Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Plant Material
2.2. Preparation of Samples
2.3. Chemicals
2.4. Dry Matter
2.5. Targeted Analysis of Polyphenols-Extraction and Determination
2.6. Targeted Analysis of Carotenoids and Chlorophylls: Extraction and Determination
2.7. Targeted Analysis of Vitamin C: Extraction and Determination
2.8. Targeted Analysis of Sugars: Extraction and Determination
2.9. Quantitative Descriptive Analysis (QDA)
2.10. Untargeted Analysis of Metabolic Features: Extraction and Detection
2.11. Statistical Analyses
3. Results and Discussion
3.1. Dry Matter and Sugars in Courgette Fruits
3.2. Vitamin C and Phenolics in Courgette Fruits
3.3. Carotenoids and Chlorophylls in Courgette Fruits
3.4. Principal Component Analysis: Chemical Composition of Courgette Fruits
3.5. Sensory Features of Courgette Fruits
3.6. The Relationship between the Sensory Features and Chemical Composition of Courgette Fruits
3.7. Untargeted Metabolomic Analysis of Organic vs. Conventional Courgette
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Front. Sustain. Food Syst. 2021, 4, 300. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Diacono, M.; Persiani, A.; Testani, E.; Montemurro, F. Sustainability of agro-ecological practices in organic horticulture: Yield, energy-use and carbon footprint. Agroecol. Sustain. Food Syst. 2019, 44, 1–21. [Google Scholar] [CrossRef]
- Azzurra, A.; Massimiliano, A.; Angela, M. Measuring sustainable food consumption: A case study on organic food. Sustain. Prod. Consum. 2019, 17, 95–107. [Google Scholar] [CrossRef]
- Mørk, T.; Bech-Larsen, T.; Grunert, K.G.; Tsalis, G. Determinants of citizen acceptance of environmental policy regulating consumption in public settings: Organic food in public institutions. J. Clean. Prod. 2017, 148, 407–414. [Google Scholar] [CrossRef]
- European Commission Council Regulation (EC). No 834/2007 of 28 June 2007 on Organic Production and Labelling of Organic Products and Repealing Regulation (EEC) No 2092/91, OJ L 189, 20.7.2007. 2007, pp. 1–23. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=%20uriserv%3AOJ.L_.2018.150.01.0001.01.ENG (accessed on 12 September 2021).
- European Parliament. European Council Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, 2018, 150. [Google Scholar]
- Smith, L.G.; Kirk, G.J.D.; Jones, P.J.; Williams, A.G. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [Green Version]
- The World of Organic Agriculture Statistics and Emerging Trends 2021, 21st ed.; Willer, H.; Trávníček, J.; Meier, C.; Schlatter, B. (Eds.) Research Institute of Organic Agriculture (FiBL) and IFOAM—Organics International: Frick, Switzerland; Bonn, Germany, 2021. [Google Scholar]
- Caprile, A.; Rossi, R. 2021 International Year of Fruits and Vegetables. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/es/c/1382166/ (accessed on 20 September 2021).
