight (g/bird) | 2001.2 a | 1951.2 ab | 1855.6 b | 2032.2 a | 22.12 | 0.18 | 0.48 | 0.025 |
WG (g/bird) | 1903.0 a | 1853.2 ab | 1757.6 b | 1934.2 a | 21.74 | 0.17 | 0.47 | 0.023 |
FI (g/bird) | 3023.0 a | 2803.7 c | 2713.6 bc | 2962.3 b | 43.79 | 0.87 | 0.41 | 0.020 |
FCR | 1.59 | 1.51 | 1.54 | 1.53 | 0.01 | 0.18 | 0.60 | 0.300 |
Carcass Yield (%) | 57.98 | 58.32 | 57.63 | 56.68 | 0.398 | 0.71 | 0.23 | 0.432 |
Breast Yield (%) | 31.00 | 28.91 | 29.02 | 30.56 | 0.544 | 0.80 | 0.89 | 0.111 |
Liver (%) | 5.17 | 6.08 | 5.54 | 5.73 | 0.290 | 0.36 | 0.99 | 0.540 |
Spleen (%) | 0.27 | 0.31 | 0.38 | 0.33 | 0.020 | 0.93 | 0.14 | 0.280 |
Heart (%) | 0.94 | 0.95 | 0.82 | 0.90 | 0.064 | 0.73 | 0.53 | 0.790 |
Gizzard (%) | 3.15 c | 2.62 d | 3.81 b | 4.27 a | 0.145 | 0.90 | 0.001 | 0.011 |
Fat Pad (%) | 2.93 | 3.67 | 2.48 | 3.18 | 0.193 | 0.08 | 0.25 | 0.962 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
SFA | ||||||||
MA (C14:0) | 0.72 | 0.58 | 0.71 | 0.68 | 0.02 | 0.21 | 0.27 | 0.08 |
PA (C16:0) | 16.97 | 14.18 | 17.04 | 14.86 | 0.67 | 0.82 | 0.78 | 0.09 |
SA (C18:0) | 7.83 b | 6.10 c | 7.85 b | 8.77 a | 0.19 | 0.01 | 0.004 | 0.32 |
C20:0 | 1.31 | 1.02 | 1.3400 | 1.3875 | 0.05 | 0.10 | 0.06 | 0.22 |
MUFA | ||||||||
PtA (C16:1) | 2.38 b | 3.06 a | 3.37 a | 2.52 b | 0.09 | 0.64 | 0.24 | 0.001 |
OA (C18:1) | 25.14 a | 19.17 abc | 22.07 a | 15.45 c | 0.82 | 0.00 | 0.06 | 0.85 |
PUFA | ||||||||
LA (C18:2) | 17.78 b | 21.07 a | 19.35 a | 21.21 a | 0.49 | 0.48 | 0.40 | 0.02 |
LNA (C18:3) | 2.28 d | 2.90 b | 2.50 c | 3.08 a | 0.02 | 0.000 | 0.0001 | 0.62 |
ETA (C20:4 n-3) | 0.75 | 0.88 | 0.72 | 0.82 | 0.03 | 0.05 | 0.40 | 0.81 |
EPA (C20:5 n-3) | 0.66 c | 0.81 a | 0.61 c | 0.72 b | 0.01 | 0.00 | 0.02 | 0.42 |
AA (C20:4 n-6) | 0.95 b | 1.17 a | 1.28 a | 1.18 a | 0.02 | 0.25 | 0.005 | 0.01 |
DHA (C22:6 n-3) | 0.73 d | 0.94 b | 0.85 c | 1.03 a | 0.01 | 0.00 | 0.0001 | 0.59 |
Total SFA | 26.82 a | 21.84 b | 26.93 a | 25.70 ab | 0.58 | 0.019 | 0.11 | 0.13 |
Total MUFA | 27.52 a | 22.23 ab | 25.44 a | 17.97 c | 0.79 | 0.001 | 0.07 | 0.50 |
Total PUFA | 23.15 b | 27.75 a | 25.31 ab | 28.04 a | 0.45 | 0.001 | 0.19 | 0.31 |
Total n-3 | 4.42 b | 5.52 a | 4.68 b | 5.66 a | 0.04 | <0.001 | 0.03 | 0.46 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
Essential amino acids | ||||||||
Arginine | 58.18 b | 73.62 c | 79.06 a | 82.78 a | 2.84 | 0.12 | 0.02 | 0.32 |
Histidine | 45.21 b | 54.04 c | 60.23 a | 56.47 a | 1.57 | 0.43 | 0.02 | 0.07 |
