Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plant Rearing and LMA Induction
2.3. Total Enzymatic Activities and LMA Content Determination
2.4. Stirring Number (SN) Determination
2.5. Pasting Properties
2.6. Fresh White Sauce Preparation and Gelation Properties
2.7. Fresh White Sauce Texture Properties
2.8. Statistical Analysis
3. Results and Discussion
3.1. LMA Content and Total α-Amylase Activity in Whole-Wheat Flour (WWF) and White Flour (WF)
3.2. LMA Impact on Flours FNs
3.3. Pasting Properties of LMA-Affected Flours
3.4. Gelation Characteristics of LMA-Affected WFs in the Presence of Oil, Salt and Milk during Thermal Processing
3.5. Texture Properties of Fresh White Sauce
4. Significance of Present Study and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mares, D.; Mrva, K. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 2014, 240, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Barrero, J.M.; Porfirio, L.; Hughes, T.; Chen, J.; Dillon, S.; Gubler, F.; Ral, J.-P.F. Evaluation of the impact of heat on wheat dormancy, late maturity α-amylase and grain size under controlled conditions in diverse germplasm. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Mares, D.; Mrva, K. Late maturity α-amylase: Low falling number in wheat in the absence of preharvest sprouting. J. Cereal Sci. 2008, 47, 6–17. [Google Scholar] [CrossRef]
- Whan, A.; Dielen, A.-S.; Mieog, J.; Bowerman, A.F.; Robinson, H.M.; Byrne, K.; Colgrave, M.; Larkin, P.J.; Howitt, C.A.; Morell, M.K.; et al. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. J. Exp. Bot. 2014, 65, 5443–5457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Lin, Y.L.; Chen, C.; Tsai, M.H.; Lin, A.H.M. Impacts of starch and the interactions between starch and other macromolecules on wheat Falling Number. Compr. Rev. Food Sci. Food Saf. 2019, 18, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Kingwell, R.; Carter, C. Economic issues surrounding wheat quality assurance: The case of late maturing alpha-amylase policy in Australia. Australas. Agribus. Rev. 2014, 22, 14. [Google Scholar]
- Ral, J.P.; Whan, A.; Larroque, O.; Leyne, E.; Pritchard, J.; Dielen, A.S.; Howitt, C.A.; Morell, M.K.; Newberry, M. Engineering high α-amylase levels in wheat grain lowers Falling Number but improves baking properties. Plant Biotechnol. J. 2016, 14, 364–376. [Google Scholar] [CrossRef]
- Newberry, M.; Zwart, A.B.; Whan, A.; Mieog, J.C.; Sun, M.; Leyne, E.; Pritchard, J.; Daneri-Castro, S.N.; Ibrahim, K.; Diepeveen, D.; et al. Does late maturity alpha-amylase impact wheat baking quality? Front. Plant Sci. 2018, 9, 1356. [Google Scholar] [CrossRef] [Green Version]
- Ral, J.P.; Cavanagh, C.R.; Larroque, O.; Regina, A.; Morell, M.K. Structural and molecular basis of starch viscosity in hexaploid wheat. J. Agric. Food Chem. 2008, 56, 4188–4197. [Google Scholar] [CrossRef]
- Neoh, G.S.; Tan, X.; Dieters, M.; Fox, G.; Gilbert, R. Effects of cold temperature on starch molecular structure and gelatinization of late-maturity alpha-amylase affected wheat. J. Cereal Sci. 2020, 92, 102925. [Google Scholar] [CrossRef]
- Mrva, K.; Mares, D.J. Induction of late maturity α-amylase in wheat by cool temperature. Aust. J. Agric. Res. 2001, 52, 477–484. [Google Scholar] [CrossRef]
- Barrero, J.M.; Mrva, K.; Talbot, M.J.; White, R.G.; Taylor, J.; Gubler, F.; Mares, D.J. Genetic, hormonal, and physiological analysis of late maturity α-amylase in wheat. Plant Physiol. 2013, 161, 1265–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahufer, M.; Luo, D. DeltaGen: A comprehensive decision support tool for plant breeders. Crop Sci. 2018, 58, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Tordenmalm, S.; Bason, M.; Chan, S.; Foster, A.; Greer, P.; Hatcher, D.; He, H.; Izydorczyk, A.; Johnson, D.; Kay, S. Sprout damage in barley. J. Am. Soc. Brew. Chem. 2004, 62, 49–53. [Google Scholar]
- Arocas, A.; Sanz, T.; Fiszman, S. Clean label starches as thickeners in white sauces. Shearing, heating and freeze/thaw stability. Food Hydrocoll. 2009, 23, 2031–2037. [Google Scholar] [CrossRef]
- Arocas, A.; Sanz, T.; Fiszman, S.M. Influence of corn starch type in the rheological properties of a white sauce after heating and freezing. Food Hydrocoll. 2009, 23, 901–907. [Google Scholar] [CrossRef]
