A Combination of Chromatography with Tandem Mass Spectrometry Systems (UPLC-MS/MS and GC-MS/MS), Modified QuEChERS Extraction and Mixed-Mode SPE Clean-Up Method for the Analysis of 656 Pesticide Residues in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Standard Solutions
2.3. Chromatographic Conditions
2.4. Selection of Extraction Solvent
2.5. Selection of SPE Sorbent
2.6. Optimization of Elution Volume
2.7. Sample Preparation
2.8. Method Validation
2.9. Method Application on Rice Samples
3. Results and Discussion
3.1. Selection of Extraction Solvent
3.2. Selection of SPE Sorbent
3.3. Optimization of Elution Volume
3.4. Method Validation
3.5. Matrix Effect
3.6. Method Application on Rice Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Maclean, J.L.; Dawe, D.C.; Institute, I.R.R.; Hettel, G.P.; West Africa Rice Development Association; International Center for Tropical Agriculture; Food and Agriculture Organization of the United Nations. Rice Almanac: Source Book for the Most Important Economic Activity on Earth; CABI Publishing: Wallingford, UK, 2002. [Google Scholar]
- Kulp, K. Handbook of Cereal Science and Technology, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Pareja, L.; Fernández-Alba, A.R.; Cesio, V.; Heinzen, H. Analytical methods for pesticide residues in rice. TrAC Trends Anal. Chem. 2011, 30, 270–291. [Google Scholar] [CrossRef]
- Salazar, C.; Rand, J. Pesticide use, production risk and shocks. The case of rice producers in Vietnam. J. Environ. Manag. 2020, 253, 109705. [Google Scholar] [CrossRef] [PubMed]
- Demont, M.; Rodenburg, J.; Diagne, M.; Diallo, S. Ex ante impact assessment of herbicide resistant rice in the Sahel. Crop Prot. 2009, 28, 728–736. [Google Scholar] [CrossRef]
- Stackpoole, S.M.; Shoda, M.E.; Medalie, L.; Stone, W.W. Pesticides in US Rivers: Regional differences in use, occurrence, and environmental toxicity, 2013 to 2017. Sci. Total Environ. 2021, 787, 147147. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius. Pesticide Index. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on July 16, 2021).
- Le, L.H.T.; Tran-Lam, T.-T.; Cam, T.Q.; Nguyen, T.N.; Dao, Y.H. Pesticides in edible mushrooms in Vietnam. Food Addit. Contam. Part B 2021, 14, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Theurillat, X.; Dubois, M.; Huertas-Pérez, J.F. A multi-residue pesticide determination in fatty food commodities by modified QuEChERS approach and gas chromatography-tandem mass spectrometry. Food Chem. 2021, 353, 129039. [Google Scholar] [CrossRef]
- Madej, K.; Kalenik, T.K.; Piekoszewski, W. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 2018, 269, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gong, Z.; Zhang, T.; Feng, S.; Wang, J.; Zhang, Y. Simultaneous determination of 106 pesticides in nuts by LC-MS/MS using freeze-out combined with dispersive solid-phase extraction purification. J. Sep. Sci. 2017, 40, 2398–2405. [Google Scholar] [CrossRef]
- Xu, Z.; Li, L.; Xu, Y.; Wang, S.; Zhang, X.; Tang, T.; Yu, J.; Zhao, H.; Wu, S.; Zhang, C.; et al. Pesticide multi-residues in Dendrobium officinale Kimura et Migo: Method validation, residue levels and dietary exposure risk assessment. Food Chem. 2021, 343, 128490. [Google Scholar] [CrossRef]
- Xiu-ping, Z.; Lin, M.; Lan-qi, H.; Jian-Bo, C.; Li, Z. The optimization and establishment of QuEChERS-UPLC–MS/MS method for simultaneously detecting various kinds of pesticides residues in fruits and vegetables. J. Chromatogr. B 2017, 1060, 281–290. [Google Scholar] [CrossRef]
- Dong, F.; Chen, X.; Liu, X.; Xu, J.; Li, Y.; Shan, W.; Zheng, Y. Simultaneous determination of five pyrazole fungicides in cereals, vegetables and fruits using liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2012, 1262, 98–106. [Google Scholar] [CrossRef]
- Faraji, M.; Noorbakhsh, R.; Shafieyan, H.; Ramezani, M. Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chem. 2018, 240, 634–641. [Google Scholar] [CrossRef]
- Furlani, R.P.Z.; Marcilio, K.M.; Leme, F.M.; Tfouni, S.A.V. Analysis of pesticide residues in sugarcane juice using QuEChERS sample preparation and gas chromatography with electron capture detection. Food Chem. 2011, 126, 1283–1287. [Google Scholar] [CrossRef]