Isoleucine | 53.71 a | 43.66 b | 47.88 a | 41.97 b | 1.50 | 0.02 | 0.23 | 0.50 |
Leucine | 78.13 a | 64.77 b | 71.85 a | 52.76 b | 2.55 | 0.01 | 0.10 | 0.59 |
Lysine | 59.20 b | 73.23 a | 61.35 b | 73.82 a | 1.90 | 0.05 | 0.36 | 0.15 |
Methionine | 22.76 a | 18.66 b | 21.14 a | 16.34 b | 0.47 | 0.0005 | 0.06 | 0.71 |
Phenylalanine | 27.66 b | 32.50 a | 34.37 a | 34.24 a | 0.91 | 0.22 | 0.04 | 0.20 |
Threonine | 32.42 b | 39.30 a | 38.93 a | 40.27 a | 0.93 | 0.05 | 0.07 | 0.16 |
Valine | 70.07 | 55.74 | 63.06 | 61.14 | 2.61 | 0.15 | 0.88 | 0.26 |
Nonessential amino acids | ||||||||
Alanine | 43.49 b | 54.17 a | 58.42 a | 50.75 b | 1.10 | 0.51 | 0.02 | 0.001 |
Asparagine | 70.80 b | 90.85 a | 96.59 a | 104.97 a | 2.53 | 0.02 | 0.00 | 0.27 |
Glutamine | 105.75 d | 132.00 b | 146.25 a | 122.00 c | 5.83 | 0.93 | 0.22 | 0.05 |
Glycine | 40.02 b | 46.46 a | 50.89 a | 37.44 b | 1.41 | 0.24 | 0.75 | 0.004 |
Proline | 17.88 b | 22.39 a | 24.45 a | 21.04 b | 0.90 | 0.76 | 0.17 | 0.05 |
Serine | 26.40 b | 32.17 a | 29.94 a | 28.70 b | 0.80 | 0.18 | 0.98 | 0.05 |
Tyrosine | 28.62 c | 38.45 b | 44.78 a | 30.85 c | 1.13 | 0.38 | 0.08 | 0.0002 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
Liver | ||||||||
CAT (nM/g) | 13.55 | 11.85 | 11.24 | 11.92 | 0.32 | 0.44 | 0.11 | 0.09 |
SOD (nM/g) | 68.16 a | 52.62 c | 59.40 b | 49.08 c | 1.04 | 0.000046 | 0.01 | 0.23 |
MDA (nM/g) | 28.93 b | 37.26 a | 30.58 b | 41.21 a | 0.93 | 0.000265 | 0.16 | 0.55 |
8-OHdG (nM/g) | 180.25 b | 223.25 a | 188.50 b | 224.00 a | 2.51 | 0.000005 | 0.39 | 0.47 |
GSH (nM/g) | 4.23 a | 3.38 c | 3.80 b | 3.34 c | 0.11 | 0.01 | 0.32 | 0.40 |
GSSG (nM/g) | 0.22 b | 0.26 a | 0.22 b | 0.27 a | 0.01 | 0.04 | 0.02 | 0.10 |
Muscle | ||||||||
MDA (nM/g) | 25.62 b | 35.87 a | 26.91 b | 25.65 b | 1.09 | 0.061 | 0.063 | 0.021 |
8-OHdG (nM/g) | 158.91 c | 202.26 a | 183.24 b | 149.62 c | 2.33 | 0.317 | 0.010 | 0.000 |
GSH (nM/g) | 3.28 a | 2.95 b | 2.85 b | 3.48 a | 0.08 | 0.386 | 0.734 | 0.014 |
GSSG (nM/g) | 0.25 a | 0.21 b | 0.23 a | 0.19 b | 0.01 | 0.007 | 0.070 | 0.910 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
Liver | ||||||||
ATP (μg/g) | 51.36 a | 38.19 b | 43.08 b | 35.62 b | 1.28 | 0.002 | 0.06 | 0.28 |
ADP (μg/g) | 15.48 b | 19.02 a | 17.06 b | 20.76 a | 0.51 | 0.004 | 0.13 | 0.94 |
AMP (μg/g) | 5.35 b | 6.31 a | 5.19 b | 7.67 a | 0.21 | 0.001 | 0.18 | 0.09 |
Muscle | ||||||||