- Sargeant, J. α-Amylase isoenzymes and starch degradation. Cereal Res. Commun. 1980, 8, 77–86. [Google Scholar]
- Kruger, J.; Tipples, K. Relationships between falling number, amylograph viscosity and α–amylase activity in Canadian wheat. Cereal Res. Commun. 1980, 8, 97–105. [Google Scholar]
- Rani, K.; Rao, U.P.; Leelavathi, K.; Rao, P.H. Distribution of enzymes in wheat flour mill streams. J. Cereal Sci. 2001, 34, 233–242. [Google Scholar] [CrossRef]
- Derkx, A.P.; Mares, D.J. Late-maturity α-amylase expression in wheat is influenced by genotype, temperature and stage of grain development. Planta 2020, 251, 51. [Google Scholar] [CrossRef]
- Mrva, K.; Mares, D. Screening methods and identification of QTLs associated with late maturity α-amylase in wheat. Euphytica 2002, 126, 55–59. [Google Scholar] [CrossRef]
- Simsek, S.; Ohm, J.-B.; Lu, H.; Rugg, M.; Berzonsky, W.; Alamri, M.S.; Mergoum, M. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods 2014, 3, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaerts, H.; Roye, C.; Derde, L.J.; Sinnaeve, G.; Meza, W.R.; Bodson, B.; Courtin, C.M. Impact of preharvest sprouting of wheat (Triticum aestivum) in the field on starch, protein, and arabinoxylan properties. J. Agric. Food Chem. 2016, 64, 8324–8332. [Google Scholar] [CrossRef] [PubMed]
- Mrva, K.; Mares, D.J.; Cheong, J. Genetic mechanisms involved in late maturity alpha-amylase in wheat. In Proceedings of the 11th International Wheat Genetics Symposium, Brisbane, Australia, 24–29 August 2008. [Google Scholar]
- Ral, J.P.F.; Sun, M.; Mathy, A.; Pritchard, J.R.; Konik-Rose, C.; Larroque, O.; Newberry, M. A biotechnological approach to directly assess the impact of elevated endogenous α-amylase on Asian white-salted noodle quality. Starch-Stärke 2018, 70, 1700089. [Google Scholar] [CrossRef]
- Douzals, J.; Perrier-Cornet, J.; Coquille, J.; Gervais, P. Pressure−temperature phase transition diagram for wheat starch. J. Agric. Food Chem. 2001, 49, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Baks, T.; Bruins, M.E.; Janssen, A.E.; Boom, R.M. Effect of pressure and temperature on the gelatinization of starch at various starch concentrations. Biomacromolecules 2008, 9, 296–304. [Google Scholar] [CrossRef]
- Baks, T.; Bruins, M.E.; Matser, A.M.; Janssen, A.E.; Boom, R.M. Effect of gelatinization and hydrolysis conditions on the selectivity of starch hydrolysis with α-amylase from Bacillus licheniformis. J. Agric. Food Chem. 2007, 56, 488–495. [Google Scholar] [CrossRef]
- Singh, K.; Kayastha, A.M. α-Amylase from wheat (Triticum aestivum) seeds: Its purification, biochemical attributes and active site studies. Food Chem. 2014, 162, 1–9. [Google Scholar] [CrossRef]
- Gidley, M.J. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules 1989, 22, 351–358. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J.L. Understanding starch structure and functionality. In Starch in Food; Elsevier: Amsterdam, The Netherlands, 2018; pp. 151–178. [Google Scholar]
- Palacios, H.R.; Schwarz, P.B.; D’Appolonia, B.L. Effect of α-amylases from different sources on the retrogradation and recrystallization of concentrated wheat starch gels: Relationship to bread staling. J. Agric. Food Chem. 2004, 52, 5978–5986. [Google Scholar] [CrossRef]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Williams, P.A. Effect of salts on the gelatinization and rheological properties of sago starch. J. Agric. Food Chem. 1999, 47, 3359–3366. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Hasjim, J.; Jane, J.L. Effects of lipids on enzymatic hydrolysis and physical properties of starch. Carbohydr. Polym. 2013, 92, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Hamaker, B.R. A three component interaction among starch, protein, and free fatty acids revealed by pasting profiles. J. Agric. Food Chem. 2003, 51, 2797–2800. [Google Scholar] [CrossRef]
- Tester, R.; Sommerville, M. The effects of non-starch polysaccharides on the extent of gelatinisation, swelling and α-amylase hydrolysis of maize and wheat starches. Food Hydrocoll. 2003, 17, 41–54. [Google Scholar] [CrossRef]
