Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Strain and Culture Conditions
2.2. Characterization of the Water Sample
2.3. Growth Measurements
2.4. Microalgal Biochemical Composition
2.4.1. Carbohydrate Content
2.4.2. Total Lipid Content
2.4.3. Protein Content
2.4.4. Ash Content
2.5. Assessment of Pigments
2.6. Evaluation of Fatty Acid Composition
2.7. Estimation of Amino Acid Composition
2.8. Determination of Monosaccharide Composition
2.9. Statistical Analysis
3. Results
3.1. Growth Characteristics of A. platensis
3.2. Biochemical Composition and Yield of A. platensis
3.3. Changes in Fatty Acids Composition
3.4. Variations of Pigment Content
3.5. Alterations of Amino Acids Composition
3.6. Changes of Monosaccharide Composition
3.7. Biomass and Active Substances Productivity of A. platensis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vonshak, A. Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology; Taylor and Francis: London, UK, 1997; Volume 196, p. 53. [Google Scholar]
- Sotiroudis, T.G.; Sotiroudis, G.T. Health Aspects of Spirulina (Arthrospira) Microalga Food Supplement. J. Serb. Chem. Soc. 2013, 78, 395–405. [Google Scholar] [CrossRef]
- Markou, G.; Angelidaki, I.; Nerantzis, E.; Georgakakis, D. Bioethanol Production by Carbohydrate-Enriched Biomass of Arthrospira (Spirulina) platensis. Energies 2013, 6, 3937–3950. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernandez-Sevilla, J.M.; Gonzalez-Lopez, C.; Acien-Fernandez, F.G. Spirulina for the Food and Functional Food Industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2018-Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018; p. 25. [Google Scholar]
- Elain, A.; Nkounkou, C.; Le Fellic, M.; Donnart, K. Green Extraction of Polysaccharides from Arthrospira platensis using High Pressure Homogenization. J. Appl. Phycol. 2020, 32, 1719–1727. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential Application of Microalga Spirulina platensis as a Protein Source. J. Sci. Food Agr. 2017, 97, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Li, J.J.; Zhong, H.Q.; Xie, J.W.; Zhang, P.D.; Lu, Q.; Li, J.; Xu, P.L.; Chen, P.; Leng, L.J.; et al. Anti-oxidation Properties and Therapeutic Potentials of Spirulina. Algal Res. 2021, 55, 102240. [Google Scholar] [CrossRef]
- Nowruzi, B.; Sarvari, G.; Blanco, S. The cosmetic Application of Cyanobacterial Secondary Metabolites. Algal Res. 2020, 49, 101959. [Google Scholar] [CrossRef]
- Tourang, M.; Baghdadi, M.; Torang, A.; Sarkhosh, S. Optimization of Carbohydrate Productivity of Spirulina Microalgae as a Potential Feedstock for Bioethanol Production. Int. J. Environ. Sci. Technol. 2019, 16, 1303–1318. [Google Scholar] [CrossRef]
- Hou, Y.H.; Yan, M.H.; Wang, Q.F.; Wang, Y.F.; Xu, Y.F.; Wang, Y.T.; Li, H.Y.; Wang, H. C-phycocyanin from Spirulina maxima as a Green Fluorescent Probe for the Highly Selective Detection of Mercury(II) in Seafood. Food Anal. Methods 2016, 10, 1931–1939. [Google Scholar] [CrossRef]
- Raposo, M.F.D.; de Morais, R.M.S.C.; de Morais, A.M.M.B. Health Applications of Bioactive Compounds from Marine Microalgae. Life Sci. 2013, 93, 479–486. [Google Scholar] [CrossRef]
