Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Standards
2.3. Fermentation
2.4. Chemical Composition Determination
2.5. Analysis of Free Amino Acids and GABA
2.6. Analysis of γ-Oryzanol
2.7. Determination of DPPH Scavenging Activity
2.8. Determination of Nattokinase Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Content of Free Amino Acids and GABA
3.3. γ-Oryzanol Content
3.4. DPPH Radical Scavenging Capacity
3.5. Nattokinase Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shih, I.L.; Van, Y.T. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001, 79, 207–225. [Google Scholar] [CrossRef]
- Nagendra Prasad, M.N.; Sanjay, K.R.; Shravya Khatokar, M.; Vismaya, M.N.; Nanjunda Swamy, S. Health benefits of rice bran—A Review. J. Nutr. Food Sci. 2011, 1, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, H.; Ikata, K.; Arimochi, H.; Iwasaki, T.; Ohnishi, Y.; Kuwahara, T.; Kataoka, K. Effects of fermented brown rice on the intestinal environments in healthy adult. J. Med. Investig. 2011, 58, 235–245. [Google Scholar] [CrossRef]
- Lin, P.Y.; Li, S.C.; Lin, H.P.; Shih, C.K. Germinated brown rice combined with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis inhibits colorectal carcinogenesis in rats. Food Sci. Nutr. 2019, 7, 216–224. [Google Scholar]
- Schulze, M.B.; Liu, S.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. Am. J. Clin. Nutr. 2004, 80, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Nkhata, E.A.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar]
- Sears, S.M.S.; Hewett, S.J. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef]
- Sumi, H.; Hamada, H.; Tsushima, H.; Mihara, H.; Muraki, H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 1987, 43, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; McGowan, E.M.; Ren, N.; Lal, S.; Nassif, N.; Shad-Kaneez, F.; Qu, X.; Lin, Y. Nattokinase: A promising alternative in prevention and treatment of cardiovascular diseases. Biomark Insights 2018, 13, 1–8. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef]
- Ren, N.; Chen, H.; Li, Y.; McGowan, E.; Lin, Y. A clinical study on the effect of nattokinase on carotid artery atherosclerosis and hyperlipidaemia. Chin. Med. J. 2017, 97, 2038–2042. [Google Scholar]
- Fadl, N.; Ahmed, H.; Booles, H.; Sayed, A. Serrapeptase and nattokinase intervention for relieving Alzheimer’s disease pathophysiology in rat model. Hum. Exp. Toxicol. 2013, 32, 721–735. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Yoshimi, N.; Yamada, Y.; Sakata, K.; Kuno, T.; Yoshida, K.; Qiao, Z.; Vihn, P.Q.; Iwasaki, T.; Kobayashi, H.; et al. Preventive effect of fermented brown rice and rice bran against colon carcinogenesis in male F344 rats. Oncol. Rep. 2002, 9, 817–822. [Google Scholar] [CrossRef]
- Chung, S.I.; Lee, S.C.; Yi, S.J.; Kang, M.Y. Antioxidative and antiproliferative activities of ethanol extracts from pigmented giant embryo rice (Oryza sativa L. cv. Keunnunjami) before and after germination. Nutr. Res. Pract. 2018, 12, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.L. Microbiological Control in the Production Process of Germinated Brown Rice and the Study on its Bioactive Fermented Products. Ph.D. Thesis, Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City, Taiwan, 2006. [Google Scholar]
