Evaluation of Phytochemical Contents and In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Black Rice Leaf (Oryza sativa L.) Extract and Its Fractions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Materials
2.2. Extraction and Fractionation of Bioactive Substances
2.3. Determination of Total Phenolics, Flavonoids, and Anthocyanins
2.3.1. Total Phenolic Content (TPC)
2.3.2. Total Flavonoid Content (TFC)
2.3.3. Total Anthocyanin Content (TAC)
2.4. Antioxidant Activity
2.4.1. DPPH Radical-Scavenging Activity
2.4.2. ABTS+ Radical-Scavenging Activity
2.4.3. Reducing Power Assay
2.5. Cell Culture and Sample Treatment
2.6. Cytotoxicity
2.7. Determination of NO Production
2.8. Measurement of PGE2 and Cytokine (IL-6, IL-1β, and TNF-α) Secretion
2.9. Flow Cytometric Analysis of Cell-Cycle Arrest and Apoptosis
2.10. Western Blot Analysis
2.11. Identification of Phenolic Compounds
2.12. Statistical Analysis
3. Results
3.1. Determination of TPC, TFC, and TAC
3.2. Antioxidant Activities of CEE and Its Fractions
3.3. Anti-Inflammatory Activities of CEE and Its Fractions in RAW 264.7 Macrophage Cells
3.4. Effect of CEE and EtOAc on LPS-Induced PGE2 and Cytokine Production in RAW 264.7 Macrophage Cells
3.5. Effect of CEE and EtOAc on LPS-Induced iNOS and COX-2 Expression in RAW 264.7 Macrophage Cells
3.6. Anticancer Activities of CEE and Its Fractions on HepG2 Cells
3.7. Key Proteins in Apoptotic Pathways Regulated by EtOAc Fraction
3.8. Composition of Bioactive Compounds
Peak | Retention Time (min) | [M − H]− (m/z) | MS/MS Production (Relative Abundance) | Compounds | Amount (mg/g) 1 | References |
---|---|---|---|---|---|---|
1 | 17.68 | 153 | 109(100.0%), 153(39.6%) | Protocatechuic acid | 18.51 ± 0.35 | [63] |
2 | 46.75 | 447 | 297(14.7%), 327(100.0%), 357(90.7%) | Orientin | 22.89 ± 1.33 | [64] |
3 | 50.16 | 319 | 95(7.0%), 139(41.9%), 153(21.1%), 183(100.0%) | 3,3,4,5,5,7 Hexahydroxyflavanone | 8.51 ± 0.38 | [65] |
4 | 52.94 | 223 | 164(53.8%), 208(100.0%), 223(20.6%) | (E)-Sinapic acid | 8.81 ± 1.82 | [63] |
5 | 54.51 | 755 | 163(28.3%), 205(29.8%), 309(100.0%), 357(34.4%), 429(53.7%), 489(11.5%) | Unknown | 8.66 ± 0.21 | - |
6 | 58.48 | 463 | 257(19.6%), 300(100.0%), 463(3.6%) | Isoquercitrin | 11.58 ± 0.41 | [63] |
7 | 59.23 | 447 | 285(100.0%), 447(15.5%) | Luteolin 7-O-glucoside | 16.26 ± 0.40 | [63] |
8 | 65.20 | 369 | 145(100.0%), 163(39.5%), 205(15.6%), 309(38.0%), 351(5.3%) | Unknown | 17.01 ± 0.14 | - |
9 | 71.39 | 187 | 125(100.0%), 187(51.8%) | Hydroxygallic acid | 7.65 ± 0.79 | [61] |
10 | 78.37 | 795 | 256(18.2%), 271(100.0%) | Unknown | 16.09 ± 0.43 | - |
11 | 90.46 | 285 | 65(9.4%), 107(19.3%), 133(100.0%), 151(38.7%), 175(20.1%), 199(15.5%), 217(9.1%), 285(49.2%) | Luteolin | 21.79 ± 0.45 | Standard |
12 | 96.58 | 747 | 313(24.3%), 328(100.0%) | Unknown | 9.03 ± 0.95 | - |
13 | 106.45 | 329 | 299(51.3%), 314(100%), 329(46.9%) | Rhamnazin | 25.63 ± 0.82 | [66] |
14 | 111.68 | 585 | 165(79.4%), 195(16.9%), 314(53.1%), 329(100.0%) | Unknown | 21.64 ± 2.91 | - |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflamma-tion-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Multhoff, G.; Molls, M.; Radons, J. Chronic Inflammation in Cancer Development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, J.; Kim, Y.; Choi, Y.; Ham, H.; Jeong, H.-S.; Lee, J.J.F.S. Biotechnology, Anti-inflammatory effect of grape seed may involve the induction of heme oxygenase-1 and suppression of nuclear factor-κB activation. Food Sci. Biotechnol. 2011, 20, 1713–1719. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Heredia, J.B.; Ambriz-Perez, D.L.; Leyva-López, N. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016, 2, 1131412. [Google Scholar] [CrossRef]