- Arahou, F.; Hassikou, R.; Arahou, M.; Rhazi, L.; Wahby, I. Influence of Culture Conditions on Arthrospira platensis Growth and Valorization of Biomass as Input for Sustainable Agriculture. Aquacult. Int. 2021, 29, 2009–2020. [Google Scholar] [CrossRef]
- Lu, H.X.; Cheng, J.; Zhu, Y.X.; Li, K.; Tian, J.L.; Zhou, J.H. Responses of Arthrospira ZJU9000 to High Bicarbonate Concentration (HCO3−: 171.2 mM): How do Biomass Productivity and Lipid Content Simultaneously Increase? Algal Res. 2019, 41, 101531. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Chirasuwan, N.; Srinorasing, T.; Attasat, S.; Nopharatana, A.; Bunnag, B. Enhanced Biomass and Phycocyanin Production of Arthrospira (Spirulina) Platensis by a Cultivation Management Strategy: Light Intensity and Cell Concentration. Bioresour. Technol. 2021, 343, 126077–126085. [Google Scholar] [CrossRef]
- Liu, Q.; Yao, C.; Sun, Y.; Chen, W.; Tan, H.; Cao, X.; Xue, S.; Yin, H. Production and Structural Characterization of a New Type of Polysaccharide from Nitrogen-Limited Arthrospira platensis Cultivated in Outdoor Industrial-Scale Open Raceway Ponds. Biotechnol. Biofuels 2019, 12, 131–143. [Google Scholar] [CrossRef]
- Bezerra, P.Q.M.; Moraes, L.; Cardoso, L.G.; Druzian, J.I.; Morais, M.G.; Nunes, I.L.; Costa, J.A.V. Spirulina sp. LEB 18 Cultivation in Seawater and Reduced Nutrients: Bioprocess Strategy for Increasing Carbohydrates in Biomass. Bioresour. Technol. 2020, 316, 123883. [Google Scholar] [CrossRef]
- Yu, J.J.; Hu, H.C.; Wu, X.D.; Wang, C.C.; Zhou, T.; Liu, Y.H.; Ruan, R.; Zheng, H.L. Continuous Cultivation of Arthrospira platensis for Phycocyanin Production in Large-Scale Outdoor Raceway Ponds using Microfiltered Culture Medium. Bioresour. Technol. 2019, 287, 121420. [Google Scholar] [CrossRef]
- Wu, B.; Tseng, C.K.; Xiang, W. Large-Scale Cultivation of Spirulina in Seawater Based Culture-Medium. Bot. Mar. 1993, 36, 99–102. [Google Scholar] [CrossRef]
- Liu, C.; Li, L.J.; Wu, C.Y.; Guo, K.N.; Li, J.H. Growth and Antioxidant Production of Spirulina in Different NaCl Concentrations. Biotechnol. Lett. 2016, 38, 1089–1096. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Benemann, J.R.; Zhang, X.C.; Hu, H.J.; Qin, S. Microalgal Industry in China: Challenges and Prospects. J. Appl. Phycol. 2016, 28, 715–725. [Google Scholar] [CrossRef]
- Can, S.S.; Koru, E.; Cirik, S. Effect of Temperature and Nitrogen Concentration on the Growth and Lipid Content of Spirulina platensis and Biodiesel Production. Aquacult Int. 2017, 25, 1485–1493. [Google Scholar]
- Xu, Z.J.; He, Q.; Gong, Y.C.; Wang, Y.; Chi, Q.L.; Liu, G.X.; Hu, Z.Y.; Zhang, C.W.; Hu, Q. Assessment of a Novel Oleaginous Filamentous Microalga Klebsormidium sp. Lgx80 (Streptophyta, Klebsormidiales) for Biomass and Lipid Production. J. Phycol. 2021, 57, 1151–1166. [Google Scholar] [CrossRef]
