A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu2+ in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis of MPA-InP/ZnS QDs
2.3. Detection of Cu2+ Based on MPA-InP/ZnS QDs
3. Results and Discussion
3.1. Characterization of MPA-InP/ZnS QDs
3.2. Detection of Cu2+ by Utilizing the MPA-InP/ZnS QDs
3.3. Fluorescence-Quenching Mechanism of MPA-InP/ZnS QDs
3.4. Detection of Cu2+ in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaetke, L.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, W.; Yu, Y.; Tian, Y. A Single Biosensor for Evaluating the Levels of Copper Ion and L-Cysteine in a Live Rat Brain with Alzheimer’s Disease. Angew. Chem. Int. Ed. 2015, 54, 14053–14056. [Google Scholar] [CrossRef]
- Georgopoulos, P.G.; Wang, S.W.; Georgopoulos, I.G.; Yonone-Lioy, M.J.; Lioy, P.J. Assessment of human exposure to copper: A case study using the NHEXAS database. J. Exp. Sci. Environ. Epidemiol. 2006, 16, 397–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Jang, H.H.; Yi, S.; Chang, S.; Han, M.S. Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem. Commun. 2009, 32, 4838–4840. [Google Scholar] [CrossRef]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper removal from industrial wastewater: A comprehensive review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Seidi, S.; Alavi, L. Novel and Rapid Deep Eutectic Solvent (DES) Homogeneous Liquid-Liquid Microextraction (HLLME) with Flame Atomic Absorption Spectrometry (FAAS) Detection for the Determination of Copper in Vegetables. Anal. Lett. 2019, 52, 2092–2106. [Google Scholar] [CrossRef]
- Smirnova, S.V.; Ilin, D.V.; Pletnev, I.V. Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta 2021, 221, 121485. [Google Scholar] [CrossRef]
- Wang, W.; Evans, R.D.; Newman, K.; Toms, A. Automated separation and measurement of 226Ra and trace metals in freshwater, seawater and fracking water by online ion exchange chromatography coupled with ICP-MS. Microchem. J. 2021, 167, 106321. [Google Scholar] [CrossRef]
- Ghorbani, M.; Pedramrad, T.; Aghamohammadhasan, M.; Seyedin, O.; Akhlaghi, H.; Afshar Lahoori, N. Simultaneous clean-up and determination of Cu(II), Pb(II) and Cr(III) in real water and food samples using a magnetic dispersive solid phase microextraction and differential pulse voltammetry with a green and novel modified glassy carbon electrode. Microchem. J. 2019, 147, 545–554. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Xiao, N.; Cen, Y.Y.; Chen, J.R.; Liu, S.G.; Shi, Y.; Fan, Y.Z.; Li, N.B.; Luo, H.Q. Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging. Spectrochim. Acta A Mol. Biomol. 2019, 223, 117300. [Google Scholar] [CrossRef]
- Almeida, J.S.; Souza, O.C.C.O.; Teixeira, L.S.G. Determination of Pb, Cu and Fe in ethanol fuel samples by high-resolution continuum source electrothermal atomic absorption spectrometry by exploring a combination of sequential and simultaneous strategies. Microchem. J. 2018, 137, 22–26. [Google Scholar] [CrossRef]
- Arı, B.; Bakırdere, S. A primary reference method for the characterization of Cd, Cr, Cu, Ni, Pb and Zn in a candidate certified reference seawater material: TEA/Mg(OH)2 assisted ID3MS by triple quadrupole ICP-MS/MS. Anal. Chim. Acta 2020, 1140, 178–189. [Google Scholar] [CrossRef]
- Pizarro, J.; Flores, E.; Jimenez, V.; Maldonado, T.; Saitz, C.; Vega, A.; Godoy, F.; Segura, R. Synthesis and characterization of the first cyrhetrenyl-appended calix[4]arene macrocycle and its application as an electrochemical sensor for the determination of Cu(II) in bivalve mollusks using square wave anodic stripping voltammetry. Sens. Actuators B Chem. 2019, 281, 115–122. [Google Scholar] [CrossRef]
