Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of LPE
2.3. Formulation of Enriched Biscuits with Bioactive Compounds
2.4. Characterization of Physicochemical Properties of LPE, Doughs, and Biscuits
2.4.1. Physicochemical Evaluation
2.4.2. Microbiological Analysis
2.4.3. Evaluation of Total Phenol Content and Antioxidant Activity
Total Phenolic Compounds (TPC)
Total Flavonoid Content (TF)
DPPH Assay
ABTS Assay
2.4.4. Identification and Quantification of Antioxidant Compounds
2.4.5. Oxidative Stability Study
2.4.6. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Lemon Pomace Extract (LPE)
3.2. Physicochemical Analysis of Doughs and Biscuits
3.3. Microbiological Analysis
3.4. Total Polyphenol Content and Antioxidant Activity
3.5. Oxidative Stability Results
3.6. UHPLC Phenolic Profile
3.7. Sensory Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Castro, L.A.; Lizi, J.M.; das Chagas, E.G.L.; de Carvalho, R.A.; Vanin, F.M. From orange juice by-product in the food industry to a functional ingredient: Application in the circular economy. Foods 2020, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Curutchet, A.; Cozzano, S.; Tárrega, A.; Arcia, P. Blueberry pomace as a source of antioxidant fibre in cookies: Consumer’s expectations and critical attributes for developing a new product. Food Sci. Technol. Int. 2019, 25, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.; Arendt, E.; Gallagher, E. The increasing use of barley and barley by-products in the production of healthier baked goods. Trends Food Sci. Technol. 2013, 29, 124–134. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Impact of stability of enriched oil with phenolic extract from olive mill wastewaters. Foods 2020, 9, 856. [Google Scholar] [CrossRef]
- Wang, L.; Xu, H.; Yuan, F.; Pan, Q.; Fan, R.; Gao, Y. Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 2015, 4, 250–258. [Google Scholar] [CrossRef]
- Nair, A.K.; Mukherjee, M.; Nag, S.; Pandimadevi, M. Antioxidant and antimicrobial activities of citrus lemon peels encapsulated in PVA. Carpathian J. Food Sci. Technol. 2019, 11, 111–126. [Google Scholar]
- Mathew, B.B.; Shajie, D.; Wadhwa, N.; Murthy, N.K.; Murthy, T.K.; Rashmi, M.V. Comparative antioxidant efficacy of Citrus limonum pulp and peel—An in vitro study. Drug Inven. Today 2013, 5, 296–301. [Google Scholar] [CrossRef]
- Al-Qassabi, J.S.A.; Weli, A.M.; Hossain, M.A. Comparison of total phenols content and antioxidant potential of peel extracts of local and imported lemons samples. Sustain. Chem. Pharm. 2018, 8, 71–75. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Res. Int. 2014, 65, 385–393. [Google Scholar] [CrossRef]
- Ismail, T.; Akhtar, S.; Riaz, M.; Ismail, A. Effect of pomegranate peel supplementation on nutritional, organoleptic and stability properties of cookies. Int. J. Food Sci. Nutr. 2014, 65, 661–666. [Google Scholar] [CrossRef]
- Ajila, C.; Leelavathi, K.; Rao, U.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Egea, M.B.; Bolanho, B.C.; Lemes, A.C.; Bragatto, M.M.; Silva, M.R.; Carvalho, J.C.M.; Danesi, E.D.G. Low-cost cassava, peach palm and soy by-products for the nutritional enrichment of cookies: Physical, chemical and sensorial characteristics. Int. Food Res. J. 2018, 25, 1204–1212. [Google Scholar]
