Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemical and Reagents
2.3. Analyses
2.3.1. HPLC Analysis of the Phenolic Profile of the Olives
2.3.2. DPPH Antioxidant Activity
2.3.3. Acrylamide Determination
2.3.4. Volatile Compound Analysis
2.3.5. E-nose Determination
2.4. Data Analysis
2.5. Chemometric Analysis
3. Results
3.1. Effect of Thermal Treatments on the Chemical Properties
3.1.1. Effect of the Sterilization Treatments on the Antioxidant Properties
3.1.2. Effect of Thermal Treatments on Acrylamide Content
3.1.3. Effect of Thermal Treatments on the Volatile Compounds
3.2. Relationship between Volatile Compounds and Acrylamide Content
3.3. Acrylamide Quantification by Using the E-nose
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Table Olive Figures. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/01/OT-W901-29-11-2019-P.pdf (accessed on 15 February 2020).
- Ciafardini, G.; Venditti, G.; Zullo, B.A. Yeast dynamics in the black table olives processing using fermented brine as starter. Food Res. 2021, 5, 92–106. [Google Scholar] [CrossRef]
- Tang, S.; Avena-Bustillos, R.J.; Lear, M.; Sedej, I.; Holstege, D.M.; Friedman, M.; McHugh, T.H.; Wang, S.C. Evaluation of thermal processing variables for reducing acrylamide in canned black ripe olives. J. Food Eng. 2016, 191, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Casado, F.J.; Montaño, A. Influence of processing conditions on acrylamide content in black ripe olives. J. Agric. Food Chem. 2008, 56, 2021–2027. [Google Scholar] [CrossRef]
- Charoenprasert, S.; Mitchell, A. Influence of California-style black ripe olive processing on the formation of acrylamide. J. Agric. Food Chem. 2014, 62, 8716–8721. [Google Scholar] [CrossRef] [PubMed]
- Perez-Nevado, F.; Cabrera-Bañegil, M.; Repilado, E.; Martillanes, S.; Martín-Vertedor, D. Effect of different baking treatments on the acrylamide formation and phenolic compounds in Californian-style black olives. Food Control 2018, 94, 22–29. [Google Scholar] [CrossRef]
- Pan, M.; Liu, K.; Yang, J.; Hong, L.; Xie, X.; Wang, S. Review of research into the determination of acrylamide in foods. Foods 2020, 9, 524. [Google Scholar] [CrossRef]
- Lodolini, E.M.; Cabrera-Bañegil, M.; Fernández, A.; Delgado-Adámez, J.; Ramírez, R.; Martín-Vertedor, D. Monitoring of acrylamide and phenolic compounds in table olive after high hydrostat-ic pressure and cooking treatments. Food Chem. 2019, 286, 250–259. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on contaminants in the food Chain (CONTAM). Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Delatour, T.; Périsset, A.; Goldmann, T.; Riediker, S.; Stadler, R.H. Improved sample preparation to determine acrylamide in difficult matrixes such as chocolate powder, cocoa, and coffee by liquid chromatography tandem mass spectroscopy. J. Agric. Food Chem. 2004, 52, 4625–4631. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EU) 2019/1888 of 7 November 2019 on the Monitoring of the Presence of Acrylamide in Certain Foods; European Union L291 (document 32019H1888). Off. J. Eur. Union 2019, 31–33. [Google Scholar]
