Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders
Abstract
:1. Introduction
2. Current Description of Handheld or Portable NIR Devices for Agri-Food Applications
2.1. Phazir™ Instrument
2.2. The MicroNIR Spectrometer
2.3. Other Miniaturised NIR Spectrometers
2.4. A Note about Software
3. Applications in the Dairy Sector
3.1. Milk
3.1.1. Major Milk Composition
3.1.2. Minor Milk Composition
3.1.3. Milk Adulteration
3.2. Cheese
3.3. Dairy Powders
3.3.1. Powder Composition
3.3.2. Powder Adulteration
4. Comparison between Handheld and Benchtop Instruments
5. Challenges and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williams, P.C. Variables affecting near-infrared reflectance spectroscopic analysis. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 1987; pp. 143–168. [Google Scholar]
- OECD; FAO. OECD-FAO Agricultural Outlook 2019–2028; OECD: Paris, France; FAO: Quebec City, QC, Canada, 2019. [Google Scholar] [CrossRef]
- Karoui, R.; De Baerdemaeker, J. A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Pi, F.; Shinzawa, H.; Ozaki, Y.; Han, D. Non-destructive determination of components in processed cheese slice wrapped with a polyethylene film using near-infrared spectroscopy and chemometrics. Int. Dairy J. 2009, 19, 624–629. [Google Scholar] [CrossRef]
- Ozbekova, Z.; Kulmyrzaev, A. Fluorescence spectroscopy as a non destructive method to predict rheological characteristics of Tilsit cheese. J. Food Eng. 2017, 210, 42–49. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, W.; Kou, L.; Li, L.; Wang, C.; Jurick, W.M. A Non-destructive method to assess freshness of raw bovine milk using FT-NIR spectroscopy. J. Food Sci. Technol. 2015, 52, 5305–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J. Terahertz spectroscopy and chemometric tools for rapid identification of adulterated dairy product. Opt. Quantum Electron. 2017, 49, 1–8. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, É.; De Baerdemaeker, J. Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chem. 2007, 101, 1305–1314. [Google Scholar] [CrossRef]
- Shenk, J.S.; Workman, J.J., Jr.; Westerhaus, M.O. Chapter 17 Application of NIR Spectroscopy to Agricultureal Products. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Frankhuizen, R. Chapter 22—NIR Analysis of Dairy Products. In Handbook of Near-Infrared Analysis, 2nd ed.; Burns, D.A., Ciurczak, E.W., Eds.; Taylor & Francis: London, UK, 2001; pp. 609–641. [Google Scholar]
- Giangiacomo, R.; Cattaneo, T.M.P. Analysis of Dairy and Eggs. In Near-Infrared Spectroscopy in Agriculture; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2004; pp. 559–597. [Google Scholar]
- Rodriguez-Otero, J.L.; Hermida, M.; Centeno, J. Analysis of Dairy Products by Near-Infrared Spectroscopy: A Review. J. Agric. Food Chem. 1997, 45, 2815–2819. [Google Scholar] [CrossRef]
- Frankhuizen, R. Chapter 20—NIR Analysis of Dairy Products. In Handbook of Near-Infrared Analysis, 3rd ed.; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 415–437. [Google Scholar]
- Holroyd, S.E. The Use of near Infrared Spectroscopy on Milk and Milk Products. J. Near Infrared Spectrosc. 2013, 21, 311–322. [Google Scholar] [CrossRef]
- Holroyd, S.E. The use of NIRS in the dairy industry: New trends and applications. NIR News 2017, 28, 22–25. [Google Scholar] [CrossRef]
- Wolffenbuttel, R. MEMS-based Optical Mini- and Microspectrometers for the Visible and Infrared Spectral Range. J. Micromech. Microeng. 2005, 15, S145. [Google Scholar] [CrossRef]