- Takatori, S.; Okihashi, M.; Okamoto, Y.; Kitagawa, Y.; Kakimoto, S.; Murata, H.; Sumimoto, T.; Tanaka, Y. A Rapid and Easy Multiresidue Method for the Determination of Pesticide Residues in Vegetables, Fruits, and Cereals Using Liquid Chromatography/Tandem Mass Spectrometry. J. AOAC Int. 2008, 91, 871–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhamdi, B.; Merzougui, Z.; Trari, M.; Addoun, A. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). J. Appl. Res. Technol. 2016, 14, 354–366. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, S.; David, V. (Eds.) Chapter 7—Solid-phase extraction. In Modern Sample Preparation for Chromatography, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–421. [Google Scholar]
- SANTE/12682/2019. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed; European Commission: Brussels, Belgium, 2020; Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 16 July 2020).
- Uclés, S.; Lozano, A.; Sosa, A.; Parrilla Vázquez, P.; Valverde, A.; Fernández-Alba, A.R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta 2017, 174, 72–81. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commision Regulations (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Lee, S.J.; Park, H.J.; Kim, W.; Jin, J.S.; Abd El-Aty, A.M.; Shim, J.H.; Shin, S.C. Multiresidue analysis of 47 pesticides in cooked wheat flour and polished rice by liquid chromatography with tandem mass spectrometry. Biomed. Chromatogr. 2009, 23, 434–442. [Google Scholar] [CrossRef] [PubMed]
- King, R.; Bonfiglio, R.; Fernandez-Metzler, C.; Miller-Stein, C.; Olah, T. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 942–950. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, L.; Shin, Y.; Lee, J.; Lee, J.; Kim, E.; Moon, J.-K.; Kim, J.-H. Rapid and Simultaneous Analysis of 360 Pesticides in Brown Rice, Spinach, Orange, and Potato Using Microbore GC-MS/MS. J. Agric. Food Chem. 2017, 65, 3387–3395. [Google Scholar] [CrossRef]
- Erney, D.; Gillespie, A.; Gilvydis, D.; Poole, C. Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. A 1993, 638, 57–63. [Google Scholar] [CrossRef]
- Soboleva, E.; Rathor, N.; Mageto, A.; Ambrus, Á. Estimation of significance of ‘matrix-induced’ chromatographic effects. In Principles and Practices of Method Validation; Fajgelj, A., Ambrus, Á., Eds.; The Royal Society of Chemistry: London, UK, 2000; pp. 138–156. [Google Scholar]
- Anastassiades, M.; Maštovská, K.; Lehotay, S.J. Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J. Chromatogr. A 2003, 1015, 163–184. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.-Y.; Ma, S.-C.; Lu, J.; Lin, R.-C. Determination of 195 pesticide residues in Chinese herbs by gas chromatography–mass spectrometry using analyte protectants. J. Chromatogr. A 2011, 1218, 334–342. [Google Scholar] [CrossRef]
- Kittlaus, S.; Schimanke, J.; Kempe, G.; Speer, K. Assessment of sample cleanup and matrix effects in the pesticide residue analysis of foods using postcolumn infusion in liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 8399–8410. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Han, E.M.; Seo, M.S.; Kim, S.R.; Yun, M.Y.; Lee, D.M.; Lee, G.-H. A multi-residue method for the determination of 203 pesticides in rice paddies using gas chromatography/mass spectrometry. Anal. Chim. Acta 2008, 619, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, J.; Feng, J.; Zhai, S.; Chen, W.; Liu, J.; Bian, X. Ditch-buried straw return: A novel tillage practice combined with tillage rotation and deep ploughing in rice-wheat rotation systems. Adv. Agron. 2019, 154, 257–290. [Google Scholar] [CrossRef]
- Sharma, P.K.; Srivastava, A. Field evaluation of new insecticides and combinations against rice whorl maggot, Hydrellia philippina and leaffolder, Cnaphalocrocis medinalis. ORYZA—Int. J. Rice 2009, 46, 335–336. Available online: http://arrworyza.com/AdminPanel/download/Field%20evaluation%20of%20new%20insecticides%20and%20combinations%20against%20rice%20whorl.pdf (accessed on 16 July 2020).