- Ikaran, Z.; Suarez-Alvarez, S.; Urreta, I.; Castanon, S. The Effect of Nitrogen Limitation on the Physiology and Metabolism of Chlorella vulgaris var L3. Algal Res. 2015, 10, 134–144. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Liu, Y.; Wang, Q.; Gao, X.; Gong, Q. Effects of Temperature and Salinity on the Growth and Biochemical Composition of the Brown alga sargassum fusiforme (fucales, phaeophyceae). J. Appl. Phycol. 2019, 31, 3061–3068. [Google Scholar] [CrossRef]
- Wu, X.S.; Tong, R.Y.; Wang, Y.J.; Mei, C.L.; Li, Q. Study on an Online Detection Method for Ground Water Quality and Instrument Design. Sensors 2019, 19, 2153. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Khozin-Goldberg, I.; Shrestha, P.; Cohen, Z. Mobilization of Arachidonyl Moieties from Triacylglycerols into Chloroplastic Lipids Following Recovery from Nitrogen Starvation of the Microalga Parietochloris incisa. BBA-Mol. Cell Biol. Lipids 2005, 1738, 63–715. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.S.; Wu, J.Y.; Wu, H.L.; Yang, B.J.; Dai, L.M.; Wu, H.B.; Xiang, W.Z. The Potential Productivity of the Microalga, Nannochloropsis oceanica SCS-1981, in a Solar Powered Outdoor Open Pond as an Aquaculture Feed. Algal Res. 2020, 46, 101793. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green-Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wu, H.B.; Jiang, P.L.; Chen, Z.S.; Xiang, W.Z. Growth and Biochemical Composition of Porphyridium purpureum SCS-02 under Different Nitrogen Concentrations. Mar. Drugs 2019, 17, 124. [Google Scholar] [CrossRef] [Green Version]
- De la Jara, A.; Ruano-Rodriguez, C.; Polifrone, M.; Assunao, P.; Brito-Casillas, Y.; Wgner, A.M.; Serra-Majem, L. Impact of Dietary Arthrospira (Spirulina) Biomass Consumption on Human Health: Main Health Targets and Systematic Review. J. Appl. Phycol. 2018, 30, 2403–2423. [Google Scholar] [CrossRef]
- Markou, G.; Diamantis, A.; Arapoglou, D.; Mitrogiannis, D.; Gonzalez-Fernandez, C.; Unc, A. Growing Spirulina (Arthrospira platensis) in Seawater Supplemented with Digestate: Trade-offs between Increased Salinity, Nutrient and Light Availability. Biochem. Eng. J. 2021, 165, 107815. [Google Scholar] [CrossRef]
- Li, X.T.; Li, W.; Zhai, J.; Wei, H.X. Effect of Nitrogen Limitation on Biochemical Composition and Photosynthetic Performance for Fed-Batch Mixotrophic Cultivation of Microalga Spirulina platensis. Bioresour. Technol. 2018, 263, 555–561. [Google Scholar] [CrossRef]
- Jiang, L.; Sun, J.; Nie, C.; Li, Y.; Jenkins, J.; Pei, H. Filamentous Cyanobacteria Triples Oil Production in Seawater-Based Medium Supplemented with Industrial Waste: Monosodium Glutamate Residue. Biotechnol. Biofuels 2019, 12, 53. [Google Scholar] [CrossRef] [Green Version]
- Mahrouqi, H.A.; Naqqiuddin, M.A.; Achankunju, J.; Omar, H.; Ismail, A. Different Salinity Effects on the Mass Cultivation of Spirulina (Arthrospira platensis) under Sheltered Outdoor Conditions in Oman and Malaysia. J. Algal Biomass Utln. 2015, 6, 61–67. [Google Scholar]
- Vonshak, A.; Laorawat, S.; Bunnag, B.; Tanticharoen, M. The Effect of Light Availability on the Photosynthetic Activity and Productivity of Outdoor Cultures of Arthrospira platensis (Spirulina). J. Appl. Phycol. 2014, 26, 1309–1315. [Google Scholar] [CrossRef]