- de la Roza-Delgado, B.; Garrido-Varo, A.; Soldado, A.; González Arrojo, A.; Cuevas Valdés, M.; Maroto, F.; Pérez-Marín, D. Matching portable NIRS instruments for in situ monitoring indicators of milk composition. Food Control 2017, 76, 74–81. [Google Scholar] [CrossRef]
- Henn, R.; Kirchler, C.G.; Grossgut, M.-E.; Huck, C.W. Comparison of sensitivity to artificial spectral errors and multivariate LOD in NIR spectroscopy—Determining the performance of miniaturizations on melamine in milk powder. Talanta 2017, 166, 109–118. [Google Scholar] [CrossRef]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef]
- de Lima, G.F.; Andrade, S.A.C.; da Silva, V.H.; Honorato, F.A. Multivariate Classification of UHT Milk as to the Presence of Lactose Using Benchtop and Portable NIR Spectrometers. Food Anal. Methods 2018, 11, 2699–2706. [Google Scholar] [CrossRef]
- Eskildsen, C.E.; Sanden, K.W.; Wubshet, S.G.; Andersen, P.V.; Øyaas, J.; Wold, J.P. Estimating dry matter and fat content in blocks of Swiss cheese during production using on-line near infrared spectroscopy. J. Near Infrared Spectrosc. 2019, 27, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Llano Suárez, P.; Soldado, A.; González-Arrojo, A.; Vicente, F.; de la Roza-Delgado, B. Rapid on-site monitoring of fatty acid profile in raw milk using a handheld near infrared sensor. J. Food Compos. Anal. 2018, 70, 1–8. [Google Scholar] [CrossRef]
- Uusitalo, S.; Aernouts, B.; Sumen, J.; Hietala, E.; Utriainen, M.; Frondelius, L.; Kajava, S.; Pastell, M. Comparison of milk analysis performance between NIR laboratory analyser and miniaturised NIR MEMS sensors. In Proceedings of the ICAR Conference, Prague, Czech Republic, 16–21 June 2019; pp. 111–115. [Google Scholar]
- Marinoni, L.; Stroppa, A.; Barzaghi, S.; Cremonesi, K.; Pricca, N.; Meucci, A.; Pedrolini, G.; Galli, A.; Cabassi, G. On site monitoring of Grana Padano cheese production using portable spectrometers. In Proceedings of the 18th International Conference on Near Infrared Spectroscopy, Copenhagen, Denmark, 11–15 June 2017; pp. 85–90. [Google Scholar]
- Si-Ware-Systems. Raw Milk Analysis; Si-Ware-Systems: Tokyo, Japan, 2019. [Google Scholar]
- Riu, J.; Gorla, G.; Chakif, D.; Boqué, R.; Giussani, B. Rapid Analysis of Milk Using Low-Cost Pocket-Size NIR Spectrometers and Multivariate Analysis. Foods 2020, 9, 1090. [Google Scholar] [CrossRef] [PubMed]
- Zinia Zaukuu, J.-L.; Aouadi, B.; Lukács, M.; Bodor, Z.; Vitális, F.; Gillay, B.; Gillay, Z.; Friedrich, L.; Kovacs, Z. Detecting Low Concentrations of Nitrogen-Based Adulterants in Whey Protein Powder Using Benchtop and Handheld NIR Spectrometers and the Feasibility of Scanning through Plastic Bag. Molecules 2020, 25, 2522. [Google Scholar] [CrossRef] [PubMed]
- Verena Wiedemair, D.L.; Garsleitner, R.; Dillinger, K.; Huck, C. Investigations into the Performance of a Novel Pocket-Sized Near-Infrared Spectrometer for Cheese Analysis. Molecules 2019, 24, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marchi, M.; Penasa, M.; Zidi, A.; Manuelian, C.L. Invited review: Use of infrared technologies for the assessment of dairy products—Applications and perspectives. J. Dairy Sci. 2018, 101, 10589–10604. [Google Scholar] [CrossRef] [Green Version]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Niemoller, A.; Behmer, D.; Marston, D.; Prescott, B. Online analysis of dairy products with FT-NIR spectroscopy. In Proceedings of the 11th International Conference on Near Infrared Spectroscopy, Córdoba, Spain, 6–11 April 2003; pp. 607–612. [Google Scholar]