- Wang, D.D.; Li, Y.; Bhupathiraju, S.N.; Rosner, B.A.; Sun, Q.; Giovannucci, E.L.; Rimm, E.B.; Manson, J.E.; Willett, W.C.; Stampfer, M.J.; et al. Fruit and vegetable intake and mortality: Results from 2 prospective cohort studies of US men and women and a meta-analysis of 26 cohort studies. Circulation 2021, 143, 1642–1654. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Fruit and Vegetables for Health Initiative; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Kalmpourtzidou, A.; Eilander, A.; Talsma, E.F. Global vegetable intake and supply compared to recommendations: A systematic review. Nutrients 2020, 12, 1558. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paris, H.S. Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): Progress and challenges. Euphytica 2016, 208, 415–438. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-rad, J.; Capanoglu, E.; Adrar, N. Cucurbita Plants: From Farm to Industry. Appl. Sci. 2019, 1010, 3387. [Google Scholar] [CrossRef] [Green Version]
- Verdone, M.; Rao, R.; Coppola, M.; Corrado, G. Identification of zucchini varieties in commercial food products by DNA typing. Food Control. 2018, 84, 197–204. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Araujo, J.; Telhado, S. Organic Food: A Comparative Study of the Effect of Tomato Cultivars and Cultivation Conditions on the Physico-Chemical Properties. Foods 2015, 4, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Brandt, K.; Srednicka-Tober, D.; Barański, M.; Sanderson, R.; Leifert, C.; Seal, C. Methods for comparing data across differently designed agronomic studies: Examples of different meta-analysis methods used to compare relative composition of plant foods grown using organic or conventional production methods and a protocol for a systemati. J. Agric. Food Chem. 2013, 61, 7173–7180. [Google Scholar] [CrossRef] [Green Version]
- Kazimierczak, R.; Siłakiewicz, A.; Hallmann, E.; Srednicka-Tober, D.; Rembiałkowska, E. Chemical composition of selected beetroot juices in relation to beetroot production system and processing technology. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Srednicka-Tober, D.; Kazimierczak, R.; Ponder, A.; Hallmann, E. Biologically active compounds in selected organic and conventionally produced dried fruits. Foods 2020, 9, 1005. [Google Scholar] [CrossRef]
- Hallmann, E.; Marszałek, K.; Lipowski, J.; Jasińska, U.; Kazimierczak, R.; Średnicka-Tober, D.; Rembiałkowska, E. Polyphenols and carotenoids in pickled bell pepper from organic and conventional production. Food Chem. 2019, 278, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Bonte, A.; Neuweger, H.; Goesmann, A.; Thonar, C.; Mader, P.; Langenkamper, G.; Niehaus, K. Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. J. Sci. Food Agric. 2014, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sanchez, P. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chem. 2014, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Langenkämper, G.; Betsche, T.; Neehaus, K.; Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 2006, 54, 8301–8306. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Amat, M.; Lamuela-Raventós, R.M. A metabolomic approach differentiates between conventional and organic ketchups. J. Agric. Food Chem. 2011, 59, 11703–11710. