Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baijiu Samples
2.2. Chemicals
2.3. Extraction of Volatile Compounds
2.4. Identification of Aroma Compounds Using GC–MS and GC–O
2.5. Quantitation of Aroma-Active Compounds by HS-SPME-Arrow Combined with GC–MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Identification of Aroma Compounds in Xiaoqu Baijiu Using GC–O
3.2. Quantitation and OAVs of Aroma-Active Compounds in Xiaoqu Baijiu
3.3. Confirmation of the Key Compounds Related to the Aroma Profile Differences between Modern and Traditional Type Xiaoqu Baijiu
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anal, A. Quality ingredients and safety concerns for traditional fermented foods and beverages from Asia: A review. Fermentation 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Chaves-López, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The colombian heritage. Compre. Rev. Food Sci. Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligne, B.; Ganzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotech. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tramper, J. Koji-where East meets West in fermentation. Biotechnol. Adv. 2013, 31, 1448–1457. [Google Scholar] [CrossRef]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Zhao, D.; Shi, D.; Sun, J.; Li, A.; Sun, B.; Zhao, M.; Chen, F.; Sun, X.; Li, H.; Huang, M.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography-olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. Output of Main Industrial Products of Baijiu. Available online: https://data.stats.gov.cn/easyquery.htm?cn=A01&zb=A020909&sj=202012 (accessed on 4 September 2021).
- Li, Y.; Qi, S.; Qiu, L.; Meng, F. Research progress in and discussion on mechanized production of Baijiu. Liquor Making Sci. Technol. 2016, 10, 82–84. [Google Scholar] [CrossRef]
- Ye, H.; Wang, J.; Shi, J.; Du, J.; Zhou, Y.; Huang, M.; Sun, B. Automatic and Intelligent Technologies of Solid-State Fermentation Process of Baijiu Production: Applications, Challenges, and Prospects. Foods. 2021, 10, 680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, H.; Zhang, Y.; Xu, Y. Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation. Appl. Environ. Microbiol. 2018, 84, e02369-17. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Fan, W.; Yan, X. Comparison of volatile and non-volatile compounds between traditional and mechanical raw Baijiu of roasted-sesame-like aroma type Baijiu(Chinese liquor). Food Ferment. Ind. 2018, 8, 239–245. [Google Scholar] [CrossRef]
- Sun, X.; Du, J.; Huang, P.; Zhang, F.; Liu, Y. Analysis of sensory characterization and flavor composition in Xiaoqu liquor made by modern technology and traditional technology. Food Sci. 2021, 42, 282–290. [Google Scholar] [CrossRef]
- Polá, K.P.; Herszage, J.; Ebeler, S.E. Wine flavor: Chemistry in a glass. Chem. Soc. Rev. 2008, 37, 2478–2489. [Google Scholar] [CrossRef]
- Li, H.; Qin, D.; Wu, Z.; Sun, B.; Sun, X.; Huang, M.; Sun, J.; Zheng, F. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem. 2019, 284, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J. Chromatogr. A 2020, 1610, 460584. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; An, Y.; Chen, S.; Qian, M.C. Characterization of Qingke liquor aroma from Tibet. J. Agric. Food Chem. 2019, 67, 13870–13881. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Characterization of aroma compounds of Chinese "Wuliangye" and "Jiannanchun" liquors by aroma extract dilution analysis. J. Agric. Food Chem. 2006, 54, 2659–2704. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ liquor by normal phase chromatography fractionation followed by gas chromatography-olfactometry. Flavour Fragr. J. 2006, 21, 333–342. [Google Scholar] [CrossRef]
