Physico-Chemical Characteristics and Lipid Oxidative Stability of Zebra (Equus Burchelli) Droëwors Made Using Different Levels of Sheep Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Droëwors Production and Storage
2.2. Sampling and Preparation of Samples
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Characteristics
3.2. TBARS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burnham, G.M.; Hanson, D.J.; Koshick, C.M.; Ingham, S.C. Death of Salmonella serovars, Escherichia coli O157: H7, Staphylococcus aureus and Listeria monocytogenes during the drying of meat: A case study using biltong and droewors. J. Food Saf. 2008, 28, 198–209. [Google Scholar] [CrossRef]
- Mukumbo, F.E.; Arnaud, E.; Collignan, A.; Hoffman, L.C.; Descalzo, A.M.; Muchenje, V. Physico-chemical composition and oxidative stability of South African beef, game, ostrich and pork droewors. J. Food Sci. Technol. 2018, 55, 4833–4840. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Arnaud, E.; Gouws, P.; Hoffman, L.C. Processing of South African biltong—A review. S. Afr. J. Anim. Sci. 2017, 47, 743–757. [Google Scholar] [CrossRef] [Green Version]
- Zukal, E.; Incze, K. Drying. In Handbook of Meat Processing; Toldra, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2015; pp. 219–229. [Google Scholar]
- De Hoog, E.H.A.; Ruijschop, R.; Pyett, S.P.; De Kok, P.M.T. The functional attributes that fats bring to food. In Reducing Saturated Fats in Foods; Talbot, G., Ed.; Woodhead Publishing Series in Food Science Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2011; pp. 29–46. [Google Scholar]
- Teixeira, A.; Ferreira, I.; Pereira, E.; Vasconcelos, L.; Leite, A.; Rodrigues, S. Physicochemical composition and sensory quality of goat meat burgers. Effect of fat source. Foods 2021, 10, 1824. [Google Scholar] [CrossRef]
- Ruiz, J.; Perez-Palacios, T. Ingredients. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldra, F., Ed.; John Wiley & Sons: Chichester, UK, 2015; pp. 55–67. [Google Scholar]
- Grasso, S.; Brunton, N.P.; Lyng, J.G.; Lalor, F.; Monahan, F.J. Healthy processed meat products—Regulatory, reformulation and consumer challenges. Trends Food Sci. Technol. 2014, 39, 4–17. [Google Scholar] [CrossRef]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and human health—Current knowledge and research gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef]
- Webb, E.C.; O’Neill, H.A. The animal fat paradox and meat quality. Meat Sci. 2008, 80, 28–36. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Wiklund, E. Game and venison–meat for the modern consumer. Meat Sci. 2006, 74, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, L.C.; Geldenhuys, G.; Cawthorn, D.M. Proximate and fatty acid composition of zebra (Equus quagga burchellii) muscle and subcutaneous fat. J. Sci. Food Agric. 2016, 96, 3922–3927. [Google Scholar] [CrossRef]
- World Bank; Agriculture and Rural Development. Agriculture Investment Sourcebook; World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Cooper, S.; Van der Merwe, M. Game ranching for meat production in marginal African agricultural lands. J. Arid. Land Stud. 2004, 24, 249–252. [Google Scholar]
- Booth, H.; Clark, M.; Milner-Gulland, E.J.; Amponsah-Mensah, K.; Antunes, A.P.; Brittain, S.; Castilho, L.C.; Campos-Silva, J.V.; Constantino, P.D.L.; Li, Y.H.; et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 2021, 31, 1788. [Google Scholar] [CrossRef]
- Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Fermented meat sausages from game and venison: What are the opportunities and limitations? J. Sci. Food Agric. 2020, 100, 5023–5031. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Schoon, K.; Rudman, M.; Brand, T.S.; Dalle Zotte, A.; Cullere, M. Profile of cabanossi made with exotic meats and olive oil. Meat Sci. 2019, 147, 20–27. [Google Scholar] [CrossRef]
- Mahachi, L.N.; Rudman, M.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Development of semi dry sausages (cabanossi) with warthog (Phacochoerus africanus) meat: Physicochemical and sensory attributes. LWT Food Sci. Technol. 2019, 115, 318–327. [Google Scholar] [CrossRef]
- Mahachi, L.N.; Rudman, M.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Application of fat-tailed sheep tail and backfat to develop novel warthog cabanossi with distinct sensory attributes. Foods 2020, 9, 1822. [Google Scholar] [CrossRef] [PubMed]
- Van Schalkwyk, D.; McMillin, K.; Witthuhn, R.; Hoffman, L. The contribution of wildlife to sustainable natural resource utilization in Namibia: A review. Sustainability 2010, 2, 3479–3499. [Google Scholar] [CrossRef] [Green Version]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef]
- Pegg, R.B.; Honikel, K.O. Principles of curing. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldra, F., Ed.; John Wiley & Sons: Chichester, UK, 2015; pp. 19–30. [Google Scholar]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.; Lorenzo, J.M. Effect of packaging conditions on shelf-life of fresh foal meat. Meat Sci. 2012, 91, 513–520. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; Association of official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Lee, C.M.; Trevino, B.; Chaiyawat, M. A simple and rapid solvent extraction method for determining total lipids in fish tissue. J. AOAC Int. 1996, 79, 487–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis, 14th ed.; Association of official Analytical Chemists: Washington, DC, USA, 1994. [Google Scholar]
- Safa, H.; Gatellier, P.; Lebert, A.; Picgirard, L.; Mirade, P.S. Effect of combined salt and animal fat reductions on physicochemical and biochemical changes during the manufacture of dry-fermented sausages. Food Bioprocess Technol. 2015, 8, 2109–2122. [Google Scholar] [CrossRef]
- Earle, R.; Earle, M. The New Zealand Institute of Food Science & Technology, Royal Society of Chemistry: Cambridge, UK, 2008.
- Leistner, L.; Rodel, W. The significance of water activity for microorganisms in meats. In Water Relations of Food; Duckworth, R., Ed.; Academic Press: London, UK, 1975; pp. 309–323. [Google Scholar]
- Ambrosiadis, J.; Soultos, N.; Abrahim, A.; Bloukas, J.G. Physicochemical, microbiological and sensory attributes for the characterization of Greek traditional sausages. Meat Sci. 2004, 66, 279–287. [Google Scholar] [CrossRef]
- Mujumdar, A.; Devahastin, S. Fundamental priciples of drying. In Mujumdar’s Pratical Guide to Industrial Drying; Mujumdar, A., Ed.; Colour Publications Pvt. Ltd.: Mumbai, India, 2004; pp. 1–20. [Google Scholar]
- Vignolo, G.; Fontana, C.; Fadda, S. Semidry and dry fermented sausages. In Handbook of Meat Processing; Toldra, F., Ed.; Blackwell Publishing: Ames, IA, USA, 2010; pp. 379–398. [Google Scholar]