- Larrea, M.; Chang, Y.; Martinez-Bustos, F. Some functional properties of extruded orange pulp and its effect on the quality of cookies. LWT-Food Sci. Technol. 2005, 38, 213–220. [Google Scholar] [CrossRef]
- de Abreu, J.P.; Quintino, I.; Pascoal, G.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant capacity, phenolic compound content and sensory properties of cookies produced from organic grape peel (Vitis labrusca) flour. Int. J. Food Sci. Technol. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Arifin, N.; Peng, K.S.; Long, K.; Ping, T.C.; Yusoff, M.S.A.; Aini, I.N.; Ming, L.O. Relationship between textural properties and sensory qualities of cookies made from medium- and long-chain triacylglycerol-enriched margarines. J. Sci. Food Agric. 2010, 90, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: Comparison with hot water and organic solvent extractions. Eur. Food Res. Technol. 2018, 244, 1353–1365. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo, G.I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, G.L.; Kriaa, K.; Nikov, I.; Dimitrov, K. Ultrasound assisted extraction of polyphenols from black choke-berry. Sep. Purif. Technol. 2012, 93, 42–47. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fernandes, F.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Ind. Crop. Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Reddy, V.; Urooj, A.; Kumar, A. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem. 2005, 90, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists. Method 14.022. In Hydrogen-ion Activity (ph) Method, 13th ed.; Horwitz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1980; p. 213. [Google Scholar]
- Miśkiewicz, K.; Nebesny, E.; Rosicka-Kaczmarek, J.; Żyżelewicz, D.; Budryn, G. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. J. Food Sci. Technol. 2018, 55, 4184–4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Molina, E.; Moreno, D.A.; García-Viguera, C. A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chem. 2009, 115, 1364–1372. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. J. Food Process. Preserv. 2019, 43, e14211. [Google Scholar] [CrossRef]
- Caruso, M.C.; Galgano, F.; Colangelo, M.A.; Condelli, N.; Scarpa, T.; Tolve, R.; Favati, F. Evaluation of the oxidative stability of bakery products by OXITEST method and sensory analysis. Eur. Food Res. Technol. 2016, 243, 1183–1191. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environ-mently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Casquete, R.; Castro, S.M.; Martín, A.; Ruiz-Moyano, S.; Saraiva, J.A.; Cordoba, M.D.G.; Teixeira, P. Evaluation of the effect of high pressure on total phenolic content, antioxidant and antimicrobial activity of citrus peels. Innov. Food Sci. Emerg. Technol. 2015, 31, 37–44. [Google Scholar] [CrossRef]
- Mcharek, N.; Hanchi, B. Maturational effects on phenolic constituents, antioxidant activities and LC-MS/MS profiles of lemon (Citrus limon) peels. J. Appl. Bot. Food Qual. 2017, 90, 1–9. [Google Scholar]
- Pedreschi, F.; Kaack, K.; Granby, K. Acrylamide content and color development in fried potato strips. Food Res. Int. 2006, 39, 40–46. [Google Scholar] [CrossRef]
- Friedman, M. Acrylamide: Inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 2015, 6, 1752–1772. [Google Scholar] [CrossRef]