- Li, Q.; Wang, G.; Huang, F.; Banda, M.; Reed, E. Antineoplastic effect of beta-elemene on prostate cancer cells and other types of solid tumour cells. J. Pharm. Pharmacol. 2010, 62, 1018–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Qian, M.C. Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. J. Chromatogr. A 2005, 1080, 177–185. [Google Scholar] [CrossRef]
- Schieberle, P. Chapter 17-New developments in methods for analysis of volatile flavor compounds and their precursors. Charact. Food 1995, 65, 403–431. [Google Scholar]
- Fan, W.; Xu, Y. Determination of odor thresholds of volatile aroma compounds in Baijiu by a forced-choice ascending concentration series method of limits. Liquor Mak. 2011, 38, 80–84. [Google Scholar] [CrossRef]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of potent odorants causing a pickle-like off-odor in Moutai-aroma type Baijiu by comparative aroma extract dilution analysis, quantitative measurements, aroma addition, and omission studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef]
- Gao, W.; Fan, W.; Xu, Y. Characterization of the key odorants in light aroma type chinese liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2014, 62, 5796–5804. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, K.; Xu, Y.; Li, J. Characterization of the key aroma compounds in Chinese Vidal icewine by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission tests. J. Agric. Food Chem. 2017, 65, 394–401. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Qian, M.C.; Li, Z.; Xu, Y. Characterization of the key aroma compounds in aged Chinese rice wine by comparative aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2019, 67, 4876–4884. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Fan, W.; Xu, Y. Characterization of key odorants in Chinese Chixiang aroma-type liquor by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2015, 63, 3660–3668. [Google Scholar] [CrossRef]
- Niu, Y.; Yao, Z.; Xiao, Q.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of the key aroma compounds in different light aroma type Chinese liquors by GC-olfactometry, GC-FPD, quantitative measurements, and aroma recombination. Food Chem. 2017, 233, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the key odorants in Chinese Zhima aroma-type Baijiu by gas chromatography-olfactometry, quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef]
- Wang, L.; Hu, G.; Lei, L.; Lin, L.; Wang, D.; Wu, J. Identification and aroma impact of volatile terpenes in Moutai liquor. Int. J. Food Prop. 2015, 16, 1335–1352. [Google Scholar] [CrossRef]
- Belmonte-Sanchez, J.R.; Romero-Gonzalez, R.; Arrebola, F.J.; Vidal, J.L.M.; Garrido Frenich, A. An innovative metabolomic approach for golden rum classification combining ultrahigh-performance liquid chromatography-orbitrap mass spectrometry and chemometric strategies. J. Agric. Food Chem. 2019, 67, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- González-Rompinelli, E.M.; Rodríguez-Bencomo, J.J.; García-Ruiz, A.; Sánchez-Patán, F.; Martín-Álvarez, P.J.; Bartolomé, B.; Moreno-Arribas, M.V. A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control 2013, 33, 440–447. [Google Scholar] [CrossRef]
- Shi, D.; Wang, S.; Zhao, D.; Sun, J.; Li, A.; Sun, X.; Li, H.; Sun, B. Determination of 6 phenols in 103 kinds of Chinese baijiu by GC-MS/SIM. J. Chin. Ins. Food Sci. Technol. 2019, 19, 235–248. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, D.; Sun, J.; Luo, X.; Li, H.; Sun, X.; Zheng, F. Analysis of antioxidant effect of two tripeptides isolated from fermented grains (Jiupei) and the antioxidative interaction with 4-methylguaiacol, 4-ethylguaiacol, and vanillin. Food Sci. Nutr. 2019, 7, 2391–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Liang, R.; Wu, C.; Zhou, R.; Liao, X. Discrimination of different kinds of Luzhou-flavor raw liquors based on their volatile features. Food Res. Int. 2014, 56, 77–84. [Google Scholar] [CrossRef]