- Jones, M.; Arnaud, E.; Gouws, P.; Hoffman, L.C. Effects of the addition of vinegar, weight loss and packaging method on the physicochemical properties and microbiological profile of biltong. Meat Sci. 2019, 156, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Mukumbo, F.E.; Descalzo, A.M.; Collignan, A.; Hoffman, L.C.; Servent, A.; Muchenje, V.; Arnaud, E. Effect of Moringa oleifera leaf powder on drying kinetics, physico-chemical properties, ferric reducing antioxidant power, alpha-tocopherol, beta-carotene, and lipid oxidation of dry pork sausages during processing and storage. J. Food Process. Preserv. 2020, 44, e14300. [Google Scholar] [CrossRef]
- Bruna, J.M.; Ordonez, J.A.; Fernandez, M.; Herranz, B.; De la Hoz, L. Microbial and physico-chemical changes during the ripening of dry fermented sausages superficially inoculated with or having added an intracellular cell-free extract of Penicillium aurantiogriseum. Meat Sci. 2001, 59, 87–96. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Talon, R. Microorganisms in Traditional Fermented Meats; John Wiley & Sons: Chichester, UK, 2015; pp. 99–105. [Google Scholar]
- Soriano, A.; Cruz, B.; Gomez, L.; Mariscal, C.; Ruiz, A.G. Proteolysis, physicochemical acid composition of dry sausages characteristics and free fatty made with deer (Cervus elaphus) or wild boar (Sus scrofa) meat: A preliminary study. Food Chem. 2006, 96, 173–184. [Google Scholar] [CrossRef]
- Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Changes in the physico-chemical attributes through processing of salami made from blesbok (Damaliscus pygargus phillipsi), eland (Taurotragus oryx), fallow deer (Dama dama), springbok (Antidorcas marsupialis) and black wildebeest (Connochaetes gnou) in comparison to pork. Meat Sci. 2018, 146, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Ghiretti, G.P.; Zanardi, E.; Novelli, E.; Campanini, G.; Dazzi, G.; Madarena, G.; Chizzolini, R. Comparative evaluation of some antioxidants in salame Milano and mortadella production. Meat Sci. 1997, 47, 167–176. [Google Scholar] [CrossRef]
- Nassu, R.T.; Goncalves, L.A.G.; da Silva, M.; Beserra, F.J. Oxidative stability of fermented goat meat sausage with different levels of natural antioxidant. Meat Sci. 2003, 63, 43–49. [Google Scholar] [CrossRef]
- Zapata, J.F.F.; Ledward, D.A.; Lawrie, R.A. Preparation and storage stability of dried salted mutton. Meat Sci. 1990, 27, 109–118. [Google Scholar] [CrossRef]
- Viljanen, K.; Kivikari, R.; Heinonen, M. Protein-lipid interactions during liposome oxidation with added anthocyanin and other phenolic compounds. J. Agric. Food Chem. 2004, 52, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Yasosky, J.J.; Aberle, E.D.; Peng, I.C.; Mills, E.W.; Judge, M.D. Effects of pH and time of grinding on lipid oxidation of fresh ground pork. J. Food Sci. 1984, 49, 1510–1512. [Google Scholar] [CrossRef]
- Jones, M.; Hoffman, L.C.; Muller, M. Effect of rooibos extract (Aspalathus linearis) on lipid oxidation over time and the sensory analysis of blesbok (Damaliscus pygargus phillipsi) and springbok (Antidorcas marsupialis) droewors. Meat Sci. 2015, 103, 54–60. [Google Scholar] [CrossRef]