- Chen, G.-L.; Fan, M.-X.; Wu, J.-L.; Li, N.; Guo, M.-Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 277, 706–712. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. Technol. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Lu, J.; Fu, X.; Liu, T.; Zheng, Y.; Chen, J.; Luo, F. Phenolic composition, antioxidant, antibacterial and anti-inflammatory activities of leaf and stem extracts from Cryptotaenia japonica Hassk. Ind. Crop. Prod. 2018, 122, 522–532. [Google Scholar] [CrossRef]
- Elzaawely, A.; Maswada, H.F.; El-Sayed, M.; Ahmed, M.E. Phenolic compounds and antioxidant activity of rice straw extract. Int. Lett. Nat. Sci. 2017, 64, 1–9. [Google Scholar] [CrossRef]
- Bakker, R.; Elbersen, W.; Poppens, R.; Lesschen, P. Rice Straw and Wheat Straw—Potential Feedstocks for the Biobased Economy; NL Agency Ministry of Economic Affairs: Hague, The Netherlands, 2013; pp. 1–31. [Google Scholar]
- Karimi, E.; Mehrabanjoubani, P.; Keshavarzian, M.; Oskoueian, E.; Jaafar, H.Z.; Abdolzadeh, A. Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties. J. Sci. Food Agric. 2014, 94, 2324–2330. [Google Scholar] [CrossRef]
- Khanthapok, P.; Muangprom, A.; Sukrong, S. Antioxidant activity and DNA protective properties of rice grass juices. ScienceAsia 2015, 41, 119. [Google Scholar] [CrossRef] [Green Version]
- So, V.; Pocasap, P.; Sutthanut, K.; Sethabouppha, B.; Thukhammee, W.; Wattanathorn, J.; Weerapreeyakul, N. Effect of harvest age on total phenolic, total anthocyanin content, bioactive antioxidant capacity and antiproliferation of black and white glutinous rice sprouts. Appl. Sci. 2020, 10, 7051. [Google Scholar] [CrossRef]
- Mazewski, C.; Liang, K.; de Mejia, E.G. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays. Food Chem. 2018, 242, 378–388. [Google Scholar] [CrossRef]
- Abu Bakar, M.F.; Mohamed, M.; Rahmat, A.; Fry, J. Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chem. 2009, 113, 479–483. [Google Scholar] [CrossRef]
- Hao, J.; Zhu, H.; Zhang, Z.; Yang, S.; Li, H. Identification of anthocyanins in black rice (Oryza sativa L.) by UPLC/Q-TOF-MS and their in vitro and in vivo antioxidant activities. J. Cereal Sci. 2015, 64, 92–99. [Google Scholar] [CrossRef]
- Baek, J.-A.; Chung, N.-J.; Choi, K.-C.; Hwang, J.-M.; Lee, J.-C. Hull extracts from pigmented rice exert antioxidant effects associated with total flavonoid contents and induce apoptosis in human cancer cells. Food Sci. Biotechnol. 2015, 24, 241–247. [Google Scholar] [CrossRef]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, Y.A.; Widyadinata, D.; Irawaty, W.; Ayucitra, A. Fractionation of phenolic and flavonoid compounds from kaffir lime (Citrus hystrix) peel extract and evaluation of antioxidant activity. Reaktor 2017, 17, 111. [Google Scholar] [CrossRef] [Green Version]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhebhe, M.; Füller, T.N.; Chipurura, B.; Muchuweti, M. Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Anal. Methods 2016, 9, 1060–1067. [Google Scholar] [CrossRef]
- Vamanu, E.; Nita, S. Antioxidant capacity and the correlation with major phenolic compounds, anthocyanin, and tocopherol content in various extracts from the wild edible Boletus edulis mushroom. BioMed Res. Int. 2012, 2013, 313905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (Red Clover). BioMed Res Int. 2015, 2015, 643285. [Google Scholar] [CrossRef] [Green Version]
- Gali, L.; Bedjou, F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S. Afr. J. Bot. 2019, 120, 163–169. [Google Scholar] [CrossRef]