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Logrippo, S.; Cahill, M.G.; James, K.J. High-performance liquid chromatography LTQ-Orbitrap mass spectrometry method for tomatidine and non-target metabolites quantification in organic and normal tomatoes. Int. J. Food Sci. Nutr. 2014, 65, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Średnicka-Tober, D.; Ponder, A.; Hallmann, E.; Głowacka, A.; Rozpara, E. The Profile and Content of Polyphenols and Carotenoids in Local and Commercial Sweet Cherry Fruits (Prunus avium L.) and Their Antioxidant Activity In Vitro. Antioxidants 2019, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- The Polish Committe for Standardization. Polish Norm PN-EN 12145 Fruits and Vegetable Juices-Determination of Dry Matter-Gravimetric Method; The Polish Committee for Standardization: Warsaw, Poland, 2001. [Google Scholar]
- Ma, Y.Q.; Ye, X.Q.; Fang, Z.X.; Chen, J.C.; Xu, G.H.; Liu, D.H. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of satsuma mandarin (Citrus unshiu Marc.) peels. J. Agric. Food Chem. 2008, 56, 5682–5690. [Google Scholar] [CrossRef]
- Nishiyama, I.; Fukuda, T.; Oota, T. Genotypic Differences in Chlorophyll, Lutein, and b-Carotene contents in the Fruits of Actinidia Species. J. Agric. Food Chem. 2005, 6403–6407. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Rembiałkowska, E.; Hallmann, E. The Profile of Selected Antioxidants in Two Courgette Varieties from Organic and Conventional Production. Antioxidants 2020, 9, 404. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- International Organization for Standarization. ISO 13299 Sensory Analysis—Methodology—General Quidance for Establishing a Sensory Profile; International Organization for Standarization: Geneva, Switzerland, 2016. [Google Scholar]
- Polish Standard Committee, International Organization for Standarization. Sensory Analysis, general guidance for theselection, training and monitoring of accessors. In Polish Standard PN-EN ISO 8586-03; Polish Standard Committee, International Organization for Standarization: Geneva, Switzerland, 2014. [Google Scholar]
- R Core Team. An Introduction to R.; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Martínez-Valdivieso, D.; Gómez, P.; Font, R.; Alonso-Moraga, Á.; Río-Celestino, M. Del Physical and chemical characterization in fruit from 22 summer squash (Cucurbita pepo L.) cultivars. LWT Food Sci. Technol. 2015, 64, 1225–1233. [Google Scholar] [CrossRef]
- Pevicharova, G.; Velkov, N. Sensory, chemical and morphological characterization of Cucurbita maxima and Cucurbita moschata genotypes from different geographical origins. Genetika 2017, 49, 193–202. [Google Scholar] [CrossRef]
- Martínez-Valdivieso, D.; Gómez, P.; Font, R.; Río-Celestino, M. Del Mineral composition and potential nutritional contribution of 34 genotypes from different summer squash morphotypes. Eur. Food Res. Technol. 2014, 240, 71–81. [Google Scholar] [CrossRef]
- Palma, F.; Carvajal, F.; Lluch, C.; Jamilena, M.; Garrido, D. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant. Sci. 2014, 217–218, 78–86. [Google Scholar] [CrossRef]
- Uddain, J.; Islam Tripti, S.; Shah Jahan, M.; Sultana, N.; Rahman, M.J.; Subramaniam, S. Changes of Morphological and Biochemical Properties in Organically Grown Zucchini Squash (Cucurbita pepo L.). HortScience 2019, 54, 1485–1491. [Google Scholar] [CrossRef]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Lucini, L.; Lorenzo, J.M. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef]