- Martín-Vertedor, D.; Fernández, A.; Hernández, A.; Arias-Calderón, R.; Delgado-Adámez, J.; Pérez-Nevado, F. Acrylamide reduction after phenols addition to Californian-style black olives. Food Control 2020, 108, 106888. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernández, A.; Mesías, M.; Martínez, M.; Martín-Tornero, E. Identification of mitigation strategies to reduce acrylamide levels during the production of black olives. J. Food Compos. Anal. 2021, 102, 104009. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Fernández, A.; Mesías, M.; Martínez, M.; Díaz, M.; Martín-Tornero, E. Industrial Strategies to Reduce Acrylamide Formation in Californian-Style Green Ripe Olives. Foods 2020, 9, 1202. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Boselli, E.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-Nose discrimination of abnormal fermentations in Spanish-Style Green Olives. Molecules 2021, 26, 5353. [Google Scholar] [CrossRef]
- Crawford, L.M.; Wang, S.C. Comparative study of four analytical methods for the routine determination of acrylamide in black ripe olives. J. Agric. Food Chem. 2019, 67, 12633–12641. [Google Scholar] [CrossRef]
- Casado, F.J.; Montaño, A.; Spitzner, D.; Carle, R. Investigations into acrylamide precursors in sterilized table olives: Evidence of a peptic fraction being responsible for acrylamide formation. Food Chem. 2013, 141, 1158–1165. [Google Scholar] [CrossRef]
- Asnaashari, M.; Kenari, R.E.; Farahmandfar, R.; Abnous, K.; Taghdisi, S.M. An electrochemical biosensor based on hemoglobin-oligonucleotides-modified electrode for detection of acrylamide in potato fries. Food Chem. 2019, 271, 54–61. [Google Scholar] [CrossRef]
- Wulandari, R.; Ivandini, T.A.; Irkham, S.E.; Einaga, Y. Modification of boron-doped diamond electrodes with platinum to increase the stability and sensitivity of haemoglobin-based acrylamide sensors. Sens. Mater. 2019, 31, 1105–1117. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Gámez García, J.; Bellincontro, A.; Mencarelli, F.; Gómez Ortega, J. Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharv. Biol. Technol. 2020, 160, 111058. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Głowacz-Różyńska, A.; Wasik, A. On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control 2021, 121, 107659. [Google Scholar] [CrossRef]
- Rusinek, R.; Kmiecik, D.; Gawrysiak-Witulska, M.; Malaga-Tobola, U.; Tabor, S.; Findura, P.; Siger, A.; Gancarz, M. Identification of the olfactory profile of rapeseed oil as a function of heating time and ratio of volume and surface area of contact with oxygen using an electronic nose. Sensors 2021, 21, 303. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. E-nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2021. [Google Scholar] [CrossRef]
- Cabrera-Bañegil, M.; Pérez-Nevado, F.; Montaño, A.; Pleite, R.; Martín-Vertedor, D. The effect of olive fruit maturation in Spanish style fermentation with a controlled temperature. LWT-Food Sci. Technol. 2018, 91, 40–47. [Google Scholar] [CrossRef]