- Alipanah, L.; Rohloff, J.; Winge, P.; Bones, A.M.; Brembu, T. Whole-Cell Response to Nitrogen Deprivation in the Diatom Phaeodactylum tricornutum. J. Exp. Bot. 2015, 66, 6281–6296. [Google Scholar] [CrossRef] [Green Version]
- Braga, V.D.; Moreira, J.B.; Costa, J.A.V.; de Morais, M.G. Enhancement of the Carbohydrate Content in Spirulina by Applying CO2, Thermoelectric Fly Ashes and Reduced Nitrogen Supply. Int. J. Biol. Macromol. 2019, 123, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Eliopoulos, C.; Argyri, A.; Arapoglou, D. Production of Arthrospira (Spirulina) platensis Enriched in Glucans through Phosphorus Limitation. Appl. Sci. 2021, 11, 8121. [Google Scholar] [CrossRef]
- Markou, G.; Chatzipavlidis, I.; Georgakakis, D. Carbohydrates Production and Bio-flocculation Characteristics in Cultures of Arthrospira (Spirulina) platensis: Improvements Through Phosphorus Limitation Process. Bioenerg. Res. 2012, 5, 915–925. [Google Scholar] [CrossRef]
- Mutawie, H.H. Growth and Metabolic Response of the Filamentous Cyanobacterium Spirulina platensis to Salinity Stress of Sodium Chloride. Life Sci. J. 2015, 12, 71–78. [Google Scholar]
- Bashir, S.; Sharif, M.K.; Butt, M.S.; Shahid, M. Functional Properties and Amino Acid Profile of Spirulina Platensis Protein Isolates. Pak. J. Sci. Ind. Res. Ser. B Biol. Sci. 2016, 59, 12–19. [Google Scholar] [CrossRef]
- Uslu, L.H.; Ik, O.; Sayn, S.; Durmaz, Y.; Gkpnar, E. The Effect of Temperature on Protein and Amino Acid Composition of Spirulina platensis. J. Fish. Aquat. Sci. 2009, 26, 139–142. [Google Scholar]
- Guerra, L.T.; Levitan, O.; Frada, M.J.; Sun, J.S.; Falkowski, P.G.; Dismukes, G.C. Regulatory Branch Points Affecting Protein and Lipid Biosynthesis in the Diatom Phaeodactylum tricornutum. Biomass Bioenergy 2013, 59, 306–315. [Google Scholar] [CrossRef]
- Pan, Y.F.; Yang, J.; Gong, Y.M.; Li, X.L.; Hu, H.H. 3-Hydroxyisobutyryl-CoA Hydrolase Involved in Isoleucine Catabolism Regulates Triacylglycerol Accumulation in Phaeodactylum tricornutum. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.X.; Kong, F.T.; Torres-Romero, I.; Burlacot, A.; Cuine, S.; Legeret, B.; Billon, E.; Brotman, Y.; Alseekh, S.; Fernie, A.R.; et al. Branched-Chain Amino Acid Catabolism Impacts Triacylglycerol Homeostasis in Chlamydomonas reinhardtii. Plant Physiol. 2019, 179, 1502–1514. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Herrero, M.; Cifuentes, A.; Ibanez, E. Innovative Natural Functional Ingredients from Microalgae. J. Agr. Food Chem. 2009, 57, 7159–7170. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Sánchez-Galván, G. Phycoremediation: Current Challenges and Applications. In Comprehensive Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 6, pp. 215–222. [Google Scholar]
Element | Concentration (mg L−1) | Detection Limit (mg L−1) |
---|---|---|
Fe | 0.008 ± 0.000 | 0.001 |
Na | 8531.667 ± 239.201 | 0.001 |
K | 303.318 ± 7.946 | 0.001 |
Ca | 240.399 ± 7.809 | 0.001 |
Mg | 824.333 ± 37.554 | 0.001 |
P | 0.029 ± 0.016 | 0.010 |
Pb | ND | 0.001 |
Cd | ND | 0.001 |
As | ND | 0.006 |
Cu | ND | 0.005 |
Zin | ND | 0.010 |
Hg | ND | 0.00005 |