- Nguyen, H.N.; Dehareng, F.; Hammida, M.; Baeten, V.; Froidmont, E.; Soyeurt, H.; Niemöeller, A.; Dardenne, P. Potential of near Infrared Spectroscopy for On-Line Analysis at the Milking Parlour Using a Fibre-Optic Probe Presentation. NIR News 2011, 22, 11–13. [Google Scholar] [CrossRef]
- Aernouts, B.; Polshin, E.; Lammertyn, J.; Saeys, W. Visible and near-infrared spectroscopic analysis of raw milk for cow health monitoring: Reflectance or transmittance? J. Dairy Sci. 2011, 94, 5315–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, Y.-Y.; O’Donnell, C.; Tobin, J.T.; O’Shea, N. Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. Int. Dairy J. 2020, 103, 104623. [Google Scholar] [CrossRef]
- Crocombe, R. Handheld Spectrometers in 2018 and Beyond: MOEMS, Photonics, and Smartphones; SPIE: Bellingham, WA, USA, 2018; Volume 10545. [Google Scholar]
- Yan, H.; Siesler, H.W. Hand-held near-infrared spectrometers: State-of-the-art instrumentation and practical applications. NIR News 2018, 29, 8–12. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Siesler, H.W.; Huck, C.W. Handheld near-infrared spectrometers: Where are we heading? NIR News 2020, 31, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [Google Scholar] [CrossRef]
- Saranwong, S.; Kawano, S. Commercial Portable NIR Instruments in Japan. NIR News 2005, 16, 27. [Google Scholar] [CrossRef]
- Solgaard, O.; Godil, A.A.; Howe, R.T.; Lee, L.P.; Peter, Y.; Zappe, H. Optical MEMS: From Micromirrors to Complex Systems. J. Microelectromech. Syst. 2014, 23, 517–538. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, B.; Wang, X. Strategies for high performance and scalable on-chip spectrometers. J. Phys. Photonics 2020, 3, 012006. [Google Scholar] [CrossRef]
- Ma, Y.B.; Babu, K.S.; Amamcharla, J.K. Prediction of total protein and intact casein in cheddar cheese using a low-cost handheld short-wave near-infrared spectrometer. LWT 2019, 109, 319–326. [Google Scholar] [CrossRef]
- Polychromix. Polychromix Launches the Phazir NIR Handheld Digital Transform Spectrometer; Polychromix: Woburn, MA, USA, 2006. [Google Scholar]
- Crocombe, R.A. MEMS technology moves process spectroscopy into a new dimension. Spectrosc. Eur. 2004, 16, 16–19. [Google Scholar]
- dos Santos, C.A.T.; Lopo, M.; Páscoa, R.N.M.J.; Lopes, J.A. A Review on the Applications of Portable Near-Infrared Spectrometers in the Agro-Food Industry. Appl. Spectrosc. 2013, 67, 1215–1233. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher. microPHAZIR Analyzer. Available online: https://assets.thermofisher.com/TFS-Assets/CAD/Product-Guides/microPHAZIR-User-Manual.pdf (accessed on 25 May 2021).
- Geller, Y. Using MEMS Technology for Cost Effective Recycling of Plastics; SPIE: Bellingham, WA, USA, 2007; Volume 6466. [Google Scholar]
- Day, D.R.; Butler, M.A.; Smith, M.C.; McAllister, A.; Deutsch, E.R.; Zafiriou, K.; Senturia, S.D. Diffractive-MEMS implementation of a Hadamard near-infrared spectrometer. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems, Seoul, Korea, 5–9 June 2005; Digest of Technical Papers. Transducers 05. Volume 1242, pp. 1246–1249. [Google Scholar]
- Senturia, S.D. MEMS-Enabled Products: A Growing Market Segment. 2005. Available online: https://www.pharmaceuticalonline.com/doc/mems-enabled-products-a-growing-market-0002 (accessed on 25 May 2021).