- Li, Q.; Fan, H.; Shi, B.; Li, W.; Zhang, M.; Xu, H.; Chen, X. Healthcare value and bioactive aubstances of Dongjiu (III). Liquor Making Sci. Technol. 2020, 8, 108–117. [Google Scholar] [CrossRef]
- Willaert, R.; Nedovic, V.A. Primary beer fermentation by immobilised yeast-a review on flavour formation and control strategies. J. Chem. Technol. Biot. 2006, 81, 1353–1367. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, Y.; Li, H.; Yang, Q.; Wu, Q.; Chen, S.; Tang, J.; Xu, Y. Modeling and Regulation of Higher Alcohol Production through the Combined Effects of the C/N Ratio and Microbial Interaction. J. Agric. Food Chem. 2019, 67, 10694–10701. [Google Scholar] [CrossRef]
- Carmona, M.; Zamarro, M.T.; Blazquez, B.; Durante-Rodriguez, G.; Juarez, J.F.; Valderrama, J.A.; Barragan, M.J.L.; Garcia, J.L.; Diaz, E. Anaerobic catabolism of aromatic compounds: A genetic and genomic view. Microbiol. Mol. Biol. Rev. 2009, 73, 71–133. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.A.; Tolle, S.; Gok, R.; Winterhalter, P. Characterisation of odour-active compounds in aged rum. Food Chem. 2012, 132, 1436–1441. [Google Scholar] [CrossRef]
- Willner, B.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in Bartlett pear brandies by means of the sensomics concept. J. Agric. Food Chem. 2013, 61, 9583–9593. [Google Scholar] [CrossRef] [PubMed]
- Luigi, P.; Peter, S. Characterization of the key aroma compounds in an American Bourbon whisky by quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2002, 56, 5820–5826. [Google Scholar] [CrossRef]
No. | Compound | RI a | Odor b | Fraction c | Identification | Osme Values | ||
---|---|---|---|---|---|---|---|---|
DB-FFAP | DB-5 | Mean d | M | T | ||||
Esters | ||||||||
1 | Ethyl acetate | 886 | 589 | Sweet, fruity | AF+NBF | RI, aroma, S | 4.12 | 3.65 |
2 | Ethyl propionate | 958 | 695 | Fruity | AF+NBF | MS, RI, aroma, S | 0.95 | 1.03 |
3 | Ethyl 2-methylpropanoate | 965 | 752 | Nail polish | NBF | MS, RI, aroma, S | 3.10 | 3.55 |
4 | Isobutyl acetate | 1014 | 768 | Fruity | NBF | MS, RI, aroma, S | 0.55 | 0.85 |
5 | Ethyl butanoate | 1037 | 817 | Sweet, fruity | NBF | MS, RI, aroma, S | 2.55 | 4.65 |
6 | Ethyl 2-methylbutanoate | 1050 | 841 | Sweet, fruity | NBF | MS, RI, aroma, S | 2.85 | 3.15 |
7 | Ethyl 3-methylbutanoate | 1062 | 856 | Sweet, fruity | NBF | MS, RI, aroma, S | 3.60 | 2.25 |
8 | Isoamyl acetate | 1134 | 878 | Banana | NBF | MS, RI, aroma, S | 4.20 | 4.35 |
9 | Ethyl pentanoate | 1142 | 903 | Fruity | AF+NBF | MS, RI, aroma, S | 2.25 | 4.32 |
10 | Pentyl acetate | 1184 | 926 | Banana | NBF | MS, RI, aroma, S | 0.22 | 0.35 |
11 | 3-Methylbutyl butanoate | 1257 | 1061 | Fruity | NBF | MS, RI, aroma, S | 0.12 | 0.25 |
12 | Ethyl hexanoate | 1295 | 1025 | Fruity | AF+NBF | MS, RI, aroma, S | 1.90 | 3.65 |
13 | Propyl hexanoate | 1339 | 1081 | Fruity | AF+NBF | MS, RI, aroma, S | 0.20 | 0.20 |
14 | Ethyl lactate | 1373 | 825 | Fruity | AF+NBF | MS, RI, aroma, S | 0.65 | 0.42 |
15 | Ethyl heptanoate | 1394 | 1113 | Fruity | NBF | MS, RI, aroma, S | 0.45 | 0.72 |
16 | Ethyl octanoate | 1475 | 1200 | Fruity | AF+NBF | MS, RI, aroma, S | 3.95 | 3.52 |
17 | Ethyl nonanoate | 1595 | 1284 | Fruity | NBF | MS, RI, aroma, S | 1.20 | 0.65 |
18 | Hexyl hexanoate | 1621 | 1381 | Fruity | NBF | MS, RI, aroma, S | 0.20 | 0.22 |
19 | Ethyl decanoate | 1685 | 1391 | Grape | NBF | MS, RI, aroma, S | 2.62 | 2.25 |
20 | Diethyl succinate | 1711 | 1179 | Sweet | AF+NBF | MS, RI, aroma, S | 0.20 | 0.15 |
21 | Ethyl benzoate | 1722 | 1165 | Fruity | NBF | MS, RI, aroma, S | 1.35 | 1.20 |
22 | Ethyl phenylacetate | 1837 | 1254 | Fruity | NBF | MS, RI, aroma, S | 2.85 | 2.00 |
23 | 2-Phenethyl acetate | 1871 | 1271 | Rose | NBF | MS, RI, aroma, S | 2.42 | 2.55 |