- Chakraborty, G.; Katiyar, V.; Pugazhenthi, G. Improvisation of polylactic acid (PLA)/exfoliated graphene (GR) nanocomposite for detection of metal ions (Cu2+). Compos. Sci. Technol. 2021, 213, 108877. [Google Scholar] [CrossRef]
- Gao, B.; Chen, D.; Gu, B.; Wang, T.; Wang, Z.; Xie, F.; Yang, Y.; Guo, Q.; Wang, G. Facile and highly effective synthesis of nitrogen-doped graphene quantum dots as a fluorescent sensing probe for Cu2+ detection. Curr. Appl. Phys. 2020, 20, 538–544. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Xu, Y.; Liu, H.; Zhou, T.; Huang, N.; Li, Y.; Ding, L. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots. Anal. Bioanal. Chem. Res. 2018, 410, 4301–4309. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Davami, A. CdSe quantum dots capped with a deep eutectic solvent as a fluorescent probe for copper(II) determination in various drinks. Mikrochim. Acta 2020, 187, 147. [Google Scholar] [CrossRef]
- Ali, H.R.H.; Hassan, A.I.; Hassan, Y.F.; El-Wekil, M.M. Development of dual function polyamine-functionalized carbon dots derived from one step green synthesis for quantitation of Cu2+ and S2− ions in complicated matrices with high selectivity. Anal. Bioanal. Chem. 2020, 412, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, J.; Zeng, M.; Xu, J.; Wang, X.; Hu, W. Polymer nanodots of graphitic carbon nitride as effective fluorescent probes for the detection of Fe3+ and Cu2+ ions. Nanoscale 2014, 6, 4157. [Google Scholar] [CrossRef]
- Xu, Y.; Fan, Y.; Zhang, L.; Wang, Q.; Fu, H.; She, Y. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+ in complex samples. Spectrochim. Acta A Mol. Biomol. 2019, 220, 117109. [Google Scholar] [CrossRef] [PubMed]
- Tessier, M.D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and Size-Tunable Synthesis of InP/ZnE (E = S, Se) Colloidal Quantum Dots. Chem. Mater. 2015, 27, 4893–4898. [Google Scholar] [CrossRef] [Green Version]
- Leyden, E.; Farkas, J.; Gilbert, S.; Hutson, J.; Mosley, L.M. A simple and rapid ICP-MS/MS determination of sulfur isotope ratios (34S/32S) in complex natural waters: A new tool for tracing seawater intrusion in coastal systems. Talanta 2021, 235, 122708. [Google Scholar] [CrossRef]
- Jo, J.; Kim, M.; Han, C.; Jang, E.; Do, Y.R.; Yang, H. Effective surface passivation of multi-shelled InP quantum dots through a simple complexing with titanium species. Appl. Surf. Sci. 2018, 428, 906–911. [Google Scholar] [CrossRef]
- Han, Z.; Nan, D.; Yang, H.; Sun, Q.; Pan, S.; Liu, H.; Hu, X. Carbon quantum dots based ratiometric fluorescence probe for sensitive and selective detection of Cu2+ and glutathione. Sens. Actuators B Chem. 2019, 298, 126842. [Google Scholar] [CrossRef]
- Lou, Y.; Zhao, Y.; Chen, J.; Zhu, J. Metal ions optical sensing by semiconductor quantum dots. J. Mater. Chem. C 2014, 2, 595–613. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Wang, J.; Huang, C. CdTe Quantum Dots-Electrospun Nanofibers Assembly for Visual and Portable Detection of Cu2+. Chin. J. Anal. Chem. 2021, 49, 207–215. [Google Scholar] [CrossRef]
- Meng, Y.; Jiao, Y.; Zhang, Y.; Li, Y.; Gao, Y.; Lu, W.; Liu, Y.; Shuang, S.; Dong, C. Multi-sensing function integrated nitrogen-doped fluorescent carbon dots as the platform toward multi-mode detection and bioimaging. Talanta 2020, 210, 120653. [Google Scholar] [CrossRef]