- Wang, S.; Tang, X.; Wang, L.; Zhang, Y.; Wu, Q.; Xie, W. Effects of sublethal concentrations of bifenthrin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 2014, 19, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Pak, D.; You, M.P.; Lanoiselet, V.; Barbetti, M.J. Azoxystrobin and propiconazole offer significant potential for rice blast (Pyricularia oryzae) management in Australia. Eur. J. Plant Pathol. 2017, 148, 247–259. [Google Scholar] [CrossRef]
- Prakash, G.; Singh, U.; Sharma, P.; Pandian, R. Evaluation of pesticides against rice sheath blight caused by Rhizoctonia solani. Indian Phytopathol. 2013, 66, 351–355. Available online: http://epubs.icar.org.in/ejournal/index.php/IPPJ/article/download/36010/15963 (accessed on 16 July 2021).
- Shakouri, A.; Yazdanpanah, H.; Shojaee, M.H.; Kobarfard, F. Method development for simultaneous determination of 41 pesticides in rice using LC-MS/MS technique and its application for the analysis of 60 rice samples collected from Tehran market. Iran. J. Pharm. Res. 2014, 13, 927. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4177653/pdf/ijpr-13-927.pdf (accessed on 16 July 2021). [PubMed]
- Ahmad, S.; Zia-Ul-Haq, M.; Imran, M.; Iqbal, S.; Iqbal, J.; Ahmad, M. Determination of residual contents of pesticides in rice (Oryza sativa L.) crop from different regions of Pakistan. Pak. J. Bot. 2008, 40, 1253–1257. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1043.6751&rep=rep1&type=pdf (accessed on 16 July 2021).
Concentration (μg Kg−1) | UPLC-MS/MS | GC-MS/MS | Total | |||
---|---|---|---|---|---|---|
Number of Pesticides | % Proportion | Number of Pesticides | % Proportion | Number of Pesticides | % Proportion | |
1 | 0 | 0 | 64 | 20.4 | 64 | 9.8 |
2 | 302 | 88.6 | 37 | 11.8 | 339 | 51.8 |
5 | 32 | 9.4 | 178 | 56.9 | 210 | 32.1 |
10 | 7 | 2.1 | 35 | 10.9 | 41 | 6.3 |
Matrix Effect | UPLC-MS/MS | GC-MS/MS | ||
---|---|---|---|---|
Number of Pesticides | % Proportion | Number of Pesticides | % Proportion | |
<−50 | 10 | 2.9 | 1 | 0.3 |
−50 to −20 | 28 | 8.2 | 5 | 1.6 |
−20 to 20 | 301 | 88.3 | 203 | 64.9 |
20 to 50 | 2 | 0.6 | 36 | 11.5 |
>50 | 0 | 0.0 | 68 | 21.7 |
No. | Compound | Group | MRL * µg Kg−1 | Lowest Level µg Kg−1 | Highest Level µg Kg−1 | Number of Samples Detected | Number of Noncompliance Samples |
---|---|---|---|---|---|---|---|
1 | 2,4-D | Herbicide | 100 | 4.3 | 14.5 | 7 | 0 |
2 | Acetamiprid | Insecticide | 10 | 1.6 | 43.2 | 11 | 3 |
3 | Anthraquinone | Other | 10 | 1.4 | 15.4 | 6 | 2 |
4 | Azoxystrobin | Fungicide | 10 | 2.3 | 64.2 | 7 | 2 |
5 | Bifenthrin | Insecticide | 10 | 3.3 | 45.5 | 12 | 10 |
