A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media for Growth
2.2. Microorganisms and Culture Conditions
2.3. Pre-Oil Extraction Preparation
2.4. Extraction of Essential Oils
2.5. Milk Sample Preparation
2.6. Determination of Minimum Inhibitory Concentration (MIC)
2.7. Antimicrobial Activity of Combined Essential Oils of Black Pepper Extract (BPE) and Cinnamon Extract (CE) against E. fergusonii
2.8. pH Measurement
2.9. Statistical Analysis
3. Results
3.1. Effect of Combined BPE and CE on Growth of E. fergusonii and Change in pH of Milk Fermented at 25 °C
3.2. Effect of Various Concentrations of BPE and CE on the Growth of E. fergusonii and Change in pH of Milk Fermented at 43 °C
3.3. Survival of E. fergusonii in Fermented Milk during Storage at 25 °C in Samples Treated with BPE and CE
3.3.1. Survival of E. fergusonii during Storage in Milk Fermented at 25 °C
3.3.2. Survival of E. fergusonii during Storage in Milk Fermented at 43 °C
3.4. Post Fermentation Survival of E. fergusonii
3.4.1. Survival of E. fergusonii Inoculated into Milk after Fermentation at 25 °C and Subsequently Stored at 25 °C
3.4.2. Survival of E. fergusonii Inoculated into Milk after Fermentation at 43 °C and Subsequently Stored at 25 °C
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farmer, J.J., 3rd; Fanning, G.R.; Davis, B.R.; O’hara, C.M.; Riddle, C.; Hickman-Brenner, F.W.; Asbury, M.A.; Lowery, V.A., 3rd; Brenner, D.J. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 1985, 21, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Touchon, M.; Hoede, C.; Tenaillon, O.; Barbe, V.; Baeriswyl, S.; Bidet, P.; Bingen, E.; Bonacorsi, S.; Bouchier, C.; Bouvet, O.; et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 2009, 5, e1000344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, M.G.; Moeller, R.B. Escherichia fergusonii associated with pneumonia in a beef cow. J. Vet. Med. 2013, 2013, 829532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savini, V.; Catavitello, C.; Talia, M.; Manna, A.; Pompetti, F.; Favaro, M.; Fontana, C.; Febbo, F.; Balbinot, A.; Di Berardino, F.; et al. Multidrug-resistant Escherichia fergusonii: A case of acute cystitis. J. Clin. Microbiol. 2008, 46, 1551–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funke, G.; Hany, A.; Altwegg, M. Isolation of Escherichia fergusonii from four different sites in a patient with pancreatic carcinoma and cholangiosepsis. J. Clin. Microbiol. 1993, 31, 2201–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, M.S.; Green, C.C. Isolation of Escherichia fergusonii in cases clinically suggestive of Salmonellosis. Vet. Rec. 1999, 144, 511. [Google Scholar] [PubMed]
- Hariharan, H.; Lopez, A.; Conboy, G.; Coles, M.; Muirhead, T. Isolation of Escherichia fergusonii from the faeces and internal organs of a goat with diarrhoea. Can. Vet. J. 2007, 48, 630–631. [Google Scholar]
- Herráez, P.; Rodríguez, A.F.; Espinosa De Los Monteros, A.; Acosta, A.B.; Jaber, J.R.; Castellano, J.; Castro, A. Fibrino-necrotic typhlitis caused by Escherichia fergusonii in ostriches (Struthio camelus). Avian Dis. 2005, 49, 167–169. [Google Scholar] [CrossRef] [Green Version]
- Saad, N.M.; Sabreen, M.S.; Amin, W.F.; Gendi, M.K. Prevalence of Escherichia albertii and other Escherichia species in raw milk and some dairy products in Assiut City, Egypt. J. Am. Sci. 2012, 8, 333–341. [Google Scholar]
- Glover, B.; Wentzel, J.; Jenkins, A.; Van Vuuren, M. The first report of Escherichia fergusonii isolated from non-human primates, in Africa. One Health 2017, 3, 70–75. [Google Scholar] [CrossRef]