- AACC. Approved Methods of the American Association of Cereal Chemistry, 10th ed.; AACC: St. Paul, MN, USA, 2003. [Google Scholar]
- Jannoey, P.; Niamsup, H.; Lumyong, S.; Suzuki, T.; Katayama, T.; Chairote, G. Comparison of gamma-aminobutyric acid production in Thai rice grains. World J. Microbiol. Biotechnol. 2010, 26, 257–263. [Google Scholar] [CrossRef]
- Heinemann, R.J.B.; Xu, Z.; Godber, J.S.; Lanfer-Marquez, U.M. Tocopherols, tocotrienols and γ-oryzanol contents in Japonica and Indica subspecies of rice (Oryza sativa L.) cultivated in Brazil. Cereal Chem. 2008, 85, 243–247. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 2007, 101, 1151–1157. [Google Scholar] [CrossRef]
- Jorge, G.H.; Chandra, J.H.; Heinz, E.; Mien, M.; Suwandi, H.; Govind, R. Isolation and characterization of hydroxymethylglutary-coenzyme-A reductase inhibitors from fermented soy bean extracts. J. Clin. Biochem. Nutr. 1993, 15, 163–174. [Google Scholar]
- Ohtsubo, K.; Suzuki, K.; Yasui, Y.; Kasumi, T. Bio-functional components in the processed pre-germinated brown rice by a twin-screw extruder. J. Food Compo. Anal. 2005, 18, 303–316. [Google Scholar] [CrossRef]
- Upadhyay, A.; Karn, S.K. Brown Rice: Nutritional composition and Health Benefits. J. Food Sci. Technol. 2018, 10, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jin, Y.; Su, J.; Yang, N.; Xu, X.; Jin, Z.; Cui, B.; Wu, F. Changes in the nutritional value, flavor, and antioxidant activity of brown glutinous rice during fermentation. Food Biosci. 2021, 43, 101273. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Tsukahara, K.; Toyoshima, H.; Suzuki, T.; Shimizu, N.; Kimura, T. Effect of soaking and gaseous treatment on GABA content in germinated brown rice. J. Food Eng. 2007, 78, 556–560. [Google Scholar] [CrossRef]
- Sharma, S.; Jan, R.; Riar, C.; Bansal, V. Analyzing the effect of germination on the pasting, rheological, morphological and in- vitro antioxidant characteristics of kodo millet flour and extracts. Food Chem. 2021, 361, 130073. [Google Scholar] [CrossRef] [PubMed]
- Roohinejad, S.; Omidizadeh, A.; Mirhosseini, H.; Saari, N.; Mustafa, S.; Hussin, A.S.M.; Hamid, A.; Manap, M.Y.A. Effect of pre-germination time on amino acid profile and gamma amino butyric acid (GABA) contents in different varieties of Malaysian brown rice. Int. J. Food Prop. 2011, 14, 1386–1399. [Google Scholar] [CrossRef]
- Hamad, A.M.; Fields, M.L. Evaluation of the protein quality and available lysine of germinated and fermented cereals. J. Food Sci. 1979, 44, 456–459. [Google Scholar] [CrossRef]
- Saikusa, T.; Horino, T.; Mori, Y. Accumultion of γ-aminobutyric acid (GABA) in the rice germ during water soaking. Biosci. Biotechnol. Biochem. 1994, 58, 2291–2292. [Google Scholar] [CrossRef]