- Oloyede, F.M.; Agbaje, G.O.; Obuotor, E.M.; Obisesan, I.O. Nutritional and antioxidant profiles of pumpkin (Cucurbita pepo Linn.) immature and mature fruits as influenced by NPK fertilizer. Food Chem. 2012, 135, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Kopta, T.; Híc, P.; Šlosár, M.; Pokluda, R. Quality changes in organic and conventional Hokkaido pumpkin (Cucurbita maxima Duch.) during storage. Biol. Agric. Hortic. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- Iswaldi, I.; Gómez-Caravaca, A.M.; Lozano-Sánchez, J.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Profiling of phenolic and other polar compounds in zucchini (Cucurbita pepo L.) by reverse-phase high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res. Int. 2013, 50, 77–84. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kazimierczak, R.; Średnicka-Tober, D.; Szafirowska, A.; Barański, M.; Rembiałkowska, E.; Hallmann, E. The Effect of Organic vs. Conventional Cropping Systems on the Yield and Chemical Composition of Three Courgette Cultivars. Agronomy 2020, 10, 1341. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity, and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. F. Crop. Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Pakos, P.; Seal, C.; Rosa, E.A.S.; Markellou, E.; Iversen, P.O.; et al. Effect of organic and conventional production methods on fruit yield and nutritional quality parameters in three traditional cretan grape varieties: Results from a farm survey. Foods 2021, 10, 476. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Seal, C.; Rosa, E.A.S.; Iversen, P.O.; Vigar, V.; Barkla, B.; et al. Effects of production region, production systems and grape type/variety on nutritional quality parameters of table grapes; results from a UK retail survey. Foods 2020, 9, 1874. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defense responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Wegener, C.; Jansen, G.; Jurgens, H.-U. Influence of drought and wounding stress on soluble phenols and proteins in potato tubers. Sustain. Agric. Res. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Capanoglu, E.; Adrar, N.; Catalkaya, G.; Shaheen, S.; Jaffer, M.; Giri, L.; Suyal, R.; Jugran, A.K.; Calina, D.; et al. Cucurbits plants: A key emphasis to its pharmacological potential. Molecules 2019, 24, 1854. [Google Scholar] [CrossRef] [Green Version]
- Hamissou, M.; Smith, A.C.; Carter, R.E.; Triplett, J.K. Antioxidative properties of bitter gourd (Momordica charantia) and zucchini (Cucurbita pepo). Emirates J. Food Agric. 2013, 25, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Kulczynski, B.; Gramza-Michałowska, A. The profile of secondary metabolites and other bioactive compounds in cucurbita Pepo L. And cucurbita moschata pumpkin cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [Green Version]
- Bonina-Noseworthy, J.; Loy, J.B.; Curran-Celentano, J.; Sideman, R.; Kopsell, D.A. Carotenoid concentration and composition in winter squash: Variability associated with different cultigens, harvest maturities, and storage times. HortScience 2016, 51, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2018, 84, 15–18. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Diaz, M.T.; Perez-Vicente, A.; Font, R. Quality of Fresh Cut Zucchini as Affected by Cultivar, Maturity at Processing and Packaging. Packag. Technol. Sci. 2016, 29, 365–382. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. Modelling Ca2+ accumulation in soilless zucchini crops: Physiological and agronomical responses. Agric. Water Manag. 2018, 203, 197–206. [Google Scholar] [CrossRef]