24 | Ethyl 3-phenylpropanoate | 1877 | 1345 | Floral | NBF | MS, RI, aroma, S | 1.20 | 4.42 |
25 | Ethyl dodecanoate | 1926 | 1581 | Fruity | NBF | MS, RI, aroma, S | 2.85 | 2.60 |
26 | Ethyl tetradecanoate | 2133 | 1790 | Coconut | NBF | MS, RI, aroma, S | 0.85 | 0.75 |
Alcohols | ||||||||
27 | 2-Butanol | 1025 | - | Wine | NBF | MS, RI, aroma, S | 1.65 | 2.15 |
28 | 1-Propanol | 1041 | - | Alcoholic | AF+NBF | MS, RI, aroma, S | 2.35 | 2.65 |
29 | 2-Methylpropanol | 1095 | 620 | Solvent | AF+NBF | MS, RI, aroma, S | 3.05 | 3.52 |
30 | 1-Butanol | 1149 | 669 | Fruity | AF+NBF | MS, RI, aroma, S | 2.02 | 2.22 |
31 | 1-Pentanol | 1212 | 761 | Fruity | NBF | MS, RI, aroma, S | 0.65 | 0.75 |
32 | 3-Methylbutanol | 1212 | 790 | Whisky, burnt | AF+NBF | MS, RI, aroma, S | 3.65 | 2.55 |
33 | 2-Heptanol | 1324 | 901 | Mushroom | NBF | MS, RI, aroma, S | 1.00 | 0.85 |
34 | 1-Hexanol | 1347 | 892 | Fruity | NBF | MS, RI, aroma, S | 0.85 | 0.95 |
35 | 3-Octanol | 1437 | 992 | Mushroom | NBF | MS, RI, aroma, S | 0.25 | 0.25 |
36 | 1-Octen-3-ol | 1456 | 964 | Mushroom | NBF | MS, RI, aroma, S | 3.65 | 2.20 |
37 | 1-Heptanol | 1462 | 970 | Green | NBF | MS, RI, aroma, S | 0.20 | 0.10 |
38 | 1-Octanol | 1559 | 1089 | Fruity | NBF | MS, RI, aroma, S | 1.02 | 0.85 |
39 | 1-Nonanol | 1688 | 1168 | Grass | NBF | MS, RI, aroma, S | 1.15 | 1.05 |
40 | Benzyl alcohol | 1880 | 1033 | Rose | NBF | MS, RI, aroma, S | 0.75 | 0.82 |
41 | β-Phenethyl alcohol | 1959 | 1130 | Rose, honey | AF+NBF | MS, RI, aroma, S | 3.65 | 3.12 |
Aldehydes | ||||||||
42 | 2-Methyl propanal | 816 | 550 | Malty | NBF | RI, aroma, S | 3.22 | 3.12 |
43 | 1,1-Dimethoxyethane | 897 | 730 | Fruity | NBF | MS, RI, aroma, S | 4.02 | 3.65 |
44 | 3-Methylbutanal | 922 | 621 | Malty | NBF | MS, RI, aroma, S | 3.03 | 1.95 |
45 | Hexanal | 1074 | 803 | Grassy, green | NBF | MS, RI, aroma, S | 3.25 | 3.02 |
46 | 1,1,3-Triethoxypropane | 1303 | 1128 | Fruity | AF+NBF | MS, RI, aroma, S | 2.55 | 2.95 |
47 | Decanal | 1508 | 1228 | Orange | NBF | MS, RI, aroma, S | 0.35 | 0.32 |
48 | Benzaldehyde | 1589 | 975 | Almond | NBF | MS, RI, aroma, S | 1.12 | 0.95 |
49 | Benzeneacetaldehyde | 1698 | 1044 | Honey | NBF | MS, RI, aroma, S | 3.65 | 3.30 |
Ketones | ||||||||
50 | 2-Pentanone | 1030 | - | Fruity | NBF | MS, RI, aroma, S | 1.23 | 0.22 |
51 | 2-Octanone | 1296 | 997 | Soap | NBF | MS, RI, aroma, S | 3.22 | 3.20 |
52 | Acetophenone | 1660 | 1076 | Floral | NBF | MS, RI, aroma, S | 0.90 | 0.65 |
53 | 2-Pentadecanone | 2072 | - | Fruity | NBF | MS, RI, aroma, S | 1.75 | 1.02 |
Acids | ||||||||
54 | Acetic acid | 1462 | 606 | Vinegar | AF | MS, RI, aroma, S | 4.12 | 4.05 |
55 | Propanoic acid | 1562 | - | Rancid | AF | MS, RI, aroma, S | 2.15 | 2.70 |
56 | 2-Methylpropanoic acid | 1586 | 790 | Sweaty | AF | MS, RI, aroma, S | 3.25 | 3.22 |
57 | Butanoic acid | 1671 | 800 | Sweaty | AF | MS, RI, aroma, S | 3.55 | 3.95 |
58 | 3-Methylbutanoic acid | 1707 | 835 | Sweaty | AF | MS, RI, aroma, S | 2.25 | 2.15 |
59 | Pentanoic acid | 1732 | - | Sweat | AF | MS, RI, aroma, S | 2.00 | 1.95 |
60 | 4-Methylpentanoic acid | 1796 | - | Rancid | AF | MS, RI, aroma, S | 1.25 | 1.56 |
61 | Hexanoic acid | 1929 | 971 | Sweaty | AF | MS, RI, aroma, S | 2.32 | 1.75 |
62 | Octanoic acid | 2159 | 1280 | Sweaty | AF | MS, RI, aroma, S | 1.25 | 1.02 |
Phenols | ||||||||
63 | Guaiacol | 1874 | 1090 | Smoky | NBF | MS, RI, aroma, S | 3.25 | 1.22 |
64 | 4-Methylguaiacol | 2016 | 1199 | Smoky | AF+NBF | MS, RI, aroma, S | 1.02 | 3.02 |
65 | 4-Ethylguaiacol | 2091 | 1297 | Spice | AF+NBF | MS, RI, aroma, S | 0.95 | 2.15 |
66 | 4-Methyl phenol | 2091 | - | Medicinal | AF+NBF | MS, RI, aroma, S | 1.00 | 0.95 |
67 | 4-Vinylguaiacol | 2156 | 1311 | Smoky | NBF | MS, RI, aroma, S | 2.00 | 2.25 |
68 | 4-Ethyl phenol | 2225 | 1172 | Smoky | NBF | MS, RI, aroma, S | 1.95 | 2.30 |
Terpenoids | ||||||||