- Cabrera-Bañegil, M.; Schaide, T.; Manzano, R.; Delgado-Adámez, J.; Durán-Merás, I.; Martín-Vertedor, D. Optimization and validation of a rapid liquid chromatography method for determination of the main polyphenolic compounds in table olives and in olive paste. Food Chem. 2017, 233, 164–173. [Google Scholar] [CrossRef]
- Fernández, A.; Talaverano, M.I.; Pérez-Nevado, F.; Boselli, E.; Cordeiro, A.M.; Martillanes, S.; Foligni, R.; Martín-Vertedor, D. Evaluation of phenolics and acrylamide and their bioavailability in high hydrostatic pressure treated and fried table olives. J. Food Process. Preserv. 2020, 44, e14384. [Google Scholar] [CrossRef]
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- Meléndez, F.; Arroyo, P.; Herrero, J.L.; Fernández, J.A.; Carmona, P.; Rodríguez, S.; Lozano, J. Fast detection of TCA in cork stoppers by means of electronic noses. In Proceedings of the IEEE International Symposium on Circuits and Systems, Sevilla, Spain, 10–21 October 2020; pp. 1–4. [Google Scholar]
- Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodríguez, S.; Lozano, J. Electronic nose with digital gas sensors connected via bluetooth to a smartphone for air quality measurements. Sensors 2020, 20, 786. [Google Scholar] [CrossRef] [Green Version]
- IOC. Method for the Sensory Analysis of Table Olives COI/OT/MO/Doc. No 1/Rev. 2; International Olive Oil Council: Madrid, Spain, 2011. [Google Scholar]
- Geladi, P.; Kowalski, B. Partial least-squares regression: A tutorial. Anal. Chim. 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Abu-Khalaf, N.; Hmidat, M. Visible/Near Infrared (VIS/NIR) spectroscopy as an optical sensor for evaluating olive oil quality. Comput. Electron. Agric. 2020, 173, 105445. [Google Scholar] [CrossRef]
- De Girolamo, A.; Lippolis, V.; Nordkvist, E.; Visconti, A. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-transform near infrared (FT-NIR) spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Exp. Risk Assess. 2009, 26, 907–917. [Google Scholar] [CrossRef]
- Sansone Sansone-Land, A.; Takeoka, G.R.; Shoemaker, C.F. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea). Food Chem. 2014, 149, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Issaoui, M.; Brahmi, F.; Nakbi, A.; Chehab, H.; Mechri, B.; Hammami, M. Changes in volatile compounds during processing of Tunisian-style table olives. J. Am. Oil. Chem. Soc. 2012, 89, 347–354. [Google Scholar] [CrossRef]
- Longo, E.; Morozova, K.; Scampicchio, M. Effect of light irradiation on the antioxidant stability of oleuropein. Food Chem. 2017, 237, 91–97. [Google Scholar] [CrossRef]
- Franco, M.N.; Galeano-Díaz, T.; López, Ó.; Fernández-Bolaños, J.G.; Sánchez, J.; de Miguel, C.; Gil, M.V.; Martín-Vertedor, D. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 163, 289–298. [Google Scholar] [CrossRef]