- Adesina, T.; Nwinyi, O.; De, N.; Akinnola, O.; Omonigbehin, E. First detection of carbapenem-resistant Escherichia fergusonii strains harbouring beta-lactamase genes from clinical samples. Pathogens 2019, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Boniece, J.R.; Mallmann, W.l. The optimum incubation temperature for the primary isolation of coliform organisms. J. (Am. Water Work. Assoc.) 1950, 42, 155–160. [Google Scholar] [CrossRef]
- Sherwood, H.P.; Clegg, L.F.L. Further studies of incubation at 44 °C: As a test for ‘faecal coli’. Epidemiol. Infect. 1942, 42, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ingle, D.J.; Clermont, O.; Skurnik, D.; Denamur, E.; Walk, S.T.; Gordon, D.M. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp. Appl. Environ. Microbiol. 2011, 77, 2695–2700. [Google Scholar] [CrossRef] [Green Version]
- Dirar, H.A. The Indigenous Fermented Foods of the Sudan: A Study in African Food and Nutrition; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Benkerroom, N. Traditional fermented foods of North African countries: Technology and food safety challenges with regard to microbiological risks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 54–89. [Google Scholar] [CrossRef]
- Agyei, D.; Owusu-Kwarteng, J.; Akabanda, F.; Akomea-Frempong, S. Indigenous African fermented dairy products: Processing Technology, Microbiology, and Health Benefits. Crit. Rev. Food Sci. Nutr. 2020, 60, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Misihairabgwi, J.; Cheikhyoussef, A. Traditional fermented foods and beverages of Namibia. J. Ethn. Foods 2017, 4, 145–153. [Google Scholar] [CrossRef]
- Abdalla, M.O.M.; Ahmed, A.N.S.Z. Evaluation of microbiological quality of Sudanese fermented dairy product ‘mish’ during storage. Adv. J. Food Sci. Technol. 2010, 2, 155–158. [Google Scholar]
- Shelef, L.A. Antimicrobial effects of spices. J. Food Saf. 1984, 6, 29–44. [Google Scholar] [CrossRef]
- Schelz, Z.; Molnar, J.; Hohmann, J. Antimicrobial, and antiplasmid activities of essential oils. Fitoterapia 2006, 77, 279–285. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The world traditional medicines situation. In Traditional Medicines: Global Situation, Issues and Challenges; WHO: Geneva, Switzerland, 2011; Volume 3, pp. 1–14. [Google Scholar]
- Azzouz, M.A.; Bullerman, L.B. Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. J. Food Prot. 1982, 45, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability, and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Peter, K.V. Handbook of Herbs and Spices; Woodhead Publishing Limited: Cambridge, UK, 2001; Volume 1, ISBN 978-1-85573-562-0. [Google Scholar]
- Ahmad, N.; Fazal, H.; Abbasi, B.H.; Farooq, S.; Ali, M.; Khan, M.A. Biological role of Piper nigrum L. (Black pepper): A review. Asian Pac. J. Trop. Biomed. 2012, 2, S1945–S1953. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages, and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar]
- Chaudhry, N.M.; Tariq, P. Bactericidal activity of black pepper, bay leaf, aniseed, and coriander against oral isolates. Pak. J. Pharm. Sci. 2006, 19, 214–218. [Google Scholar]
- Pie, H.; Xue, L.; Tang, M.; Kuang, S.; Wang, L.; Ma, X.; Cai, X.; Li, Y.; Zhao, M.; Peng, A.; et al. Alkaloids from Black Pepper (Piper nigrum L.) Exhibit anti-inflammatory activity in murine macrophages by inhibiting activation of NF-κB Pathway. J. Agric. Food Chem. 2020, 68, 2406–2417. [Google Scholar] [CrossRef]