- Fekete, D.; Balázs, G.; Bőhm, V.; Várvölgyi, E.; Kappel, N. Sensory evaluation and electronic tongue for sensing grafted and non-grafted watermelon taste attributes. Acta Aliment. 2018, 47, 487–494. [Google Scholar] [CrossRef]
- Bourn, D.; Prescott, J. A comparison of the nutritional value, sensory qualities, and food safety of organically and conventionally produced foods. Crit. Rev. Food Sci. Nutr. 2002, 42, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N. Postharvest quality and composition of organically and conventionally produced fruits: A review. Sci. Hortic. 2017, 216, 148–159. [Google Scholar] [CrossRef]
- Talavera-Bianchi, M.; Adhikari, K.; Chambers, E.; Carey, E.E.; Chambers, D.H. Relation between developmental stage, sensory properties, and volatile content of organically and conventionally grown pac choi (Brassica rapa var. Mei Qing Choi). J. Food Sci. 2010, 75, S173–S181. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Ballesteros, R.; Ciruelos, A.; Barreiros, J.M.; Latorre, A. Sensory evaluation of fresh tomato from conventional, integrated, and organic production. Acta Hortic. 2001, 542, 277–282. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Nitrogen form affects yield and taste of tomatoes. J. Sci. Food Agric. 2005, 85, 1405–1414. [Google Scholar] [CrossRef]
- Raffo, A.; Baiamonte, I.; Bucci, R.; D’Aloise, A.; Kelderer, M.; Matteazzi, A.; Moneta, E.; Nardo, N.; Paoletti, F.; Peparaio, M. Effects of different organic and conventional fertilisers on flavour related quality attributes of cv. Golden Delicious apples. LWT Food Sci. Technol. 2014, 59, 964–972. [Google Scholar] [CrossRef]
- Casals, J.; Rull, A.; Bernal, M.; González, R.; Romero Del Castillo, R.; Simó, J. Impact of grafting on sensory profile of tomato landraces in conventional and organic management systems. Hortic. Environ. Biotechnol. 2018, 59. [Google Scholar] [CrossRef] [Green Version]
- Paolo, D.; Bianchi, G.; Morelli, C.F.; Speranza, G.; Campanelli, G.; Kidmose, U.; Lo Scalzo, R. Impact of drying techniques, seasonal variation and organic growing on flavor compounds profiles in two Italian tomato varieties. Food Chem. 2019, 298, 125062. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, M.; Radzanowska, J.; Danilcenko, H.; Jariene, E. Quality of Pumpkin Cultivars in Relation to Sensory Characteristics. Not. Bot. Horti Agrobot. Cluj-Napoca 2008, 36, 73–79. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Cagliani, L.R.; Lalou, S.; Naziri, E.; Tsimidou, M.Z.; Consonni, R. 1H NMR-based metabolomics of saffron reveals markers for its quality deterioration. Food Res. Int. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Consonni, R.; Polla, D.; Cagliani, L.R. Organic and conventional coffee differentiation by NMR spectroscopy. Food Control. 2018, 94, 284–288. [Google Scholar] [CrossRef]
- Xiao, R.; Ma, Y.; Zhang, D.; Qian, L. Discrimination of conventional and organic rice using untargeted LC-MS-based metabolomics. J. Cereal Sci. 2018, 82, 73–81. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for organic food authentication: Results from a long-term field study in carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; de Moura Ribeiro, M.V.; de Toledo, P.R.A.B.; Boralle, N.; Pezza, H.R.; Pezza, L. Fingerprint and authenticity roasted coffees by 1H-NMR: The Brazilian coffee case. Food Sci. Biotechnol. 2018, 27, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisoni, S.; Lucini, L.; Angilletta, F.; Rocchetti, G.; Farinelli, D.; Tombesi, S.; Trevisan, M. Discrimination of extra-virgin-olive oils from different cultivars and geographical origins by untargeted metabolomics. Food Res. Int. 2019, 121, 746–753. [Google Scholar] [CrossRef]