69 | Linalool | 1542 | 1099 | Floral | NBF | MS, RI, aroma, S | 3.52 | 3.85 |
70 | β-Damascenone | 1759 | 1378 | Rose | NBF | MS, RI, aroma, S | 4.12 | 3.60 |
71 | Geraniol | 1858 | 1277 | Rose | NBF | MS, RI, aroma, S | 0.15 | 0.15 |
72 | Geranylacetone | 1864 | 1460 | Sweet | NBF | MS, RI, aroma, S | 0.20 | 0.15 |
73 | β-Ionone | 1917 | 1477 | Floral | NBF | MS, RI, aroma, S | 3.55 | 2.35 |
Others | ||||||||
74 | 2-Pentylfuran | 1286 | - | Sweet, fruity | NBF | MS, RI, aroma, S | 2.05 | 1.12 |
75 | Furfural | 1471 | 845 | Bread | NBF | MS, RI, aroma, S | 1.52 | 1.05 |
76 | 2-Furan methanol | 1666 | 813 | Floral | NBF | MS, RI, aroma, S | 0.25 | 0.20 |
77 | γ-Nonanolactone | 2012 | 1358 | Coconut | NBF | MS, RI, aroma, S | 2.65 | 2.05 |
78 | Dimethyl trisulfide | 1381 | 976 | Cabbage | NBF | MS, RI, aroma, S | 4.12 | 3.50 |
79 | 2-Thiophenecarboxaldehyde | 1710 | - | Almond | NBF | MS, RI, aroma, S | 2.80 | 2.65 |
No. | Compound | Quantitative Ion (m/z) | IS a | Slope | Intercept | R2 | Recovery (%) | LOQ /μg/L |
---|---|---|---|---|---|---|---|---|
1 | Ethyl acetate | 61 | IS1 | 0.0035 | −0.0531 | 0.9995 | 93.46 | 3039.61 |
2 | Ethyl propionate | 57 | IS1 | 0.0880 | −3.5225 | 0.9973 | 91.32 | 721.15 |
3 | Ethyl 2-methylpropanoate | 71 | IS1 | 0.3080 | −0.0356 | 0.9993 | 87.79 | 47.95 |
4 | Isobutyl acetate | 43 | IS1 | 0.3226 | 0.7735 | 0.9924 | 98.85 | 78.19 |
5 | Ethyl butanoate | 71 | IS1 | 0.1670 | 0.1325 | 0.9985 | 85.07 | 125.58 |
6 | Ethyl 2-methylbutanoate | 57 | IS1 | 0.3005 | 0.0479 | 0.9999 | 95.76 | 74.54 |
7 | Ethyl 3-methylbutanoate | 88 | IS1 | 0.4875 | 0.0071 | 0.9995 | 85.05 | 5.68 |
8 | Isoamyl acetate | 70 | IS1 | 0.0775 | 0.3756 | 0.9985 | 109.34 | 80.05 |
9 | Ethyl pentanoate | 88 | IS1 | 0.3010 | −0.1164 | 0.9992 | 82.74 | 26.68 |
10 | Pentyl acetate | 70 | IS1 | 0.8020 | −0.0135 | 0.9953 | 82.54 | 2.13 |
11 | 3-Methylbutyl butanoate | 71 | IS1 | 1.2970 | 0.0065 | 0.9963 | 105.76 | 0.38 |
12 | Ethyl hexanoate | 88 | IS1 | 2.2610 | 1.5085 | 0.996 | 101.03 | 59.81 |
13 | Propyl hexanoate | 99 | IS1 | 3.6525 | −0.1232 | 0.9934 | 94.93 | 2.10 |
14 | Ethyl lactate | 45 | IS1 | 0.6550 | 0.0325 | 0.9945 | 90.94 | 1.17 |
15 | Ethyl heptanoate | 88 | IS1 | 4.5020 | −0.0636 | 0.9933 | 93.04 | 9.80 |
16 | Ethyl octanoate | 88 | IS1 | 1.1625 | 7.0776 | 0.9900 | 99.18 | 195.36 |
17 | Ethyl nonanoate | 88 | IS1 | 5.5880 | 0.086 | 0.9965 | 88.20 | 3.41 |
18 | Hexyl hexanoate | 117 | IS1 | 7.8150 | −0.0281 | 0.9927 | 88.08 | 0.60 |
19 | Ethyl decanoate | 88 | IS1 | 11.147 | 0.1139 | 0.9997 | 98.65 | 236.84 |
20 | Diethyl succinate | 101 | IS1 | 0.2750 | −0.8877 | 0.9975 | 105.78 | 73.66 |
21 | Ethyl benzoate | 105 | IS1 | 5.7595 | 0.1188 | 0.9964 | 96.98 | 0.41 |
22 | Ethyl phenylacetate | 91 | IS1 | 1.6570 | −0.2062 | 0.9967 | 112.18 | 39.07 |
23 | 2-Phenethyl acetate | 104 | IS1 | 0.3597 | 0.0593 | 0.9996 | 96.49 | 7.89 |
24 | Ethyl 3-phenylpropanoate | 104 | IS1 | 2.2125 | 0.1824 | 0.9987 | 103.68 | 7.81 |
25 | Ethyl dodecanoate | 88 | IS1 | 6.5970 | −0.2234 | 0.9978 | 83.70 | 4.05 |
26 | Ethyl tetradecanoate | 88 | IS1 | 3.8505 | −0.2599 | 0.9963 | 89.39 | 3.91 |
27 | 2-Butanol | 45 | IS2 | 0.0879 | 0.0581 | 0.9951 | 87.31 | 37.50 |
28 | 1-Propanol | 59 | IS2 | 0.0044 | −0.1675 | 0.9995 | 84.21 | 7556.48 |
29 | 2-Methylpropanol | 74 | IS2 | 0.0043 | −0.0098 | 0.9982 | 85.75 | 549.14 |
30 | 1-Butanol | 56 | IS2 | 0.0781 | −0.4634 | 0.9952 | 105.22 | 363.80 |
31 | 1-Pentanol | 55 | IS2 | 0.2384 | −0.0499 | 0.9955 | 103.65 | 15.62 |
32 | 3-Methylbutanol | 55 | IS2 | 0.0389 | 3.3248 | 0.9989 | 101.61 | 2320.31 |
33 | 2-Heptanol | 55 | IS2 | 0.8462 | 0.0115 | 0.9981 | 114.83 | 6.13 |
34 | 1-Hexanol | 56 | IS2 | 0.4043 | 1.1356 | 0.9978 | 111.05 | 132.38 |
35 | 3-Octanol | 59 | IS2 | 1.0170 | 0.0382 | 0.9987 | 113.69 | 9.62 |
36 | 1-Octen-3-ol | 57 | IS2 | 8.5931 | 0.0952 | 0.9991 | 107.11 | 1.40 |