- Jun, H.-I.; Shin, J.-W.; Song, G.-S.; Kim, Y.-S. Isolation and Identification of Phenolic Antioxidants in Black Rice Bran. J. Food Sci. 2015, 80, C262–C268. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. Hacat keratinocytes response on antimicrobial atelocollagen substrates: Extent of cytotoxicity, cell viability and proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomchan, R.; Puttarak, P.; Brantner, A.; Siripongvutikorn, S. Selenium-rich ricegrass juice improves antioxidant properties and nitric oxide inhibition in macrophage cells. Antioxidants 2018, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-Y.; Kim, H.-W.; Lee, M.-K.; Kim, H.-J.; Kim, J.-B.; Choe, J.-S.; Lee, Y.-M.; Jang, H.-H. Antioxidant and anti-inflammatory activities in relation to the flavonoids composition of pepper (Capsicum annuum L.). Antioxidants 2020, 9, 986. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lee, S.Y.; Ha, H.J.; Cha, S.H.; Lee, S.K.; Hur, S.J. Rutin attenuates lipopolysaccharide-induced nitric oxide production in macrophage cells. J. Food Nutr. Res. 2015, 3, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fang, X.; Ge, L.; Cao, F.; Zhao, L.; Wang, Z.; Xiao, W. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE 2018, 13, e0197563. [Google Scholar] [CrossRef]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [Green Version]
- Schett, G. Physiological effects of modulating the interleukin-6 axis. Rheumatology 2018, 57, ii43–ii50. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Idriss, H.T.; Naismith, J.H. TNFα and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000, 50, 184–195. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from me-dicinal plants for pharmaceutical and medical aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Ling, W.-H.; Duan, R.-D. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm. Res. 2010, 59, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- García-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamón, E.; Rostagno, M.; Mateo-Vivaracho, L. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. Food Chem. 2014, 161, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Lirk, P.; Rieder, J. Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Semin. Cancer Biol. 2005, 15, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Lee, S.; Kim, H.Y.; Lee, S.; Cho, E.J. Anti-inflammatory effects of luteolin and luteoloside from Taraxacum coreanum in RAW264.7 macrophage cells. Appl. Biol. Chem. 2016, 59, 747–754. [Google Scholar] [CrossRef]
- Min, S.-W.; Ryu, S.-N.; Kim, D.-H. Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 2010, 10, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.-I.; Kim, B.-T.; Song, G.-S.; Kim, Y.-S. Structural characterization of phenolic antioxidants from purple perilla (Perilla frutescens var. acuta) leaves. Food Chem. 2014, 148, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, J.C. Mechanisms of Apoptosis. Am. J. Pathol. 2000, 157, 1415–1430. [Google Scholar] [CrossRef]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Líšková, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers 2019, 11, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Liang, X.; Dai, P.; Chen, Y.; Zhang, Y.; Zhang, M.; Lu, L.; Jin, C.; Lin, X. Alteration of phenolic composition in lettuce (Lactuca sativa L.) by reducing nitrogen supply enhances its anti-proliferative effects on colorectal cancer cells. Int. J. Mol. Sci. 2019, 20, 4205. [Google Scholar] [CrossRef] [Green Version]
- Brunelle, J.K.; Letai, A. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci. 2009, 122, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yuan, J. Caspases in apoptosis and beyond. Oncogene 2008, 27, 6194–6206. [Google Scholar] [CrossRef] [Green Version]
- Morales, J.; Li, L.; Fattah, F.J.; Dong, Y.; Bey, E.A.; Patel, M.; Gao, J.; Boothman, D.A. Review of poly (adp-ribose) polymerase (parp) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, K.Y.; Ling, A.P.K.; Koh, R.Y.; Wong, Y.P.; Say, Y.-H. A review on medicinal properties of orientin. Adv. Pharmacol. Sci. 2016, 2016, 4104595. [Google Scholar] [CrossRef] [Green Version]
- Orfali, A.C.D.G.D.C.; Duarte, A.C.; Bonadio, V.; Martinez, N.P.; De Araújo, M.E.M.B.; Jo, F.B.M.P.; de Carvalho, P.; Priolli, D.G. Review of anticancer mechanisms of isoquercitin. World J. Clin. Oncol. 2016, 7, 189–199. [Google Scholar] [CrossRef]