- Rani, S.S.; Saxena, N.; Udaysree, N. Antimicrobial activity of Black Pepper (Piper nigrum L.). Glob. J. Pharmacol. 2013, 7, 87–90. [Google Scholar]
- Nagavekar, N.; Singhal, R.S. Enhanced extraction of oleoresin from Piper nigrum by supercritical carbon dioxide using ethanol as a co-solvent and its bioactivity profile. J. Food Process. Eng. 2018, 41, e12670. [Google Scholar] [CrossRef]
- Khan, M.; Hanif, M.A.; Rehman, R.; Bhatti, L.A. Black Piper. In Medicinal Plants of South Asia, 1st ed.; Hanif, M.A., Nawaz, H., Khan, M.M., Birne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–86. [Google Scholar]
- Tainter, D.R.; Grenis, A.T. Spices and Seasonings: A Food Technology Handbook; John Wiley & Sons: Chichester, UK, 2001. [Google Scholar]
- Lai, P.K.; Roy, J. Antimicrobial and chemo-preventive properties of herbs and spices. Curr. Med. Chem. 2004, 11, 1451–1460. [Google Scholar] [CrossRef]
- Charles, D.J. Antioxidant Properties of Spices, Herbs, and Other Sources; Springer: New York, NY, USA, 2013; pp. 245–254. [Google Scholar]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; CABI International: London, UK, 2008; pp. 124–145. [Google Scholar]
- Jayaprakasha, G.K.; Rao, L.J.; Sakariah, K.K. Chemical composition of volatile oil from Cinnamomum zeylanicum buds. Z. Nat. C 2002, 57, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzei, B. Antioxidant activity of spices and their impact on human health: A review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Abraham, T.E. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006, 94, 520–528. [Google Scholar] [CrossRef]
- Behrad, S.; Yusof, M.Y.; Goh, L.; Baba, A.S. Manipulation of probiotics fermentation of yoghurt by cinnamon and licorice: Effects on yogurt formation and inhibition of Helicobacter pylori growth in vitro. World Acad. Sci. Eng. Technol. 2009, 60, 590–594. [Google Scholar]
- Forgetta, V.; Rempel, H.; Malouin, F.; Vaillanvourt Jn, E.; Topp, K.; Dewar, K.; Diarra, M.S. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poult. Sci. 2012, 91, 512–525. [Google Scholar] [CrossRef]
- Lagacé-Wiens, P.R.; Baudry, P.J.; Pang, P.; Hammond, G. First description of an extended-spectrum-β-lactamase-producing multidrug-resistant Escherichia fergusonii strain in a patient with cystitis. J. Clin. Microbiol. 2010, 48, 2301–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, A.; Mahapatra, S. Escherichia fergusonii: An emerging pathogen in South Orissa. Indian J. Med Microbiol. 2005, 23, 204. [Google Scholar] [CrossRef]
- Terzaghi, B.E.; Sandine, W.E. Improved medium for lactic Streptococci and their bacteriophages. Appl. Microbiol. 1975, 29, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Shankar, P.A.; Davies, F.L. Recent developments in yoghurt starters: A note on the suppression of Lactobacillus bulgaricus in media containing beta-glycerophosphate and application of such media to selective isolation of Streptococcus thermophilus from yoghurt. Soc. Dairy Technol. 1977, 30, 28–30. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, E.M. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 2167-0412. [Google Scholar]
- Karenzi, E.; Mashaku, A.; Alphonse, M.; Munyanganizi, N.B.; Thonart, P. Kivuguto Traditional Fermented Milk and the Dairy Industry in Rwanda. A. Review. Biotechnol. Agron. Société Environ. 2013, 17, 383–391. Available online: https://popups.uliege.be/1780-4507/index.php?id=9985 (accessed on 1 September 2021).