37 | 1-Heptanol | 70 | IS2 | 2.8290 | −0.0062 | 0.9965 | 114.48 | 0.43 |
38 | 1-Octanol | 56 | IS2 | 3.0323 | 0.6008 | 0.9973 | 86.28 | 5.67 |
39 | 1-Nonanol | 56 | IS2 | 10.2200 | 0.0967 | 0.9983 | 90.01 | 0.71 |
40 | Benzyl alcohol | 79 | IS2 | 0.1822 | 0.0033 | 0.9956 | 83.53 | 3.78 |
41 | β-Phenethyl alcohol | 91 | IS2 | 0.4217 | 0.3523 | 0.9972 | 85.43 | 58.36 |
42 | 2-Methyl propanal | 72 | IS4 | 0.0304 | −0.0592 | 0.9973 | 91.71 | 69.64 |
43 | 1,1-Dimethoxyethane | 73 | IS4 | 0.0057 | −0.1715 | 0.9978 | 83.29 | 3096.02 |
44 | 3-Methylbutanal | 58 | IS4 | 0.0364 | −0.015 | 0.9974 | 85.70 | 210.62 |
45 | Hexanal | 56 | IS4 | 0.2427 | −0.0386 | 0.9973 | 104.62 | 8.10 |
46 | 1,1,3-Triethoxypropane | 59 | IS4 | 0.0234 | −0.0125 | 0.9993 | 93.54 | 68.76 |
47 | Decanal | 57 | IS4 | 3.5109 | −0.0329 | 0.9974 | 8734.5 | 0.45 |
48 | Benzaldehyde | 106 | IS4 | 0.9092 | 0.0855 | 0.9959 | 118.17 | 8.15 |
49 | Benzeneacetaldehyde | 91 | IS4 | 0.2074 | −0.0312 | 0.9997 | 87.34 | 19.95 |
50 | 2-Pentanone | 86 | IS4 | 0.0542 | −0.0248 | 0.9996 | 87.77 | 27.50 |
51 | 2-Octanone | 58 | IS4 | 3.8946 | −0.1028 | 0.9992 | 108.62 | 2.23 |
52 | Acetophenone | 105 | IS4 | 2.0508 | 0.0256 | 0.9958 | 96.17 | 0.36 |
53 | 2-Pentadecanone | 58 | IS4 | 63.259 | −0.0799 | 0.9963 | 81.80 | 0.20 |
54 | Acetic acid | 60 | IS3 | 0.0082 | −0.0565 | 0.9996 | 108.72 | 8260.31 |
55 | Propanoic acid | 74 | IS3 | 0.0235 | −0.0334 | 0.9956 | 104.88 | 2970.00 |
56 | 2-Methylpropanoic acid | 73 | IS3 | 0.0851 | −0.0764 | 0.9963 | 88.10 | 742.16 |
57 | Butanoic acid | 60 | IS3 | 0.1737 | −0.0698 | 0.9989 | 108.42 | 523.46 |
58 | 3-Methylbutanoic acid | 60 | IS3 | 0.5851 | −0.0283 | 0.999 | 107.91 | 105.76 |
59 | Pentanoic acid | 73 | IS3 | 0.2789 | −0.1994 | 0.9982 | 96.28 | 1166.94 |
60 | 4-Methylpentanoic acid | 57 | IS3 | 1.1236 | −0.0169 | 0.9962 | 91.06 | 7.84 |
61 | Hexanoic acid | 60 | IS3 | 2.1683 | 0.0657 | 0.9995 | 100.40 | 69.61 |
62 | Octanoic acid | 73 | IS3 | 3.0605 | −0.0883 | 0.9987 | 99.70 | 21.70 |
63 | Guaiacol | 109 | IS5 | 0.6820 | 0.0016 | 0.9993 | 96.06 | 1.83 |
64 | 4-Methylguaiacol | 138 | IS5 | 1.1433 | −0.0054 | 0.9979 | 106.42 | 0.67 |
65 | 4-Ethylguaiacol | 137 | IS5 | 3.1906 | −0.0012 | 0.9989 | 102.74 | 0.28 |
66 | 4-Methyl phenol | 107 | IS5 | 0.8881 | −0.0029 | 0.9977 | 107.47 | 1.48 |
67 | 4-Vinylguaiacol | 150 | IS5 | 0.3140 | −0.0226 | 0.9969 | 99.26 | 4.00 |
68 | 4-Ethyl phenol | 107 | IS5 | 2.0922 | −0.0002 | 0.9982 | 104.70 | 0.07 |
69 | Linalool | 71 | IS4 | 2.3080 | −0.0111 | 0.9999 | 98.18 | 1.57 |
70 | β-Damascenone | 69 | IS4 | 0.0225 | 0.0001 | 0.9972 | 98.63 | 16.00 |
71 | Geraniol | 69 | IS4 | 2.8196 | 0.0086 | 0.9962 | 92.21 | 0.08 |
72 | Geranylacetone | 69 | IS4 | 12.5120 | 0.0091 | 0.9985 | 97.76 | 0.08 |
73 | β-Ionone | 177 | IS4 | 5.8592 | 0.0075 | 0.9954 | 87.96 | 0.19 |
74 | 2-Pentylfuran | 81 | IS4 | 3.8924 | −0.7053 | 0.9982 | 101.65 | 13.70 |
75 | Furfural | 96 | IS4 | 0.0429 | 0.1024 | 0.9964 | 107.74 | 224.30 |
76 | 2-Furan methanol | 98 | IS4 | 0.0064 | −0.0137 | 0.9980 | 83.96 | 120.40 |
77 | γ-Nonanolactone | 85 | IS4 | 1.0395 | −0.0052 | 0.9980 | 86.55 | 0.36 |
78 | Dimethyl trisulfide | 126 | IS4 | 0.4135 | 0.0003 | 0.9994 | 92.86 | 0.25 |
79 | 2-Thiophenecarboxaldehyde | 111 | IS4 | 0.0125 | 0.0002 | 0.9994 | 87.59 | 9.71 |
No. | Compound | Concentration (μg/L) | Threshold a | OAV | Concentration Ratio | ||
---|---|---|---|---|---|---|---|
M | T | (μg/L) | M | T | |||
16 | Ethyl octanoate | 6542.88 ± 194.20 | 3042.84 ± 107.10 | 12.9 b | 507.20 | 235.88 | 2.15 g |
44 | 3-Methylbutanal | 5077.61 ± 201.98 | 3140.96 ± 99.06 | 16.5 b | 307.74 | 190.36 | 1.62 g |
70 | β-Damascenone | 21.48 ± 1.22 | 9.37 ± 0.23 | 0.12 c | 178.98 | 78.11 | 2.29 g |
78 | Dimethyl trisulfide | 70.04 ± 3.75 | 53.81 ± 1.59 | 0.41 b | 161.22 | 116.14 | 1.38 g |