- Purlis, E.; Salvadori, V.O. Bread browning kinetics during baking. J. Food Eng. 2007, 80, 1107–1115. [Google Scholar] [CrossRef]
- Borrelli, R.C.; Mennella, C.; Barba, F.; Russo, M.; Russo, G.L.; Krome, K.; Erbersdobler, H.F.; Faist, V.; Fogliano, V. Characterization of coloured compounds obtained by enzymatic extraction of bakery products. Food Chem. Toxicol. 2003, 41, 1367–1374. [Google Scholar] [CrossRef]
- Yilmaz, E.; Karaman, E. Functional crackers: Incorporation of the dietary fibers extracted from citrus seeds. J. Food Sci. Technol. 2017, 54, 3208–3217. [Google Scholar] [CrossRef]
- Ahmed, Z.; Noor, A.A. Antibacterial activity of Momordica charantia L. and Citrus limon L. on gram positive and gram negative bacteria. Pure Appl. Biol. 2020, 9, 207–218. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Gélinas, P.; McKinnon, C.M. Effect of wheat variety, farming site, and bread-baking on total phenolics. Int. J. Food Sci. Technol. 2006, 41, 329–332. [Google Scholar] [CrossRef]
- Holtekjølen, A.; Bævre, A.; Rødbotten, M.; Berg, H.; Knutsen, S. Antioxidant properties and sensory profiles of breads containing barley flour. Food Chem. 2008, 110, 414–421. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Troccoli, A.; Cattivelli, L.; Baiano, A. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Technol. 2009, 45, 7–16. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Rabalski, I. Effect of baking on free and bound phenolic acids in wholegrain bakery products. J. Cereal Sci. 2013, 57, 312–318. [Google Scholar] [CrossRef]
- Zieliński, H.; Amigo-Benavent, M.; Del Castillo, M.D.; Horszwald, A.; Zielińska, D. Ginger cake antioxidant profile and its overall antioxidant activity are determined by the cake making process. J. Food Process. Preserv. 2010, 49, 140–148. [Google Scholar]
- Abdel-Aal, E.-S.M.; Choo, T.-M.; Dhillon, S.; Rabalski, I. Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem. J. 2012, 89, 198–204. [Google Scholar] [CrossRef]
- Bassiouny, S.; Hassanien, F.; Ali, F.E.-R.; El-Kayati, S.M. Efficiency of antioxidants from natural sources in bakery products. Food Chem. 1990, 37, 297–305. [Google Scholar] [CrossRef]
- Palombini, S.V.; Carbonera, F.; Galuch, M.B.; Claus, T.; Magon, T.F.S.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Investigation of distribution of antioxidant compounds from natural sources and study of lipid protection in oil-in-water emulsions. J. Braz. Chem. Soc. 2018, 29, 1612–1620. [Google Scholar] [CrossRef]
- Ingle, M.; Thorat, S.S.; Kotecha, P.M.; Nimbalkar, C.A. Nutritional assessment of beetroot (Beta vulgaris L.) powder cookies. Asian J. Dairy Food Res. 2017, 36, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Arimi, J.; Duggan, E.; O’Sullivan, M.; Lyng, J.; O’Riordan, E. Effect of water activity on the crispiness of a biscuit (Crackerbread): Mechanical and acoustic evaluation. Food Res. Int. 2010, 43, 1650–1655. [Google Scholar] [CrossRef]
- Biguzzi, C.; Schlich, P.; Lange, C. The impact of sugar and fat reduction on perception and liking of biscuits. Food Qual. Prefer. 2014, 35, 41–47. [Google Scholar] [CrossRef] [Green Version]
A | Control | |||
B | Dough with fresh lemon peel | |||
C | Dough with fresh lemon peel and LPE | |||
D | Dough with LPE | |||
Ingredients | A | B | C | D |
Wheat flour (g) | 400 | 390 | 390 | 400 |
Corn seed oil (mL) | 80 | 80 | 80 | 80 |