- Ilowefah, M.; Bakar, J.; Ghazali, H.M.; Mediani, A.; Muhammad, K. Physicochemical and functional properties of yeast fermented brown rice flour. J. Food Sci. Technol. 2015, 52, 5534–5545. [Google Scholar] [CrossRef] [Green Version]
- Sirilun, S.; Chaiyasut, C.; Pengkumsri, N.; Pelyuntha, W.; Peerajan, S.; Sivamaruthi, B.S. Production of ferulic acid from oryzanol degradation during the fermentation of black rice bran by ferulic acid esterase producing Aspergillus oryzae HP. J. Pure Appl. Microbiol. 2015, 9, 513–520. [Google Scholar]
- Cáceres, P.J.; Peñas, E.; Martínez-Villaluenga, C.; García-Mora, P.; Frías, J. Development of a multifunctional yogurt-like product from germinated brown rice. LWT 2019, 99, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Massarolo, K.C.; de Souza, T.D.; Collazzo, C.C.; Furlong, E.B.; de Souza Soares, L.A. The impact of Rhizopus oryzae cultivation on rice bran: Gamma-Oryzanol recovery and its antioxidant properties. Food Chem. 2017, 228, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.-D.; Shin, G.-H.; Kim, J.-M.; Choi, S.-I.; Lee, J.-H.; Lee, S.J.; Park, S.J.; Woo, K.S.; Oh, S.K.; Lee, O.-H. Comparative analysis of γ-oryzanol, β-glucan, total phenolic content and antioxidant activity in fermented rice bran of different varieties. Nutrients 2017, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Lu, S.; Liu, J.; Yang, S.; Yan, Q.; Jiang, Z. Physicochemical properties and bioactivities of rice beans fermented by Bacillus amyloliquefaciens. Engineering 2021, 7, 219–225. [Google Scholar] [CrossRef]
- Gum, S.I.; Nguyen, P.A.; Lee, J.R.; Han, Y.H.; Cho, M.K. The physico-chemical alteration of lovastatin and enhanced antioxidant effect of Bacillus subtilis fermented-red yeast rice product. Food Chem. 2017, 232, 203–209. [Google Scholar] [CrossRef]
- Qi, H.B.; Song, J.X.; Chen, J. Study on the antioxidant component of fermented rice bran. Chin. Food Sci. 2012, 1, 24–27. [Google Scholar]
- Wang, C.Y.; Chuang, P.T.; Chan, C.H.; Tseng, C.Y. Studies on the fermentation of peanut (Arachis hypogaea) by Bacillus subtilis natto. Taiwan J. Agric. Chem. Food Sci. 2005, 43, 394–401. [Google Scholar]
- Singh, A.k.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of attributes of cereals by germination and fermentation: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef] [PubMed]
Parameter (%) | GBR | BR | WR | |||
---|---|---|---|---|---|---|
Unfermented | Fermented | Unfermented | Fermented | Unfermented | Fermented | |
Moisture | 15.00 ± 0.11 b | 1.99 ± 0.14 C* | 15.33 ± 0.06 b | 2.56 ± 0.09 B* | 15.75 ± 0.27 a | 5.60 ± 0.23 A* |
Crude ash | 1.27 ± 0.04 a | 1.64 ± 0.03 A* | 1.23 ± 0.10 a | 1.33 ± 0.02 B | 0.49 ± 0.04 b | 0.46 ± 0.10 C |
Crude lipid | 1.19 ± 0.24 a | 1.39 ± 0.20 A* | 0.97 ± 0.10 a | 1.15 ± 0.10 AB | 0.22 ± 0.06 b | 0.89 ± 0.34 B* |
Crude protein | 8.59 ± 0.50 a | 7.59 ± 0.22 A* | 8.08± 0.46 | 7.58 ± 0.18 A | 8.20 ± 0.70 a | 6.27 ± 0.10 B* |
Amino Acid | GBR | BR | WR | |||
---|---|---|---|---|---|---|