- Lin, X.; Gao, H.; Ding, Z.; Zhan, R.; Zhou, Z.; Ming, J. Comparative Metabolic Profiling in Pulp and Peel of Green and Red Pitayas (Hylocereus polyrhizus and Hylocereus undatus) Reveals Potential Valorization in the Pharmaceutical and Food Industries. Biomed. Res. Int. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Xu, X.; Bi, S.; Lao, F.; Chen, F.; Liao, X.; Wu, J. Comprehensive investigation on volatile and non-volatile metabolites in broccoli juices fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chem. 2021, 341, 128118. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Foodomics: A new tool to differentiate between organic and conventional foods. Electrophoresis 2016, 37, 1784–1794. [Google Scholar] [CrossRef]
- Pavagadhi, S.; Swarup, S. Metabolomics for evaluating flavor-associated metabolites in plant-based products. Metabolites 2020, 10, 197. [Google Scholar] [CrossRef]
- Jordán, M.J.; Shaw, P.E.; Goodner, K.L. Volatile components in aqueous essence and fresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. J. Agric. Food Chem. 2001, 49, 5929–5933. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alves, V.; Kalbina, I.; Nilsen, A.; Aronsson, M.; Rosenqvist, E.; Jansen, M.A.K.; Qian, M.; Öström, Å.; Hyötyläinen, T.; Strid, Å. Integration of non-target metabolomics and sensory analysis unravels vegetable plant metabolite signatures associated with sensory quality: A case study using dill (Anethum graveolens). Food Chem. 2021, 344, 128714. [Google Scholar] [CrossRef]
Odor Attributes | Taste Attributes | Appearance and Texture Attributes and Overall Quality | |||
---|---|---|---|---|---|
Name | Abbreviation | Name | Abbreviation | Name | Abbreviation |
Buttery odor | bo | Potato taste | ptt | Peel color | pc |
Potato odor | pto | Sunflower taste | sft | Flesh color | fc |
Sweet odor | so | Buttery taste | bt | Hardness | har |
Sunflower odor | sfo | Sweet taste | st | Firmness | fir |
Pungent odor | pno | Cucumber taste | ct | Aquosity | aqs |
Earthy odor | ero | Bitter taste | btt | Fibrousness | fbs |
Pungent taste | pnt | Overall quality | ovq |
Factor | Dry Matter | Sugars (Sum) | Fructose | Glucose | Sucrose |
---|---|---|---|---|---|
Cultivar (CV) | |||||
Astra Polka (AP) | 4.42 ± 0.17 1 | 3.88 ± 0.22 | 1.93 ± 0.12 | 0.89 ± 0.10 | 1.05 ± 0.10 |
Nimba (N) | 4.16 ± 0.20 | 3.71 ± 0.26 | 1.76 ± 0.16 | 1.01 ± 0.11 | 0.93 ± 0.10 |
Horticultural System (HS) | |||||
Commercial organic fertilizer (BIO) | 4.60 ± 0.26 | 4.24 ± 0.29 A 2 | 1.87 ± 0.15 | 1.36 ± 0.13 A | 1.01 ± 0.12 AB |
Manure (MAN) | 4.39 ± 0.24 | 4.27 ± 0.31 A | 2.12 ± 0.21 | 0.93 ± 0.12 AB | 1.21 ± 0.12 A |
Mineral (MIN) | 3.96 ± 0.15 | 2.96 ± 0.15 B | 1.56 ± 0.07 | 0.63 ± 0.06 B | 0.77 ± 0.10 B |
ANOVA p-values | |||||
CV | 0.408 | 0.598 | 0.413 | 0.803 | 0.415 |
HS | 0.355 | 0.038 | 0.146 | 0.093 | 0.118 |
CV × HS | 0.942 | 0.825 | 0.997 | 0.539 | 0.945 |
Factor | Vitamin C (DHA + L-Asc) | DHA | L-Asc | Polyphenols (Sum) | Phenolic Acids (Sum) | Flavonoids (Sum) |
---|---|---|---|---|---|---|
Cultivar (CV) | ||||||
Astra Polka (AP) | 8.02 ± 0.72 1 | 6.29 ± 0.72 | 1.52 ± 0.15 | 37.89 ± 3.02 | 33.47 ± 2.86 | 4.42 ± 0.42 |