- Pistarino, E.; Aliakbarian, B.; Casazza, A.A.; Paini, M.; Cosulich, M.E.; Perego, P. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem. 2013, 138, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Casado, F.J.; Sánchez, A.H.; Montaño, A. Reduction of acrylamide content of ripe olives by selected additives. Food Chem. 2010, 119, 161–166. [Google Scholar] [CrossRef]
- Xu, C.; Yagiz, Y.; Marshall, S.; Li, Z.; Simonne, A.; Lu, J.; Marshall, M.R. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chem. 2015, 182, 200–208. [Google Scholar] [CrossRef]
- Martín-Vertedor, D.; Rodrigues, N.; Marx, I.M.G.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Assessing acrylamide content in sterilized Californian-style black table olives using HPLC-MS-QQQ and a potentiometric electronic tongue. LWT 2020, 129, 109605. [Google Scholar] [CrossRef]
- Lomelí-Martín, A.; Martínez, L.M.; Welti-Chanes, J.; Escobedo-Avellaneda, Z. Induced Changes in Aroma Compounds of Foods Treated with High Hydrostatic Pressure: A Review. Foods 2021, 10, 878. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, B.; Xu, Y.; Yao, Z.; Zhu, B.; Li, X.; Sun, Y. Effects of different thermal treatment temperatures on volatile flavour compounds of water-boiled salted duck after packaging. LWT 2022, 154, 112625. [Google Scholar] [CrossRef]
- Rief, V.; Felske, C.; Scharinger, A.; Krumbügel, K.; Stegmüller, S.; Breitling-Utzmann, C.M.; Richling, E.; Walch, S.G.; Lachenmeier, D.W. Indirect nuclear magnetic resonance (NMR) spectroscopic determination of acrylamide in coffee using partial least squares (PLS) regression. Beverages 2021, 7, 31. [Google Scholar] [CrossRef]
‘Manzanilla Cacereña’ | |||||
T1 | T2 | T3 | T4 | T5 | |
Phenolic profile (mg·100 g−1) | |||||
Hydroxytyrosol | 1226.6 ± 69.8 e B | 1004.5 ± 32.8 d B | 920.1 ± 14.5 c B | 680.5 ± 25.8 b B | 551.8 ± 26.2 a B |
Tyrosol | 312.1 ± 6.4 d B | 205.4 ± 10.5 c B | 196.6 ± 16.1 c B | 143.7 ± 5.7 b B | 127.0 ± 6.3 a B |
PB1 | 41.4 ± 3.5 d B | 40.6 ± 3.6 d B | 27.5 ± 5.5 c B | 19.1 ± 1.6 b NS | 15.5 ± 1.0 a B |
Vanillic acid | 6.8 ± 0.5 b B | 3.8 ± 0.2 a NS | 4.1 ± 0.2 a NS | 3.7 ± 0.1 a NS | 3.7 ± 0.1 a NS |
Epicatechin | 4.3 ± 0.1 c NS | 4.8 ± 0.7 d B | 3.9 ± 0.5 b NS | 3.8 ± 0.5 b NS | 3.2 ± 0.1 a NS |
Oleuropein | 239.4 ± 10.9 e B | 206.8 ± 4.8 d B | 155.0 ± 7.4 c B | 125.8 ± 3.4 b B | 99.6 ± 1.5 a B |
Luteolin-7-O-glucoside | 6.1 ± 0.6 e B | 4.9 ± 0.1 d B | 4.1 ± 0.2 c NS | 1.8 ± 0.2 b B | 1.4 ± 0.1 a NS |
Apigenin-7-O | 7.8 ± 0.6 c B | 6.1 ± 1.4 b B | 6.2 ± 0.2 b NS | 2.7 ± 0.2 a B | 2.5 ± 0.1 a B |
Verbascoside | 8.9 ± 1.1 d B | 9.6 ± 0.7 d B | 7.4 ± 0.3 c B | 1.9 ± 0.1 b B | 1.3 ± 0.1 a B |
p-coumaric | 21.6 ± 1.4 e B | 18.7 ± 0.5 d B | 16.4 ± 0.7 c B | 3.4 ± 0.4 b B | 2.4 ± 0.1 a B |
Σ phenols | 1874.9 ± 77.9 e B | 1505.2 ± 47.4 d B | 1341.2 ± 32.7 c B | 986.4 ± 28.6 b B | 808.5 ± 30.4 a B |
Antioxidant properties (mgTrolox·g extrac−1) | |||||
DPPH | 2.7 ± 0.1 d B | 2.6 ± 0.2 d B | 2.5 ± 0.3 c B | 2.2 ± 0.1 b B | 1.9 ± 0.1 a B |
Toxic substance (ng·g−1) | |||||
Acrylamide | 105.4 ± 3.4 a A | 137.7 ± 3.1 b A | 188.7 ± 5.2 c A | 312.4 ± 6.0 d A | 383.5 ± 8.9 e A |