- Tang, X.; Yu, H.; Bui, B.; Wang, L.; Xing, C.; Wang, S.; Chen, M.; Hu, Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554. [Google Scholar] [CrossRef]
- Gan, X.; Liu, S.; Liu, Z.; Hu, X. Determination of Tetracaine Hydrochloride by Fluorescence Quenching Method with Some Aromatic Amino Acids as Probes. J. Fluoresc. 2012, 22, 129–135. [Google Scholar] [CrossRef]
- Cui, M.; Song, G.; Wang, C.; Song, Q. Synthesis of cysteine-functionalized water-soluble luminescent copper nanoclusters and their application to the determination of chromium(VI). Mikrochim. Acta 2015, 182, 1371–1377. [Google Scholar] [CrossRef]
- Xie, Y.F.; Jiang, Y.J.; Zou, H.Y.; Wang, J.; Huang, C.Z. Discrimination of copper and silver ions based on the label-free quantum dots. Talanta 2020, 220, 121430. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Min, S.; Tong, Q.; Wang, J.; Hu, J.; Dhamsaniya, A.; Shah, A.K.; Mehta, V.P.; Dong, B.; Song, B. Highly sensitive and selective “turn-off” fluorescent probes based on coumarin for detection of Cu2+. Colloids Interface Sci. Commun. 2021, 43, 100451. [Google Scholar] [CrossRef]
Spiked/nM | Found/nM | Recovery (%) | RSD (%) |
---|---|---|---|
5.00 | 4.97 | 99.33 | 0.58 |
10.00 | 12.09 | 120.91 | 0.54 |
20.00 | 18.73 | 93.64 | 1.02 |
Samples | This Method | ICP-MS | ||
---|---|---|---|---|
Found/nM | RSD (%) | Found/nM | RSD (%) | |
Sample 1 | 5.16 | 5.24 | 5.31 | 0.54 |
Sample 2 | 4.29 | 2.42 | 3.75 | 1.04 |
Sample 3 | 14.03 | 1.96 | 12.50 | 0.67 |
Sample 4 | 7.97 | 1.09 | 6.56 | 0.47 |
Sample 5 | 13.59 | 1.79 | 14.69 | 0.64 |
Sample 6 | 4.68 | 5.66 | 3.38 | 1.23 |
Sample 7 | 5.07 | 7.25 | 3.69 | 0.78 |
Sample 8 | 3.81 | 2.96 | 3.75 | 0.97 |
Sample 9 | 17.47 | 4.47 | 15.09 | 1.06 |
Sample 10 | 31.06 | 5.13 | 33.13 | 0.54 |
Materials | Principle | Detection Range | LOD | Reaction Time | Applications | Ref. |
---|---|---|---|---|---|---|
Mercaptoacetic acid-CdTe QDs | Dynamic quenching | 40–600 nM | 35.0 nM | 5 min | Urine | [31] |
Polyamine@C-dots | Static quenching effect | 0.07–60 μM | 0.02 μM | 15 min | Conduit water, tap water, and mineral water | [18] |
Coumarin | Static quenching effect | 0–50 μM | 0.27 μM | 10 min | Tap water | [32] |
CdTe QDs-polyethyleneimine/ polyvinyl alcohol electrospun | Dynamic quenching | 0.08–800 μM | 11.1 nM | 50 min | Lake water | [26] |
Deep eutectic solvent-CdSe QDs | Aggregation-induced emission | 10–600 nM | 5.3 nM | 1 min | Tap water, mineral water, pineapple fruit juice, milk, and cola | [17] |
MPA-InP/ZnS QDs | Static quenching effect | 0–1000 nM | 0.22 nM | 12 min | River water, tap water, purified water, mineral water, drinking water, and beverages | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Y.; Zhang, J.; Shi, C.; Yang, X. A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu2+ in Water. Foods 2021, 10, 2777. https://doi.org/10.3390/foods10112777
Xu Z, Wang Y, Zhang J, Shi C, Yang X. A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu2+ in Water. Foods. 2021; 10(11):2777. https://doi.org/10.3390/foods10112777
Chicago/Turabian StyleXu, Zeyu, Yizhong Wang, Jiaran Zhang, Ce Shi, and Xinting Yang. 2021. "A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu2+ in Water" Foods 10, no. 11: 2777. https://doi.org/10.3390/foods10112777
APA StyleXu, Z., Wang, Y., Zhang, J., Shi, C., & Yang, X. (2021). A Highly Sensitive and Selective Fluorescent Probe Using MPA-InP/ZnS QDs for Detection of Trace Amounts of Cu2+ in Water. Foods, 10(11), 2777. https://doi.org/10.3390/foods10112777