- Visvalingam, J.; Holley, R.A. Temperature-dependent effect of sublethal levels of cinnamaldehyde on viability and morphology of Escherichia coli. J. Appl. Microbiol. 2012, 113, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Cava, R.; Nowak, E.; Taboada, A.; Marin-Iniesta, F. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk. J. Food Prot. 2007, 70, 2757–2763. [Google Scholar] [CrossRef] [PubMed]
- Althair, M.O.E.; Elgasim, E.A.; Ahmed, I.A.M. Ripening of Sudanese braided (Muddafara) cheese manufactured from raw and pasteurized milk: Effect of heat treatment and salt concentration on the physiochemical properties. Int. J. Food Sci. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Puvača, N.; Milenković, J.; Galonja Coghill, T.; Bursić, V.; Petrović, A.; Tanasković, S.; Pelić, M.; Ljubojević Pelić, D.; Miljković, T. Antimicrobial activity of selected essential oils against selected pathogenic bacteria: In vitro study. Antibiotics 2021, 10, 546. [Google Scholar] [CrossRef]
- Ogwaro, B.A.; Gibson, H.; Whitehead, M.; Hill, D.J. Survival of Escherichia coli O157, H7 in traditional African yoghurt fermentation. Int. J. Food Microbiol. 2002, 79, 105–112. [Google Scholar] [CrossRef]
- Moon, D.D.; Delaquis, P.; Toivonen, P.; Stanich, K. Effect of vanillin on the fate of Listeria monocytogenes and Escherichia coli O157, H7 in a model apple juice medium and in apple juice. Food Microbiol. 2006, 23, 169–174. [Google Scholar] [CrossRef]
- Sinenky, M. Homeoviscous adaptation—A homeostatic process that regulates viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Glatz, A.; Varvasovszki, V.; Török, Z.; Páli, T.; Balogh, G.; Kovács, E.; Nádasdi, L.; Benkö, S.; Joó, F.; et al. Membrane physical state controls the signalling mechanism of the heat shock response in Synechocystis PCC 6803: Identification of hsp17 as a “fluidity gene”. Proc. Natl. Acad. Sci. USA 1998, 95, 3513–3518. [Google Scholar] [CrossRef] [Green Version]
- Wendakoon, C.; Sakaguchi, M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J. Food Prot. 1995, 58, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Hyidgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int. J. Food Microbiol. 2006, 108, 1–9. [Google Scholar] [CrossRef]
- Gill, A.O.; Holley, R.A. Mechanisms of bactericidal action of cinnamaldehyde against Listeria monocytogenes and of eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 2004, 70, 5750–5755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, U.K.; Singh, A.; Chakraborty, A.K. Role of piperine as a bioavailability enhancer. Int. J. Recent Adv. Pharm. Res. 2011, 4, 16–23. [Google Scholar]
- Fitzerald, D.J.; Stratford, M.; Gasson, M.J.; Narbad, A. The potential application of vanillin in preventing yeast spoilage in soft drinks and fruit juices. J. Food Prot. 2004, 67, 391–395. [Google Scholar] [CrossRef]
- Yossa, N.; Patel, J.; Macarisin, D.; Millner, P.; Murphy, C.; Bauchan, G.; Lo, Y.M. Antibacterial activity of cinnamaldehyde and Sporan against Escherichia coli O157:H7 and Salmonella. J. Food Process. Preserv. 2012, 38, 749–757. [Google Scholar] [CrossRef] [Green Version]
Tube No. | BPE conc. (%) | CE conc. (%) | MIC of BPE | MIC of CE |
---|---|---|---|---|
1 | 0 | 0 | 0 | 0 |
2 | 0.5 | 0 | 1 | 0 |
3 | 0.125 | 0.1875 | ¼ | ¾ |
4 | 0.25 | 0.125 | ½ | ½ |
5 | 0.375 | 0.0625 | ¾ | ¼ |
6 | 0 | 0.25 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogwaro, B.A.; O’Gara, E.A.; Hill, D.J.; Gibson, H. A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt. Foods 2021, 10, 2847. https://doi.org/10.3390/foods10112847
Ogwaro BA, O’Gara EA, Hill DJ, Gibson H. A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt. Foods. 2021; 10(11):2847. https://doi.org/10.3390/foods10112847
Chicago/Turabian StyleOgwaro, Betty A., Elizabeth A. O’Gara, David J. Hill, and Hazel Gibson. 2021. "A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt" Foods 10, no. 11: 2847. https://doi.org/10.3390/foods10112847
APA StyleOgwaro, B. A., O’Gara, E. A., Hill, D. J., & Gibson, H. (2021). A Study of the Antimicrobial Activity of Combined Black Pepper and Cinnamon Essential Oils against Escherichia fergusonii in Traditional African Yoghurt. Foods, 10(11), 2847. https://doi.org/10.3390/foods10112847