- Park, C.M.; Song, Y.-S. Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract. 2013, 7, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Lee, E.-J.; Kim, H.-R.; Hwang, K.-A. Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep. 2013, 46, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Zhou, X.-Z.; Ye, L.; Yuan, Q.; Freeberg, S.; Shi, C.; Zhu, P.-W.; Bao, J.; Jiang, N.; Shao, Y. Rhamnazin attenuates inflammation and inhibits alkali burn-induced corneal neovascularization in rats. RSC Adv. 2018, 8, 26696–26706. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New progress in the pharmacology of protocatechuic acid: A compound ingested in daily foods and herbs frequently and heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramovič, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Fathoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. AIP Conf. Proc. 2017, 1862, 030079. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods 2020, 70, 103988. [Google Scholar] [CrossRef]
- Peng, Y.; Bishop, K.S.; Zhang, J.; Chen, D.; Quek, S.Y. Characterization of phenolic compounds and aroma active compounds in feijoa juice from four New Zealand grown cultivars by LC-MS and HS-SPME-GC-O-MS. Int. Food Res. J. 2020, 129, 108873. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef] [PubMed]
- Reed, K.A. Identification of Phenolic Compounds from Peanut Skin Using HPLC-MSn. Ph.D. Thesis, Virginia Poly-Technic Institute and State University, Blacksburg, VA, USA, 7 December 2009. [Google Scholar]
- Chernonosov, A.; Karpova, E.A.; Lyakh, E.M. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev. Bras. Farm. 2017, 27, 576–579. [Google Scholar] [CrossRef]
Fractions | TPC (mg GAE/g DW) | TFC (mg QE/g DW) | TAC (mg C3GE/100g DW) |
---|---|---|---|
Crude ethanolic extract | 303.54 ± 2.06 a | 405.23 ± 2.26 a | 344.00 ± 5.79 a |
Hexane | 106.83 ± 0.84 e | 54.00 ± 2.00 d | 52.33 ± 2.55 d |
Ethyl acetate | 226.83 ± 0.84 c | 220.00 ± 2.00 b | 48.43 ± 1.67 d |
Normal butanol | 233.78 ± 1.92 b | 223.33 ± 2.31 b | 212.08 ± 1.67 b |
Aqueous | 137.11 ± 1.27 d | 137.33 ± 2.31 c | 112.44 ± 1.93 c |
Fractions | DPPH• (µg/L) | ABTS•+ (µg/L) | Reducing Power (µg/L) |
---|---|---|---|
Crude ethanolic extract | 9.77 ± 0.06 e | 175.30 ± 0.69 d | 324.74 ± 1.51 e |
Hexane | 57.13 ± 0.24 a | 627.74 ± 1.68 a | 1253.67 ± 3.76 a |
Ethyl acetate | 32.79 ± 0.09 b | 273.65 ± 1.05 b | 682.06 ± 2.02 b |
Normal butanol | 15.64 ± 0.09 d | 212.75 ± 0.78 c | 332.00 ± 1.28 d |
Aqueous | 32.28 ± 0.23 c | 213.16 ± 0.37 c | 405.27 ± 0.76 c |
BHA | 4.46 ± 0.06 f | nd | nd |
Trolox | nd | 52.04 ± 0.10 e | nd |
Ascorbic acid | nd | nd | 49.63 ± 0.66 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thepthanee, C.; Liu, C.-C.; Yu, H.-S.; Huang, H.-S.; Yen, C.-H.; Li, Y.-H.; Lee, M.-R.; Liaw, E.-T. Evaluation of Phytochemical Contents and In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Black Rice Leaf (Oryza sativa L.) Extract and Its Fractions. Foods 2021, 10, 2987. https://doi.org/10.3390/foods10122987
Thepthanee C, Liu C-C, Yu H-S, Huang H-S, Yen C-H, Li Y-H, Lee M-R, Liaw E-T. Evaluation of Phytochemical Contents and In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Black Rice Leaf (Oryza sativa L.) Extract and Its Fractions. Foods. 2021; 10(12):2987. https://doi.org/10.3390/foods10122987
Chicago/Turabian StyleThepthanee, Chorpaka, Chan-Chiung Liu, Hsu-Sheng Yu, Ho-Shin Huang, Chia-Hung Yen, Yen-Hsien Li, Maw-Rong Lee, and Ean-Tun Liaw. 2021. "Evaluation of Phytochemical Contents and In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Black Rice Leaf (Oryza sativa L.) Extract and Its Fractions" Foods 10, no. 12: 2987. https://doi.org/10.3390/foods10122987
APA StyleThepthanee, C., Liu, C.-C., Yu, H.-S., Huang, H.-S., Yen, C.-H., Li, Y.-H., Lee, M.-R., & Liaw, E.-T. (2021). Evaluation of Phytochemical Contents and In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Black Rice Leaf (Oryza sativa L.) Extract and Its Fractions. Foods, 10(12), 2987. https://doi.org/10.3390/foods10122987