White sugar (g) | 120 | 120 | 120 | 120 |
Skimmed milk (mL) | 120 | 120 | 70 | 70 |
Baking powder (g) | 8 | 8 | 8 | 8 |
Fresh lemon peel (g) | 0 | 10 | 10 | 0 |
Lemon pomace extract (mL) | 0 | 0 | 50 | 50 |
pH. | 3.93 ± 0.01 |
Color: | L*: 42.33 ± 0.14 |
a*: 1.22 ± 0.04 | |
b*: 7.12 ± 0.09 | |
C*: 7.22 ± 0.08 | |
H: 80.30 ± 0.38 | |
TPC (mg GAE g−1 d.w.) | 0.59 ± 0.01 |
TF (mg CE g−1 d.w.) | 0.16 ± 0.00 |
DPPH (µmol TE g−1 d.w.) | 1.86 ± 0.28 |
ABTS (µmol TE g−1 d.w.) | 36.29 ± 4.62 |
Eriocitrin (mg 100 g−1 d.w.) | 190.15 ± 0.04 |
Hesperidin (mg 100 g−1 d.w.) | 231.60 ± 0.13 |
DOUGH | aw | Moisture (%) | pH | BISCUIT | aw | Moisture (%) | pH |
---|---|---|---|---|---|---|---|
A | 0.86 ± 0.00 | 19.28 ± 0.63 a | 7.13 ± 0.01 a | A | 0.28 ± 0.01 a | 4.69 ± 0.18 | 6.87 ± 0.03 a |
B | 0.89 ± 0.00 | 18.70 ± 1.88 a | 7.15 ± 0.02 a | B | 0.28 ± 0.00 a | 4.76 ± 0.05 | 6.88 ± 0.00 a |
C | 0.89 ± 0.00 | 18.25 ± 0.28 a | 6.91 ± 0.11 b | C | 0.28 ± 0.00 a | 5.16 ± 0.52 | 6.79 ± 0.02 b |
D | 0.89 ± 0.00 | 14.14 ± 1.34 b | 6.87 ± 0.02 b | D | 0.23 ± 0.01 b | 4.60 ± 0.30 | 6.72 ± 0.03 c |
Sign | ns | ** | ** | ** | ns | ** |
Samples | A | B | C | D | Sign | |
---|---|---|---|---|---|---|
Dough | L* | 72.35 ± 2.08 | 72.09 ± 2.32 | 73.69 ± 2.39 | 70.98 ± 2.27 | ns |
a* | 2.50 ± 0.11 ab | 2.35 ± 0.17 bc | 2.24 ± 0.16 c | 2.57 ± 0.21 a | ** | |
b* | 18.90 ± 0.64 b | 19.74 ± 0.93 ab | 20.43 ± 0.92 a | 18.97 ± 0.38 b | ** | |
C* | 19.06 ± 0.64 b | 19.88 ± 0.94 ab | 20.55 ± 0.92 a | 19.15 ± 0.37 b | ** | |
H | 82.52 ± 0.36 b | 83.25 ± 0.46 a | 83.79 ± 0.44 a | 82.33 ± 0.65 b | ** | |
Biscuit | L* | 65.39 ± 7.88 | 66.94 ± 5.91 | 68.99 ± 6.00 | 69.73 ± 3.32 | ns |
a* | 8.78 ± 3.71 | 8.96 ± 2.69 | 8.04 ± 3.31 | 8.15 ± 1.78 | ns | |
b* | 27.56 ± 1.88 | 28.58 ± 1.41 | 27.28 ± 1.92 | 28.66 ± 1.24 | ns | |
C* | 29.13 ± 2.03 | 30.07 ± 1.22 | 28.58 ± 2.45 | 29.83 ± 1.57 | ns | |
H | 72.59 ± 0.13 | 72.63 ± 0.09 | 73.97 ± 0.10 | 74.27 ± 0.05 | ns |
DOUGH | TBC | M and Y |
---|---|---|
(Log 10 UFC g−1) | (Log 10 UFC g−1) | |
A | 2.22 ± 0.01 a | 1.76 ± 0.12 |
B | 2.13 ± 0.12 a | 1.62 ± 0.03 |
C | 2.10 ± 0.03 a | 1.45 ± 0.21 |
D | 1.95 ± 0.02 b | 1.53 ± 0.24 |
Sign | ** | ns |
Dough | Biscuit | |||||||
---|---|---|---|---|---|---|---|---|
B | C | D | Sign | B | C | D | Sign | |
Eriocitrin | 3.54 ± 0.07 a | 3.40 ± 0.13 a | 1.62 ± 0.1 b | ** | nd | 2.75 ± 0.16 a | 1.32 ± 0.20 b | ** |
Hesperidin | 2.32 ± 0.25 b | 2.67 ± 0.06 a | 2.41 ± 0.03 ab | * | nd | 2.84 ± 0.30 a | 2.22 ± 0.08 b | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imeneo, V.; Romeo, R.; Gattuso, A.; De Bruno, A.; Piscopo, A. Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods 2021, 10, 2460. https://doi.org/10.3390/foods10102460
Imeneo V, Romeo R, Gattuso A, De Bruno A, Piscopo A. Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods. 2021; 10(10):2460. https://doi.org/10.3390/foods10102460
Chicago/Turabian StyleImeneo, Valeria, Rosa Romeo, Antonio Gattuso, Alessandra De Bruno, and Amalia Piscopo. 2021. "Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace" Foods 10, no. 10: 2460. https://doi.org/10.3390/foods10102460
APA StyleImeneo, V., Romeo, R., Gattuso, A., De Bruno, A., & Piscopo, A. (2021). Functionalized Biscuits with Bioactive Ingredients Obtained by Citrus Lemon Pomace. Foods, 10(10), 2460. https://doi.org/10.3390/foods10102460