Nimba (N) | 7.60 ± 0.65 | 6.40 ± 0.60 | 1.21 ± 0.15 | 40.89 ± 3.53 | 36.64 ± 3.25 | 4.25 ± 0.47 |
Horticultural System (HS) | ||||||
Commercial organic fertilizer (BIO) | 7.61 ± 1.27 | 6.08 ± 1.28 | 1.12 ± 0.17 | 34.42 ± 2.81 B 2 | 31.19 ± 2.88 B | 3.24 ± 0.41 B |
Manure (MAN) | 7.52 ± 0.84 | 6.27 ± 0.83 | 1.25 ± 0.16 | 53.83 ± 3.89 A | 47.52 ± 3.81 A | 6.31 ± 0.47 A |
Mineral (MIN) | 8.31 ± 0.46 | 6.60 ± 0.40 | 1.71 ± 0.19 | 30.79 ± 1.56 B | 27.03 ± 1.36 B | 3.76 ± 0.26 B |
ANOVA p-values | ||||||
CV | 0.969 | 0.828 | 0.192 | 0.489 | 0.493 | 0.753 |
HS | 0.872 | 0.925 | 0.128 | 0.086 | 0.119 | 0.025 |
CV × HS | 0.818 | 0.868 | 0.449 | 0.780 | 0.792 | 0.655 |
Factor | Gallic Acid | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Quercetin-3-O-rutinoside | Kaempferol-3-O-glucoside |
---|---|---|---|---|---|---|---|
Cultivar (CV) | |||||||
Astra Polka (AP) | 13.52 ± 1.17 1 | 5.23 ± 0.59 | 2.99 ± 0.61 | 6.51 ± 0.61 | 3.51 ± 0.55 | 2.24 ± 0.26 | 2.18 ± 0.27 |
Nimba (N) | 14.20 ± 1.37 | 5.79 ± 0.73 | 3.69 ± 0.79 | 6.49 ± 0.70 | 4.22 ± 0.55 | 2.09 ± 0.26 | 2.16 ± 0.27 |
Horticultural System (HS) | |||||||
Commercial organic fertilizer (BIO) | 13.09 ± 1.26 B 2 | 3.43 ± 0.48 B | 2.42 ± 0.79 | 7.31 ± 0.94 | 2.43 ± 0.41 B | 1.22 ± 0.18 B | 2.01 ± 0.31 B |
Manure (MAN) | 18.59 ± 1.55 A | 8.68 ± 0.73 A | 4.81 ± 0.98 | 7.70 ± 0.76 | 6.42 ± 0.67 A | 3.10 ± 0.31 A | 3.22 ± 0.25 A |
Mineral (MIN) | 9.71 ± 0.81 B | 4.10 ± 0.41 B | 2.94 ± 0.63 | 4.63 ± 0.48 | 3.02 ± 0.30 B | 2.43 ± 0.19 A | 1.33 ± 0.13 B |
ANOVA p-values | |||||||
CV | 0.656 | 0.275 | 0.537 | 0.863 | 0.283 | 0.624 | 0.942 |
HS | 0.016 | 0.012 | 0.309 | 0.572 | 0.019 | 0.020 | 0.093 |
CV × HS | 0.243 | 0.987 | 0.771 | 0.771 | 0.406 | 0.505 | 0.781 |
Factor | Carotenoids (Sum) | β-Carotene | Lutein | Zeaxanthin | Chlorophylls (Sum) | Chlorophyll a | Chlorophyll b |
---|---|---|---|---|---|---|---|
Cultivar (CV) | |||||||
Astra Polka (AP) | 1.21 ± 0.11 1 | 1.10 ± 0.11 | 0.08 ± 0.00 | 0.03 ± 0.00 | 2.23 ± 0.18 | 1.71 ± 0.16 | 0.52 ± 0.03 |
Nimba (N) | 1.19 ± 0.16 | 1.08 ± 0.16 | 0.08 ± 0.01 | 0.03 ± 0.00 | 2.01 ± 0.16 | 1.51 ± 0.14 | 0.50 ± 0.03 |
Horticultural system (HS) | |||||||
Commercial organic fertilizer (BIO) | 1.17 ± 0.14 | 1.06 ± 0.14 | 0.09 ± 0.01 | 0.03 ± 0.00 | 2.21 ± 0.22 | 1.70 ± 0.19 | 0.51 ± 0.04 |
Manure (MAN) | 1.47 ± 0.20 | 1.36 ± 0.20 | 0.08 ± 0.01 | 0.03 ± 0.00 | 2.35 ± 0.24 | 1.80 ± 0.21 | 0.55 ± 0.03 |
Mineral (MIN) | 0.96 ± 0.11 | 0.86 ± 0.11 | 0.08 ± 0.00 | 0.03 ± 0.00 | 1.84 ± 0.15 | 1.37 ± 0.13 | 0.47 ± 0.03 |
ANOVA p-values | |||||||
CV | 0.950 | 0.966 | 0.479 | 0.426 | 0.461 | 0.396 | 0.744 |
HS | 0.557 | 0.568 | 0.514 | 0.443 | 0.409 | 0.313 | 0.642 |
CV × HS | 0.978 | 0.977 | 0.999 | 0.973 | 0.866 | 0.748 | 0.942 |
Factor | Buttery Odor | Potato Odor | Sweet Odor | Sunflower Odor | Pungent Odor | Earthy Odor |
---|---|---|---|---|---|---|
Cultivar (CV) | ||||||
Astra Polka (AP) | 1.70 1 ± 0.29 | 2.96 ± 0.25 | 1.47 ± 0.25 | 2.04 ± 0.22 | 1.97 ± 0.23 A | 1.74 ± 0.27 A |
Nimba (N) | 1.92 ± 0.29 | 2.57 ± 0.23 | 1.82 ± 0.27 | 2.39 ± 0.25 | 1.44 ± 0.20 B | 1.05 ± 0.17 B |
Horticultural system (HS) | ||||||
Commercial organic fertilizer (BIO) | 1.73 ± 0.31 | 2.28 ± 0.23 B 2 | 1.55 ± 0.26 | 2.36 ± 0.32 | 1.68 ± 0.26 | 1.37 ± 0.27 |
Manure (MAN) | 1.78 ± 0.40 | 3.06 ± 0.28 A | 1.69 ± 0.31 | 2.34 ± 0.28 | 1.67 ± 0.27 | 1.25 ± 0.22 |
Mineral (MIN) | 1.93 ± 0.36 | 2.95 ± 0.33 AB | 1.69 ± 0.38 | 1.94 ± 0.28 | 1.77 ± 0.28 | 1.57 ± 0.33 |