- Liaros, N.G.; Katsanidis, E.; Bloukas, J.G. Effect of the ripening time under vacuum and packaging film permeability on processing and quality characteristics of low-fat fermented sausages. Meat Sci. 2009, 83, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, H.; Erkmen, O. Effects of some commercial additives on the quality of sucuk (Turkish dry-fermented sausage). Food Chem. 2007, 101, 1465–1473. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; De Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Flores, M. Effect of fat content on aroma generation during processing of dry fermented sausages. Meat Sci. 2011, 87, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Utrilla, M.C.; Ruiz, A.G.; Soriano, A. Effect of partial reduction of pork meat on the physicochemical and sensory quality of dry ripened sausages: Development of a healthy venison salchichon. Meat Sci. 2014, 98, 785–791. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Jones, M.; Muller, N.; Joubert, E.; Sadie, A. Lipid and protein stability and sensory evaluation of ostrich (Struthio camelus) droewors with the addition of rooibos tea extract (Aspalathus linearis) as a natural antioxidant. Meat Sci. 2014, 96, 1289–1296. [Google Scholar] [CrossRef]
Attributes | Fat Level Effect | Day Effect | Fat Level × Day |
---|---|---|---|
moisture | 0.694 | ≤0.001 | ≤0.001 |
protein | 0.030 | ≤0.001 | 0.48 |
fat | ≤0.001 | ≤0.001 | 0.100 |
ash | ≤0.001 | ≤0.001 | 0.030 |
salt | ≤0.010 | ≤0.001 | ≤0.001 |
water activity | ≤0.001 | ≤0.001 | ≤0.010 |
pH | 0.66 | ≤0.001 | ≤0.001 |
TBARS | 0.55 | ≤0.001 | ≤0.001 |
Raw Batter (before Drying) | Droëwors after Drying 1 | |||||
---|---|---|---|---|---|---|
Meat Fat Ratio | 90:10 | 85:15 | 80:20 | 90:10 | 85:15 | 80:20 |
weight loss | - | - | - | 55.84 a ± 0.44 | 52.34 b ± 0.39 | 49.63 c ± 0.60 |
moisture | 69.70 a ± 0.23 | 68.46 a ± 0.64 | 64.82 b ± 0.26 | 29.56 cd ± 0.88 | 27.91 d ± 0.71 | 30.45 c ± 1.11 |
protein | 20.98 d ± 0.49 | 19.81 d ± 0.66 | 16.61 c ± 0.93 | 45.76 a ± 0.95 | 46.22 a ± 0.84 | 40.03 b ± 1.58 |
fat | 6.97 e ± 0.70 | 9.30 d ± 0.73 | 13.67 c ± 1.17 | 19.71 b ± 0.61 | 19.99 b ± 0.81 | 24.54 a ± 1.13 |
ash | 2.16 c ± 0.27 | 1.85 c ± 0.05 | 1.91 c ± 0.12 | 5.48 a ± 0.29 | 4.57 a ± 0.06 | 4.10 b ± 0.22 |
salt | 0.94 c ± 0.03 | 0.93 c ± 0.01 | 0.94 c ± 0.01 | 2.02 a ± 0.07 | 1.91 a ± 0.04 | 1.69 b ± 0.04 |
water activity | 0.986 a ± 0.00 | 0.985 a ± 0.00 | 0.987 a ± 0.00 | 0.878 c ± 0.01 | 0.881 c ± 0.01 | 0.907 b ± 0.01 |
pH | 5.95 a ± 0.09 | 5.86 a ± 0.00 | 5.85 a ± 0.01 | 5.46 b ± 0.01 | 5.44 b ± 0.02 | 5.30 c ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandela, Z.; Arnaud, E.; Hoffman, L.C. Physico-Chemical Characteristics and Lipid Oxidative Stability of Zebra (Equus Burchelli) Droëwors Made Using Different Levels of Sheep Fat. Foods 2021, 10, 2497. https://doi.org/10.3390/foods10102497
Mandela Z, Arnaud E, Hoffman LC. Physico-Chemical Characteristics and Lipid Oxidative Stability of Zebra (Equus Burchelli) Droëwors Made Using Different Levels of Sheep Fat. Foods. 2021; 10(10):2497. https://doi.org/10.3390/foods10102497
Chicago/Turabian StyleMandela, Zikhona, Elodie Arnaud, and Louwrens C. Hoffman. 2021. "Physico-Chemical Characteristics and Lipid Oxidative Stability of Zebra (Equus Burchelli) Droëwors Made Using Different Levels of Sheep Fat" Foods 10, no. 10: 2497. https://doi.org/10.3390/foods10102497
APA StyleMandela, Z., Arnaud, E., & Hoffman, L. C. (2021). Physico-Chemical Characteristics and Lipid Oxidative Stability of Zebra (Equus Burchelli) Droëwors Made Using Different Levels of Sheep Fat. Foods, 10(10), 2497. https://doi.org/10.3390/foods10102497