43 | 1,1-Dimethoxyethane | 293,200.02 ± 16,250.65 | 194,930.69 ± 12,890.61 | 2090 d | 140.03 | 90.33 | 1.50 g |
8 | Isoamyl acetate | 9106.74 ± 855.52 | 12,434.91 ± 713.97 | 94 b | 96.88 | 132.29 | 1.37 h |
12 | Ethyl hexanoate | 2683.21 ± 121.80 | 7395.99 ± 579.91 | 55.3 b | 48.52 | 133.74 | 2.76 h |
1 | Ethyl acetate | 1,189,626.20 ± 28,686.27 | 1,093,055.49 ± 74,210.60 | 32600 b | 36.49 | 33.53 | 1.09 g |
7 | Ethyl 3-methylbutanoate | 155.12 ± 15.12 | 45.24 ± 2.64 | 6.9 b | 22.48 | 6.56 | 3.43 g |
9 | Ethyl pentanoate | 545.39 ± 50.56 | 3075.6 ± 276.15 | 26.8 b | 20.35 | 114.76 | 5.64 h |
45 | Hexanal | 464.28 ± 23.31 | 350.84 ± 18.68 | 25.5 b | 18.21 | 13.76 | 1.32 g |
59 | Pentanoic acid | 6731.23 ± 536.16 | 7721.93 ± 122.13 | 389 b | 17.30 | 19.85 | 1.15 h |
36 | 1-Octen-3-ol | 94.04 ± 8.29 | 34.87 ± 2.26 | 6.12 c | 15.37 | 5.70 | 2.70 g |
5 | Ethyl butanoate | 1158.52 ± 98.27 | 20,740.96 ± 684.53 | 81.5 b | 14.21 | 254.49 | 17.90 h |
28 | 1-Propanol | 676,572.64 ± 62,948.37 | 858,160.14 ± 43,057.77 | 54,000 b | 12.53 | 15.89 | 1.27 h |
69 | Linalool | 162.25 ± 16.03 | 190.93 ± 5.00 | 13.1 e | 12.39 | 14.57 | 1.18 h |
49 | Benzeneacetaldehyde | 2445.78 ± 61.59 | 1404.18 ± 15.74 | 262 d | 9.34 | 5.36 | 1.74 g |
29 | 2-Methylpropanol | 236,239.43 ± 18,833.05 | 327,289.50 ± 20,690.96 | 28,300 c | 8.35 | 11.57 | 1.39 h |
6 | Ethyl 2-methylbutanoate | 145.14 ± 8.87 | 149.22 ± 3.49 | 18 b | 8.06 | 8.29 | 1.03 h |
63 | Guaiacol | 102.93 ± 6.09 | 51.96 ± 2.19 | 13.4 b | 7.68 | 3.88 | 1.98 g |
57 | Butanoic acid | 6842.96 ± 187.62 | 10,424.39 ± 404.47 | 964 b | 7.10 | 10.82 | 1.52 h |
27 | 2-Butanol | 339,921.21 ± 8741.68 | 665,096.28 ± 13,098.88 | 50,000 b | 6.81 | 13.29 | 1.95 h |
32 | 3-Methylbutanol | 1,165,477.58 ± 90,842.60 | 757,555.98 ± 66,411.82 | 179,000 b | 6.51 | 4.23 | 1.54 g |
30 | 1-Butanol | 17,586.32 ± 1058.58 | 27,280.65 ± 1578.84 | 2730 b | 6.44 | 9.99 | 1.55 h |
25 | Ethyl dodecanoate | 2507.65 ± 244.90 | 1471.96 ± 106.06 | 400 f | 6.27 | 3.68 | 1.70 g |
58 | 3-Methylbutanoic acid | 6300.25 ± 75.10 | 5426.10 ± 351.74 | 1050 b | 6.00 | 5.17 | 1.16 g |
19 | Ethyl decanoate | 5867.76 ± 366.2 | 5123.68 ± 182.18 | 1120 b | 5.24 | 4.57 | 1.15 g |
3 | Ethyl 2-methylpropanoate | 240.10 ± 15.57 | 262.45 ± 15.12 | 57.5 b | 4.18 | 4.56 | 1.09 h |
73 | β-Ionone | 5.28 ± 0.20 | 3.86 ± 0.31 | 1.3 d | 4.06 | 2.97 | 1.37 g |
14 | Ethyl lactate | 510,767.23 ± 970.08 | 484,485.04 ± 387.49 | 128,000 b | 3.99 | 3.79 | 1.05 g |
60 | 4-Methylpentanoic acid | 567.06 ± 16.66 | 835.88 ± 30.11 | 144 c | 3.94 | 5.80 | 1.47 h |
67 | 4-Vinylguaiacol | 691.08 ± 24.02 | 804.60 ± 16.15 | 209 b | 3.30 | 3.84 | 1.16 h |
56 | 2-Methylpropanoic acid | 5131.08 ± 428.69 | 4225.58 ± 286.11 | 1580 d | 3.25 | 2.68 | 1.21 g |
54 | Acetic acid | 557,164.75 ± 54,070.93 | 426,675.42 ± 22,473.95 | 200,000 b | 2.79 | 2.14 | 1.31 g |
68 | 4-Ethyl phenol | 1379.60 ± 42.75 | 3573.64 ± 58.21 | 618 b | 2.24 | 5.78 | 2.59 h |
23 | 2-Phenethyl acetate | 1870.82 ± 198.57 | 1970.58 ± 188.82 | 909 b | 2.06 | 2.17 | 1.05 h |
61 | Hexanoic acid | 5046.77 ± 331.75 | 3916.83 ± 236.21 | 2520 b | 2.00 | 1.55 | 1.29 g |
46 | 1,1,3-Triethoxypropane | 7268.03 ± 576.60 | 12,143.02 ± 793.82 | 3700 b | 1.97 | 3.28 | 1.67 h |
77 | γ-Nonanolactone | 172.01 ± 6.48 | 49.76 ± 1.13 | 90.7 b | 1.90 | 0.55 | 3.46 g |
55 | Propanoic acid | 31,045.80 ± 2132.72 | 37,776.75 ± 1305.67 | 18,200 b | 1.71 | 2.08 | 1.22 h |
24 | Ethyl 3-phenylpropanoate | 199.54 ± 6.45 | 2470.88 ± 120.61 | 130 b | 1.54 | 19.01 | 12.34 h |
65 | 4-Ethylguaiacol | 178.16 ± 5.15 | 387.86 ± 2.40 | 123 b | 1.44 | 3.16 | 2.18 h |
41 | β-Phenethyl alcohol | 40,101.93 ± 2462.57 | 23,215.7 ± 1252.70 | 28,900 b | 1.39 | 0.80 | 1.73 g |
42 | 2-Methyl propanal | 1708.38 ± 140.81 | 1525.56 ± 149.01 | 1300 b | 1.31 | 1.14 | 1.12 g |