6 | Butachlor | Herbicide | 500 | 5.2 | 149.4 | 10 | 0 |
7 | Carbaryl | Insecticide | 1000 | 7.0 | 82.4 | 8 | 0 |
8 | Carbendazim | Fungicide | 2000 | 2.6 | 100.2 | 11 | 0 |
9 | Carbofuran | Insecticide | 100 | 1.3 | 14.3 | 9 | 0 |
10 | Carbosulfan | Insecticide | 200 | 1.7 | 20.1 | 8 | 0 |
11 | Chlorpyrifos | Insecticide | 100 | 1.4 | 14.2 | 13 | 0 |
12 | Lambda-cyhalothrin | Insecticide | 10 | 1.7 | 33.4 | 14 | 3 |
13 | Cypermethrin | Insecticide | 2000 | 1.6 | 58.3 | 11 | 0 |
14 | Dichlorvos | Insecticide | 100 | 2.3 | 14.2 | 10 | 0 |
15 | Fenobucarb | Insecticide | 500 | 3.7 | 23.6 | 11 | 0 |
16 | Fipronil | Insecticide | 10 | 5.0 | 54.2 | 8 | 2 |
17 | Hexaconazole | Fungicide | 100 | 1.0 | 22.6 | 9 | 0 |
18 | Imidacloprid | Insecticide | 50 | 4.2 | 45.4 | 11 | 0 |
19 | Indoxacarb | Insecticide | 20 | 2.5 | 16.7 | 6 | 0 |
20 | Metaflumizone | Insecticide | 500 | 2.7 | 9.0 | 7 | 0 |
21 | Permethrin, cis- | Insecticide | 2000 | 5.2 | 22.5 | 8 | 0 |
22 | Permethrin, trans- | Insecticide | 2000 | 2.6 | 21.5 | 9 | 0 |
23 | Spinosad | Insecticide | 1000 | 3.7 | 14.3 | 7 | 0 |
24 | Thiamethoxam | Insecticide | 100 | 2.5 | 57.3 | 9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran-Lam, T.-T.; Bui, M.Q.; Nguyen, H.Q.; Dao, Y.H.; Le, G.T. A Combination of Chromatography with Tandem Mass Spectrometry Systems (UPLC-MS/MS and GC-MS/MS), Modified QuEChERS Extraction and Mixed-Mode SPE Clean-Up Method for the Analysis of 656 Pesticide Residues in Rice. Foods 2021, 10, 2455. https://doi.org/10.3390/foods10102455
Tran-Lam T-T, Bui MQ, Nguyen HQ, Dao YH, Le GT. A Combination of Chromatography with Tandem Mass Spectrometry Systems (UPLC-MS/MS and GC-MS/MS), Modified QuEChERS Extraction and Mixed-Mode SPE Clean-Up Method for the Analysis of 656 Pesticide Residues in Rice. Foods. 2021; 10(10):2455. https://doi.org/10.3390/foods10102455
Chicago/Turabian StyleTran-Lam, Thanh-Thien, Minh Quang Bui, Hoa Quynh Nguyen, Yen Hai Dao, and Giang Truong Le. 2021. "A Combination of Chromatography with Tandem Mass Spectrometry Systems (UPLC-MS/MS and GC-MS/MS), Modified QuEChERS Extraction and Mixed-Mode SPE Clean-Up Method for the Analysis of 656 Pesticide Residues in Rice" Foods 10, no. 10: 2455. https://doi.org/10.3390/foods10102455
APA StyleTran-Lam, T.-T., Bui, M. Q., Nguyen, H. Q., Dao, Y. H., & Le, G. T. (2021). A Combination of Chromatography with Tandem Mass Spectrometry Systems (UPLC-MS/MS and GC-MS/MS), Modified QuEChERS Extraction and Mixed-Mode SPE Clean-Up Method for the Analysis of 656 Pesticide Residues in Rice. Foods, 10(10), 2455. https://doi.org/10.3390/foods10102455