- Zhang, B.; Dhital, S.; Gidley, M.J. Densely packed matrices as rate determining features in starch hydrolysis. Trends Food Sci. Technol. 2015, 43, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Christianson, D.D.; Hodge, J.E.; Osborne, D.; Detroy, R.W. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem. 1981, 58, 513–517. [Google Scholar]
- Samutsri, W.; Suphantharika, M. Effect of salts on pasting, thermal, and rheological properties of rice starch in the presence of non-ionic and ionic hydrocolloids. Carbohydr. Polym. 2012, 87, 1559–1568. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity: Concept and Measurement; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- BeMiller, J.N. Pasting, paste, and gel properties of starch–hydrocolloid combinations. Carbohydr. Polym. 2011, 86, 386–423. [Google Scholar] [CrossRef]
- Slaughter, S.L.; Ellis, P.R.; Jackson, E.C.; Butterworth, P.J. The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochim. Biophys. Acta 2002, 1571, 55–63. [Google Scholar] [CrossRef]
- Wang, S.; Copeland, L. Phase transitions of pea starch over a wide range of water content. J. Agric. Food Chem. 2012, 60, 6439–6446. [Google Scholar] [CrossRef] [PubMed]
Falling Number | Chara | SEA Condamine | ||||||
---|---|---|---|---|---|---|---|---|
White Flour | Whole-Wheat Flour | White Flour | Whole-Wheat Flour | |||||
Suspension(s) | Control | LMA-Affected | Control | LMA-Affected | Control | LMA-Affected | Control | LMA-Affected |
Water | 306 ± 17 a | 99 ± 19 b | 240 ± 16 a | 69 ± 2 b | 380 ± 3 ab | 374 ± 5 b | 371 ± 3 a | 360 ± 5 b |
Water +2 mM silver | 375 ± 6 c | 371 ± 9 c | 364 ± 3 c | 361 ± 8 c | 384 ± 4 a | 387 ± 4 a | 393 ± 3 c | 389 ± 5 c |
Chara | ||||
White Flour | Whole-Wheat Flour | |||
RVA Parameter(s) | Control | LMA-affected | Control | LMA-affected |
Peak viscosity (RVU) | 234 ± 3 a | 18 ± 3 b (260 ± 3) c | 204 ± 2 a | 12 ± 3 b (226 ± 3) c |
Peak time (s) | 328 ± 1 a | 171 ± 2 b (328 ± 1) a | 348 ± 2 a | 187± 1 b (348 ± 1) a |
Trough viscosity (RVU) | 150 ± 1 a | 7 ± 1 b (164 ± 1) c | 127 ± 3 a | 5 ± 1 b (137 ± 3) c |
Final viscosity (RVU) | 289 ± 5 a | 7 ± 1 b (318 ± 3) c | 235 ± 3 a | 5 ± 1 b (254 ± 5) c |
SEA Condamine | ||||
White Flour | Whole-Wheat Flour | |||
RVA Parameter(s) | Control | LMA-affected | Control | LMA-affected |
Peak viscosity (RVU) | 372 ± 3 a | 368 ± 3 a (368 ± 2) a | 343 ± 4 a | 344 ± 2 a (343 ± 3) a |
Peak time (s) | 351 ± 3 a | 347 ± 3 a (347 ± 1) a | 368 ± 2 a | 368 ± 2 a (369 ± 1) a |
Trough viscosity (RVU) | 230 ± 3 ab | 227 ± 3 a (235 ± 1) b | 212 ± 2 ab | 209 ± 2 a (215 ± 2) b |
Final viscosity (RVU) | 409 ± 3 a | 395 ± 6 b (421 ± 3) c | 370 ± 6 a | 359 ± 8 b (383 ± 2) c |
Firmness (g) | Consistency (g s) | Cohesiveness (g) | Index of Viscosity (g s) | |
---|---|---|---|---|
Chara | ||||
Control white flour | 42.7 ± 1.4 a | 563.0 ± 19.6 a | −21.0 ± 2.5 a | −224.4 ± 12.5 a |
LMA-affected white flour | 20.9 ± 0.3 b | 268.6 ± 4.3 b | −12.9 ± 0.3 b | −132.0 ± 0.3 b |
LMA-affected white flour + 0.15% xanthan | 40.0 ± 2.3 a | 534.9 ± 14.2 c | −18.7 ± 1.7 a | −197.0 ± 7.5 c |
SEA Condamine | ||||
Control white flour | 50.9 ± 4.5 a | 676.7 ± 11.5 a | −29.1 ± 2.9 a | −321.8 ± 4.8 a |
LMA-affected white flour | 49.4 ± 3.1 a | 637.5 ± 18.8 b | −28.0 ± 4.3 a | −306.5 ± 7.5 b |
Commercial White Sauce | 52.0 ± 0.5 | 685 ± 3.2 | −30.8 ± 0.4 | −323.8 ± 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neoh, G.K.S.; Dieters, M.J.; Tao, K.; Fox, G.P.; Nguyen, P.T.M.; Gilbert, R.G. Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities. Foods 2021, 10, 201. https://doi.org/10.3390/foods10020201
Neoh GKS, Dieters MJ, Tao K, Fox GP, Nguyen PTM, Gilbert RG. Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities. Foods. 2021; 10(2):201. https://doi.org/10.3390/foods10020201
Chicago/Turabian StyleNeoh, Galex K. S., Mark J. Dieters, Keyu Tao, Glen P. Fox, Phuong T. M. Nguyen, and Robert G. Gilbert. 2021. "Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities" Foods 10, no. 2: 201. https://doi.org/10.3390/foods10020201
APA StyleNeoh, G. K. S., Dieters, M. J., Tao, K., Fox, G. P., Nguyen, P. T. M., & Gilbert, R. G. (2021). Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities. Foods, 10(2), 201. https://doi.org/10.3390/foods10020201