ATP (μg/g) | 35.43 b | 30.75 b | 31.54 b | 43.98 a | 1.26 | 0.150 | 0.089 | 0.005 |
ADP (μg/g) | 14.31 b | 17.88 a | 16.31 a | 13.26 b | 0.48 | 0.791 | 0.199 | 0.005 |
AMP (μg/g) | 4.44 b | 6.21 a | 5.23 a | 4.40 b | 0.22 | 0.308 | 0.270 | 0.012 |
Parameters | Groups | SEM | p Values | |||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
Optimum Lys | High Lys | |||||||
2% Lin | 4% Lin | 2% Lin | 4% Lin | Lin | Lys | Lin*Lys | ||
pH | 5.57 | 5.52 | 5.60 | 5.71 | 0.03 | 0.62 | 0.10 | 0.18 |
Drip loss% | 0.97 | 1.73 | 1.68 | 1.54 | 0.23 | 0.51 | 0.59 | 0.35 |
Thawing loss % | 3.66 | 4.21 | 3.02 | 3.22 | 0.30 | 0.54 | 0.21 | 0.77 |
Cooking loss % | 17.42 | 15.65 | 16.69 | 15.53 | 0.55 | 0.21 | 0.71 | 0.79 |
L* % | 54.39 | 54.56 | 53.14 | 55.53 | 0.47 | 0.20 | 0.89 | 0.26 |
a* % | 12.67 | 12.29 | 10.48 | 11.85 | 0.31 | 0.44 | 0.05 | 0.18 |
b* % | 13.36 a | 13.78 a | 11.96 b | 12.31 b | 0.22 | 0.40 | 0.01 | 0.94 |
Chroma (c*) % | 16.47 | 15.54 | 15.45 | 15.81 | 0.47 | 0.77 | 0.70 | 0.51 |
Hue angle (h°) | 33.76 b | 38.97 a | 38.82 a | 34.03 b | 0.72 | 0.63 | 0.70 | 0.003 |
WBSF % | 3.40 a | 2.78 b | 2.97 ab | 1.91 c | 0.18 | 0.04 | 0.09 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Bahr, S.M.; Shousha, S.; Alfattah, M.A.; Al-Sultan, S.; Khattab, W.; Sabeq, I.I.; Ahmed-Farid, O.; El-Garhy, O.; Albusadah, K.A.; Alhojaily, S.; et al. Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods 2021, 10, 618. https://doi.org/10.3390/foods10030618
El-Bahr SM, Shousha S, Alfattah MA, Al-Sultan S, Khattab W, Sabeq II, Ahmed-Farid O, El-Garhy O, Albusadah KA, Alhojaily S, et al. Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods. 2021; 10(3):618. https://doi.org/10.3390/foods10030618
Chicago/Turabian StyleEl-Bahr, Sabry M., Saad Shousha, Mohamed A. Alfattah, Saad Al-Sultan, Wasseem Khattab, Islam I. Sabeq, Omar Ahmed-Farid, Osama El-Garhy, Khalid A. Albusadah, Sameer Alhojaily, and et al. 2021. "Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers" Foods 10, no. 3: 618. https://doi.org/10.3390/foods10030618
APA StyleEl-Bahr, S. M., Shousha, S., Alfattah, M. A., Al-Sultan, S., Khattab, W., Sabeq, I. I., Ahmed-Farid, O., El-Garhy, O., Albusadah, K. A., Alhojaily, S., & Shehab, A. (2021). Enrichment of Broiler Chickens’ Meat with Dietary Linseed Oil and Lysine Mixtures: Influence on Nutritional Value, Carcass Characteristics and Oxidative Stress Biomarkers. Foods, 10(3), 618. https://doi.org/10.3390/foods10030618