‘Hojiblanca’ | |||||
T1 | T2 | T3 | T4 | T5 | |
Phenolic profile (mg·100 g−1) | |||||
Hydroxytyrosol | 911.2 ± 9.9 e A | 839.0 ± 15.6 d A | 793.4 ± 14.6 c A | 526.4 ± 3.0 b A | 425.8 ± 6.0 a A |
Tyrosol | 194.0 ± 7.8 e A | 164.4 ± 5.3 d A | 152.2 ± 4.1 c A | 104.9 ± 5.2 b A | 89.6 ± 3.5 a A |
PB1 | 30.9 ± 1.2 d A | 23.3 ± 1.1 c A | 20.2 ± 2.4 c A | 17.3 ± 2.6 b NS | 9.7 ± 0.5 a A |
Vanillic acid | 5.0 ± 0.1 c A | 4.1 ± 0.2 b NS | 3.9 ± 0.3 b NS | 3.1 ± 0.1 a NS | 3.1 ± 0.1 a NS |
Epicatechin | 3.7 ± 0.3 ns NS | 3.2 ± 0.1 ns A | 3.9 ± 0.4 ns NS | 4.2 ± 0.1 ns NS | 2.8 ± 0.6 ns NS |
Oleuropein | 173.2 ± 9.4 e A | 150.8 ± 8.4 d A | 141.6 ± 9.8 c A | 113.8 ± 3.0 b A | 91.9 ± 6.5 a A |
Luteolin-7-O-glucoside | 5.2 ± 0.2 c A | 4.4 ± 0.1 b A | 4.3 ± 0.3 b NS | 1.3 ± 0.2 a A | 1.3 ± 0.1 a NS |
Apigenin-7-O | 6.1 ± 0.1 c A | 5.1 ± 0.2 c A | 6.2 ± 0.6 c NS | 2.2 ± 0.1 b A | 1.2 ± 0.1 a A |
Verbascoside | 4.6 ± 1.0 b A | 5.4 ± 0.2 b A | 4.9 ± 0.1 b A | 1.2 ± 0.2 a A | 1.1 ± 0.1 a A |
p-coumaric | 16.5 ± 1.1 c A | 16.6 ± 0.5 c A | 10.7 ± 0.5 b A | 2.7 ± 0.2 a A | 1.9 ± 0.1 a A |
Σ phenols | 1350.3 ± 20.6 e A | 1216.4 ± 24.7 d A | 1141.3 ± 10.6 c A | 777.1 ± 9.4 b A | 628.5 ± 12.2 a A |
Antioxidant properties (mgTrolox·g extrac−1) | |||||
DPPH | 1.0 ± 0.1 d A | 1.0 ± 0.1 d A | 0.9 ± 0.1 c A | 0.8 ± 0.1 b A | 0.6 ± 0.1 a A |
Toxic substance (ng·g−1) | |||||
Acrylamide | 136.7 ± 4.4 a B | 172.9 ± 2.8 b B | 244.0 ± 5.8 c B | 362.8 ± 4.3 d B | 446.1 ± 12.9 e B |
‘Manzanilla Cacereña’ | ‘Hojiblanca’ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | T5 | T1 | T2 | T3 | T4 | T5 | |
Aromatics | 15.5 | 18.1 | 25.5 | 26.9 | 27.5 | 7.6 | 14.2 | 18.4 | 20.8 | 19.3 |
Alcohols | 3.3 | 2.0 | 3.7 | 4.7 | 4.8 | 3.2 | 4.3 | 4.6 | 3.7 | 4.0 |
Aldehydes | 28.1 | 40.9 | 42.8 | 45 | 46.7 | 27.2 | 32.4 | 37.2 | 45.9 | 44.5 |
Esters | 26.1 | 15.8 | 8.7 | 2.3 | 2.2 | 27.9 | 22.4 | 15.6 | 5.1 | 5.2 |
Phenols | 20.9 | 15.6 | 6.6 | 6.9 | 2.1 | 20.6 | 15.9 | 11.4 | 7.0 | 7.5 |
Others | 6.1 | 7.6 | 12.7 | 14.2 | 16.7 | 13.5 | 10.8 | 12.8 | 17.5 | 19.5 |
LVs | R2cal | R2CV | R2P | RMSEC | RMSECV | RMSEP | RPD | RER |
---|---|---|---|---|---|---|---|---|
4 | 0.85 | 0.79 | 0.78 | 35.24 | 41.48 | 37.07 | 2.63 | 10.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Tornero, E.; Sánchez, R.; Lozano, J.; Martínez, M.; Arroyo, P.; Martín-Vertedor, D. Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination. Foods 2021, 10, 2973. https://doi.org/10.3390/foods10122973
Martín-Tornero E, Sánchez R, Lozano J, Martínez M, Arroyo P, Martín-Vertedor D. Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination. Foods. 2021; 10(12):2973. https://doi.org/10.3390/foods10122973
Chicago/Turabian StyleMartín-Tornero, Elísabet, Ramiro Sánchez, Jesús Lozano, Manuel Martínez, Patricia Arroyo, and Daniel Martín-Vertedor. 2021. "Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-nose for Acrylamide Determination" Foods 10, no. 12: 2973. https://doi.org/10.3390/foods10122973