64 | 4-Methylguaiacol | 290.22 ± 18.08 | 694.76 ± 36.65 | 315 b | 0.92 | 2.21 | 2.39 h |
62 | Octanoic acid | 2374.17 ± 36.35 | 1423.26 ± 90.68 | 2700 b | 0.88 | 0.53 | 1.67 g |
10 | Pentyl acetate | 142.56 ± 7.20 | 288.16 ± 7.20 | 180 d | 0.80 | 1.60 | 2.02 h |
2 | Ethyl propionate | 10,868.83 ± 544.43 | 12,827.82 ± 1141.29 | 19,000 b | 0.57 | 0.68 | 1.18 h |
47 | Decanal | 40.61 ± 3.19 | 60.12 ± 4.03 | 70.8 d | 0.57 | 0.85 | 1.48 h |
34 | 1-Hexanol | 2740.72 ± 90.84 | 3820.35 ± 140.62 | 5370 d | 0.50 | 0.70 | 1.39 h |
33 | 2-Heptanol | 685.65 ± 16.11 | 85.65 ± 5.60 | 1430 d | 0.48 | 0.06 | 8.01 g |
66 | 4-Methyl phenol | 55.82 ± 3.26 | 39.10 ± 6.93 | 167 b | 0.34 | 0.24 | 1.43 g |
51 | 2-Octanone | 64.45 ± 5.99 | 58.59 ± 5.80 | 250 c | 0.26 | 0.23 | 1.10 g |
39 | 1-Nonanol | 187.91 ± 11.48 | 136.68 ± 8.94 | 806 d | 0.23 | 0.17 | 1.37 g |
35 | 3-Octanol | 86.50 ± 5.15 | 106.75 ± 7.84 | 393 c | 0.22 | 0.27 | 1.23 g |
52 | Acetophenone | 50.55 ± 2.91 | 6.82 ± 0.41 | 256 d | 0.20 | 0.03 | 7.41 g |
75 | Furfural | 6568.22 ± 651.46 | 2581.56 ± 113.18 | 44,000 b | 0.15 | 0.06 | 2.54 g |
22 | Ethyl phenylacetate | 44.49 ± 2.99 | 35.24 ± 2.59 | 407 b | 0.11 | 0.09 | 1.26 g |
17 | Ethyl nonanoate | 326.85 ± 32.41 | 173.76 ± 15.58 | 3200 b | 0.10 | 0.05 | 1.88 g |
72 | Geranylacetone | 23.83 ± 1.82 | 18.81 ± 0.29 | 267 f | 0.09 | 0.07 | 1.27 g |
48 | Benzaldehyde | 317.00 ± 23.26 | 151.23 ± 1.24 | 4200 b | 0.08 | 0.04 | 2.10 g |
76 | 2-Furan methanol | 4178.60 ± 104.80 | 2012.85 ± 46.29 | 54,700 c | 0.06 | 0.04 | 1.56 g |
20 | Diethyl succinate | 18,214.34 ± 1109.16 | 11,493.28 ± 865.21 | 353,000 b | 0.05 | 0.03 | 1.58 g |
71 | Geraniol | 5.78 ± 0.19 | 3.01 ± 0.29 | 120 f | 0.05 | 0.03 | 1.92 g |
11 | 3-Methylbutyl butanoate | 35.15 ± 3.45 | 431.55 ± 38.24 | 915 d | 0.04 | 0.47 | 12.28 h |
38 | 1-Octanol | 33.00 ± 1.37 | 13.56 ± 0.86 | 1100 c | 0.03 | 0.01 | 2.43 g |
31 | 1-Pentanol | 1052.35 ± 103.83 | 1639.97 ± 135.46 | 37,400 b | 0.03 | 0.04 | 1.56 h |
40 | Benzyl alcohol | 1024.33 ± 40.75 | 2302.44 ± 81.79 | 40,900 b | 0.03 | 0.06 | 2.25 h |
21 | Ethyl benzoate | 22.15 ± 2.02 | 3.78 ± 0.23 | 1400 b | 0.02 | <0.01 | 5.86 g |
4 | Isobutyl acetate | 16.38 ± 1.39 | 49.14 ± 4.58 | 922 b | 0.02 | 0.05 | 3.00 h |
15 | Ethyl heptanoate | 195.83 ± 18.23 | 204.63 ± 13.15 | 13,200 b | 0.01 | 0.02 | 1.04 h |
37 | 1-Heptanol | 174.40 ± 2.79 | 106.98 ± 6.02 | 26,600 d | 0.01 | <0.01 | 1.63 g |
13 | Propyl hexanoate | 34.25 ± 2.54 | 129.31 ± 8.21 | 13,000 d | <0.01 | 0.01 | 3.78 h |
18 | Hexyl hexanoate | 3.96 ± 0.25 | 15.73 ± 1.16 | 1890 d | <0.01 | 0.01 | 3.97 h |
26 | Ethyl tetradecanoate | 835.26 ± 44.31 | 454.07 ± 22.18 | 494,000 b | <0.01 | <0.01 | 1.84 g |
50 | 2-Pentanone | 775.20 ± 60.42 | 346.25 ± 10.92 | - | 2.24 g | ||
74 | 2-Pentylfuran | 751.32 ± 57.57 | 466.86 ± 29.76 | - | 1.61 g | ||
79 | 2-Thiophenecarboxaldehyde | 858.04 ± 47.96 | 556.41 ± 16.91 | - | 1.54 g | ||
53 | 2-Pentadecanone | 3.84 ± 0.27 | 3.40 ± 0.09 | - | 1.13 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Tang, J.; Fan, S.; Zhang, J.; Chen, S.; Liu, Y.; Yang, Q.; Xu, Y. Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses. Foods 2021, 10, 2392. https://doi.org/10.3390/foods10102392
Chen S, Tang J, Fan S, Zhang J, Chen S, Liu Y, Yang Q, Xu Y. Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses. Foods. 2021; 10(10):2392. https://doi.org/10.3390/foods10102392
Chicago/Turabian StyleChen, Shuang, Jie Tang, Shanshan Fan, Jun Zhang, Shenxi Chen, Yuancai Liu, Qiang Yang, and Yan Xu. 2021. "Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses" Foods 10, no. 10: 2392. https://doi.org/10.3390/foods10102392
APA StyleChen, S., Tang, J., Fan, S., Zhang, J., Chen, S., Liu, Y., Yang, Q., & Xu, Y. (2021). Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses. Foods, 10(10), 2392. https://doi.org/10.3390/foods10102392