ANOVA p-value | ||||||
CV | NS | NS | NS | NS | 0.012 | 0.007 |
HS | NS | 0.021 | NS | NS | NS | NS |
CV × HS | <0.001 | <0.001 | NS | NS | 0.004 | <0.001 |
Factor | Potato Taste | Sunflower Taste | Buttery Taste | Sweet Taste | Cucumber Taste | Bitter Taste | Pungent Taste |
---|---|---|---|---|---|---|---|
Cultivar (CV) | |||||||
Astra Polka (AP) | 2.97 1 ± 0.22 | 2.57 ± 0.29 | 1.19 ± 0.25 | 1.63 ± 0.27 B 2 | 2.53 ± 0.21 B | 1.08 ± 0.22 | 1.22 ± 0.26 A |
Nimba (N) | 2.66 ± 0.24 | 2.76 ± 0.28 | 1.26 ± 0.21 | 2.03 ± 0.30 A | 3.05 ± 0.24 A | 0.74 ± 0.15 | 0.76 ± 0.18 B |
Horticultural System (HS) | |||||||
Commercial organic fertilizer (BIO) | 2.55 ± 0.26 | 2.98 ± 0.42 | 1.05 ± 0.26 | 1.81 ± 0.39 | 3.04 ± 0.33 | 1.01 ± 0.26 | 1.01 ± 0.28 |
Manure (MAN) | 2.69 ± 0.31 | 2.68 ± 0.32 | 1.20 ± 0.26 | 1.73 ± 0.30 | 2.80 ± 0.24 | 0.71 ± 0.19 | 0.88 ± 0.25 |
Mineral (MIN) | 3.21 ± 0.28 | 2.35 ± 0.31 | 1.43 ± 0.32 | 1.93 ± 0.38 | 2.53 ± 0.26 | 1.02 ± 0.24 | 1.08 ± 0.29 |
ANOVA p-values | |||||||
CV | NS | NS | NS | 0.046 | 0.037 | NS | 0.025 |
HS | NS | NS | NS | NS | NS | NS | NS |
CV × HS | NS | NS | 0.043 | 0.017 | NS | NS | NS |
Factor | Peel Color | Flesh Color | Hardness | Firmness | Aquosity | Fibrousness | Overall Quality |
---|---|---|---|---|---|---|---|
Cultivar (CV) | |||||||
Astra Polka (AP) | 7.10 1 ± 0.26 | 4.78 ± 0.36 | 4.06 ± 0.33 B | 4.36 ± 0.32 B | 5.42 ± 0.30 | 2.68 ± 0.27 | 5.36 ± 0.22 |
Nimba (N) | 6.45 ± 0.34 | 5.03 ± 0.41 | 5.12 ± 0.31 A | 5.32 ± 0.32 A | 4.95 ± 0.27 | 2.81 ± 0.30 | 5.57 ± 0.25 |
Horticultural System (HS) | |||||||
Commercial organic fertilizer (BIO) | 6.60 ± 0.34 AB 2 | 4.68 ± 0.50 | 4.96 ± 0.46 A | 5.40 ± 0.41 A | 4.83 ± 0.30 B | 2.88 ± 0.37 | 5.57 ± 0.37 |
Manure (MAN) | 6.34 ± 0.47 B | 5.06 ± 0.49 | 5.06 ± 0.36 A | 5.43 ± 0.35 A | 4.67 ± 0.30 B | 2.84 ± 0.32 | 5.69 ± 0.28 |
Mineral (MIN) | 7.38 ± 0.28 A | 4.98 ± 0.42 | 3.75 ± 0.35 B | 3.70 ± 0.36 B | 6.06 ± 0.39 A | 2.51 ± 0.35 | 5.13 ± 0.28 |
ANOVA p-value | |||||||
CV | NS | NS | 0.010 | 0.020 | NS | NS | NS |
HS | 0.035 | NS | 0.016 | <0.001 | <0.001 | NS | NS |
CV × HS | NS | NS | NS | NS | NS | NS | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopczyńska, K.; Średnicka-Tober, D.; Hallmann, E.; Wilczak, J.; Wasiak-Zys, G.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Barański, M.; et al. Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo). Foods 2021, 10, 2475. https://doi.org/10.3390/foods10102475
Kopczyńska K, Średnicka-Tober D, Hallmann E, Wilczak J, Wasiak-Zys G, Wyszyński Z, Kucińska K, Perzanowska A, Szacki P, Barański M, et al. Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo). Foods. 2021; 10(10):2475. https://doi.org/10.3390/foods10102475
Chicago/Turabian StyleKopczyńska, Klaudia, Dominika Średnicka-Tober, Ewelina Hallmann, Jacek Wilczak, Grażyna Wasiak-Zys, Zdzisław Wyszyński, Katarzyna Kucińska, Aneta Perzanowska, Paweł Szacki, Marcin Barański, and et al. 2021. "Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo)" Foods 10, no. 10: 2475. https://doi.org/10.3390/foods10102475
APA StyleKopczyńska, K., Średnicka-Tober, D., Hallmann, E., Wilczak, J., Wasiak-Zys, G., Wyszyński, Z., Kucińska, K., Perzanowska, A., Szacki, P., Barański, M., Gawron, P., Góralska-Walczak, R., Rembiałkowska, E., & Kazimierczak, R. (2021). Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette (Cucurbita pepo). Foods, 10(10), 2475. https://doi.org/10.3390/foods10102475