Unfermented | Fermented | Unfermented | Fermented | Unfermented | Fermented | |
serine | 1.32 ± 0.07 | 0.17 ± 0.00 * | 1.03 ± 0.11 | 0.07 ± 0.01 * | 0.16 ± 0.01 | 0.15 ± 0.01 |
threonine | 0.37 ± 0.07 | 0.46 ± 0.03 | 0.40 ± 0.05 | 0.31 ± 0.01 | 0.11 ± 0.02 | 0.23 ± 0.02 * |
glutamic acid | 1.51 ± 0.08 | 1.07 ± 0.07 | 4.74 ± 0.30 | 1.94 ± 0.02 * | 0.38 ± 0.02 | 0.78 ± 0.04 * |
proline | 1.05 ± 0.09 | 0.44 ± 0.02 * | 1.06 ± 0.16 | 0.21 ± 0.01 * | 0.12 ± 0.01 | 0.16 ± 0.00 * |
valine | 0.91 ± 0.07 | 2.37 ± 0.04 * | 0.49 ± 0.01 | 0.62 ± 0.00 * | 0.06 ± 0.00 | 0.74 ± 0.07 * |
methionine | 0.22 ± 0.06 | 0.80 ± 0.01 * | 0.15 ± 0.01 | 0.26 ± 0.00 * | 0.01 ± 0.00 | 0.30 ± 0.04 * |
tyrosine | 1.30 ± 0.10 | 3.05 ± 0.13 * | 1.50 ± 0.02 | 1.42 ± 0.01 * | 0.18 ± 0.00 | 0.92 ± 0.02 * |
histidine | 0.78 ± 0.01 | 0.57 ± 0.04 * | 0.25 ± 0.18 | 0.23 ± 0.02 | 0.08 ± 0.00 | 0.19 ± 0.03 * |
leucine/isoleucine | 0.41 ± 0.07 | 2.04 ± 0.09 * | 0.27 ± 0.01 | 0.65 ± 0.00 * | 0.05 ± 0.01 | 0.84 ± 0.00 * |
lysine | 0.28 ± 0.01 | 0.45 ± 0.05 * | 0.11 ± 0.08 | 0.23 ± 0.01 | 0.02 ± 0.01 | 0.18 ± 0.01 * |
arginine | 0.71 ± 0.00 | 0.41 ± 0.06 | 0.75 ± 0.03 | 0.28 ± 0.00 | 0.06 ± 0.01 | 0.29 ± 0.02 * |
phenylalanine | 0.50 ± 0.02 | 3.26 ± 0.14 * | 0.44 ± 0.17 | 1.01 ± 0.02 | 0.06 ± 0.00 | 0.89 ± 0.05 * |
Total Free AA | 9.36 ± 0.73 a | 15.09 ± 0.39 A* | 11.19± 0.10 a | 7.23 ± 0.00 B* | 1.29 ± 0.04 b | 5.67 ± 0.13 C* |
total EAA | 4.77 ± 0.20 a | 13.00 ± 0.24 A* | 3.61 ± 0.11 b | 4.73 ± 0.00 B* | 0.57 ± 0.02 c | 4.29 ± 0.21 B* |
Sample | GABA (mg/100 g dm) | |
---|---|---|
Unfermented | Fermented | |
GBR | 7.21 ± 0.41 a | 0.73 ± 0.07 a* |
BR | 0.70 ± 0.03 b | 0.20 ± 0.01 b* |
WR | 0.15 ± 0.01 b | 0.09 ± 0.00 b* |
Sample | γ-Oryzanol (mg/100 g dm) a | |
---|---|---|
Unfermented | Fermented | |
GBR | 50.97 ± 4.89 a | 24.66 ± 2.37 a* |
BR | 50.80 ± 2.11 b | 28.60 ± 1.84 b* |
WR | 9.13 ± 0.41 b | 2.65 ± 0.52 b* |
Sample | DPPH Scavenging (%) a | |
---|---|---|
Unfermented | Fermented | |
GBR | 30.80 ± 0.76 b | 83.24 ± 4.26 * |
BR | 36.95 ± 1.19 a | 83.94 ± 2.89 * |
WR | 11.31 ± 0.46 c | 86.04 ± 5.99 * |
Sample | Nattokinase Activity (FU/g) | |
---|---|---|
Unfermented | Fermented | |
GBR | nd | 43.11 ± 0.32 b |
BR | nd | 19.62 ± 0.21 c |
WR | nd | 2.65 ± 0.30 c |
Commercial natto | - | 249.31 ± 1.12 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-J.; Chang, L.; Lin, Y.-S. Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto. Foods 2021, 10, 2779. https://doi.org/10.3390/foods10112779
Wang H-J, Chang L, Lin Y-S. Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto. Foods. 2021; 10(11):2779. https://doi.org/10.3390/foods10112779
Chicago/Turabian StyleWang, Huei-Ju, Lin Chang, and Yu-Shiun Lin. 2021. "Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto" Foods 10, no. 11: 2779. https://doi.org/10.3390/foods10112779
APA StyleWang, H.-J., Chang, L., & Lin, Y.-S. (2021). Changes in Functionality of Germinated and Non-Germinated Brown Rice Fermented by Bacillus natto. Foods, 10(11), 2779. https://doi.org/10.3390/foods10112779