Cr | ND | 0.050 |
Amino Acid Type | Amino Acid Content (g/100 g Dry Matter) | ||
---|---|---|---|
Day 0 | Day 14 | Day 26 | |
Essential amino acids | 25.85 ± 1.15 | 18.14 ± 0.06 | 12.99 ± 0.37 |
Phenylalanine | 2.84 ± 0.12 | 2.06 ± 0.01 | 1.45 ± 0.03 |
Methionine | 1.22 ± 0.04 | 0.69 ± 0.01 | 0.43 ± 0.00 |
Threonine | 3.27 ± 0.14 | 2.29 ± 0.04 | 1.65 ± 0.06 |
Valine | 4.04 ± 0.19 | 2.86 ± 0.00 | 2.12 ± 0.05 |
Isoleucine | 3.53 ± 0.16 | 2.47 ± 0.01 | 1.75 ± 0.06 |
Leucine * | 5.80 ± 0.26 | 4.08 ± 0.01 | 2.93 ± 0.09 |
Lysine | 3.350 ± 0.170 | 2.395 ± 0.021 | 1.700 ± 0.057 |
Histidine | 0.98 ± 0.06 | 0.70 ± 0.00 | 0.50 ± 0.02 |
Tryptophan | 0.835 ± 0.021 | 0.630 ± 0.014 | 0.475 ± 0.007 |
Nonessential amino acids | 36.43 ± 1.54 | 25.17 ± 0.30 | 17.98 ± 0.43 |
Alanine * | 5.13 ± 0.22 | 3.55 ± 0.03 | 2.56 ± 0.04 |
Arginine * | 4.48 ± 0.16 | 3.05 ± 0.01 | 2.10 ± 0.05 |
Aspartic acid * | 6.10 ± 0.26 | 4.32 ± 0.05 | 3.13 ± 0.07 |
Glutamic acid * | 9.00 ± 0.41 | 6.22 ± 0.13 | 4.49 ± 0.13 |
Glycine | 3.21 ± 0.13 | 2.22 ± 0.02 | 1.60 ± 0.04 |
Proline | 2.38 ± 0.10 | 1.70 ± 0.00 | 1.23 ± 0.01 |
cysteine | 0.26 ± 0.01 | 0.14 ± 0.01 | 0.09 ± 0.01 |
Tyrosine | 2.69 ± 0.11 | 1.72 ± 0.03 | 1.13 ± 0.04 |
Serine | 3.20 ± 0.14 | 2.26 ± 0.04 | 1.66 ± 0.04 |
SRC | 49.94 ± 0.17 | 47.73 ± 0.05 | 46.22 ± 0.26 |
Day 0 | Day 14 | Day 26 | |
---|---|---|---|
Rha | 3.19 ± 0.54 | 1.54 ± 0.13 | 1.19 ± 0.09 |
GlcN | 6.46 ± 0.34 | 1.65 ± 0.06 | 1.32 ± 0.04 |
Gal | 11.25 ± 1.34 | 3.02 ± 0.24 | 2.17 ± 0.25 |
Glc | 77.81 ± 0.84 | 92.31 ± 1.88 | 93.75 ± 0.96 |
Xyl | 0.00 ± 0.00 | 1.16 ± 0.77 | 1.20 ± 0.84 |
GlcA | 1.28 ± 1.11 | 0.32 ± 0.28 | 0.37 ± 0.32 |
Content (% DW) | Volumetric Productivity (mg L−1 d−1) | Area Productivity (g m−2 d−1) | Annual Productivity (ton ha−1 yr−1) | |
---|---|---|---|---|
Biomass | / | 24.57 ± 1.33 | 3.96 ± 0.21 | 14.44 ± 0.78 |
Carbohydrates | 44.78 ± 1.60 | 17.92 ± 0.12 | 2.88 ± 0.02 | 10.53 ± 0.07 |
Proteins | 39.88 ± 0.72 | 3.75 ± 0.13 | 0.60 ± 0.02 | 2.21 ± 0.07 |
Lipids | 3.96 ± 0.18 | 0.30 ± 0.01 | 0.05 ± 0.00 | 0.18 ± 0.01 |
Phycobiliproteins | 8.14 ± 0.144 | 0.53 ± 0.03 | 0.09 ± 0.00 | 0.31 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Li, T.; Lv, J.; Chen, Z.; Wu, J.; Wang, N.; Wu, H.; Xiang, W. Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter. Foods 2021, 10, 2974. https://doi.org/10.3390/foods10122974
Wu H, Li T, Lv J, Chen Z, Wu J, Wang N, Wu H, Xiang W. Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter. Foods. 2021; 10(12):2974. https://doi.org/10.3390/foods10122974
Chicago/Turabian StyleWu, Hualian, Tao Li, Jinting Lv, Zishuo Chen, Jiayi Wu, Na Wang, Houbo Wu, and Wenzhou Xiang. 2021. "Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter" Foods 10, no. 12: 2974. https://doi.org/10.3390/foods10122974
APA StyleWu, H., Li, T., Lv, J., Chen, Z., Wu, J., Wang, N., Wu, H., & Xiang, W. (2021). Growth and Biochemical Composition Characteristics of Arthrospira platensis Induced by Simultaneous Nitrogen Deficiency and Seawater-Supplemented Medium in an Outdoor Raceway Pond in Winter. Foods, 10(12), 2974. https://doi.org/10.3390/foods10122974