- Ianm. Nir Products at Pittcon 2012. Available online: https://www.impublications.com/content/nir-products-pittcon-2012 (accessed on 28 October 2020).
- Nada, A.O.B.; Charles, A.H.; Donald, M.F.; Fred, J.V.M.; Marc, K.v.G.; Frank, P.; Heinz, W.S. Miniature near-infrared (NIR) spectrometer engine for handheld applications. In Next-Generation Spectroscopic Technologies; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Friedrich, D.M.; Hulse, C.A.; von Gunten, M.; Williamson, E.P.; Pederson, C.G.; O’Brien, N.A. Miniature near-infrared spectrometer for point-of-use chemical analysis. In Photonic Instrumentation Engineering; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; p. 899203. [Google Scholar]
- VIAVI Solutions Inc. MicroNIR Spectrometer1700 vs. 2200: Comparison and Case Studies; VIAVI Solutions Inc.: Scottsdale, AZ, USA, 2019. [Google Scholar]
- Texas-Instruments. DLP® NIRscan™ Nano Evaluation Module. Available online: https://www.ti.com/tool/DLPNIRNANOEVM#order-start-development (accessed on 27 May 2021).
- Nelson, P. DLP Technology for Spectroscopy. Texas Instruments White Paper. 2016. Available online: https://www.ti.com/lit/wp/dlpa048a/dlpa048a.pdf?ts=1618578980095&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 20 September 2021).
- Perrella, G. Texas Instruments DLP® NIRscan™ Nano Evaluation Module (EVM) Optical Design Considerations; Texas Instruments Incorporated: Dallas, TX, USA, 2016. [Google Scholar]
- InnoSpectra. Available online: http://www.inno-spectra.com/en/product (accessed on 24 May 2021).
- Si-Ware-Systems. Available online: https://www.si-ware.com/our-offerings/ (accessed on 24 May 2021).
- Spectral-Engines. Nirone Sensor S. Available online: https://www.spectralengines.com/products/nirone-sensors (accessed on 24 May 2021).
- SCiO. Available online: https://shop.consumerphysics.com/collections/researcher-and-developer-kits (accessed on 24 May 2021).
- Si-Ware-Systems. The “Neo” Way for FT-IR. Available online: https://www.si-ware.com/how-it-works/mems-ft-ir/ (accessed on 24 May 2021).
- Deidda, R.; Sacre, P.-Y.; Clavaud, M.; Coïc, L.; Avohou, H.; Hubert, P.; Ziemons, E. Vibrational spectroscopy in analysis of pharmaceuticals: Critical review of innovative portable and handheld NIR and Raman spectrophotometers. TrAC Trends Anal. Chem. 2019, 114, 251–259. [Google Scholar] [CrossRef]
- Kalinin, A.; Krivtsun, V.; Krasheninnikov, V.; Sadovskiy, S.; Denisovich, H.; Yurova, H. Calibration Models for Multi-Component Quantitative Analyses of Dairy with the Use of Two Different Types of Portable near Infrared Spectrometer. J. Near Infrared Spectrosc. 2008, 16, 343–348. [Google Scholar] [CrossRef]
- Kalinin, A.; Krasheninnikov, V.; Sadovskiy, S.; Yurova, E. Determining the Composition of Proteins in Milk Using a Portable near Infrared Spectrometer. J. Near Infrared Spectrosc. 2013, 21, 409–415. [Google Scholar] [CrossRef]
- Amr, M.; Sabry, Y.M.; Khalil, D. Near-infrared optical MEMS spectrometer-based quantification of fat concentration in milk. In Proceedings of the 2018 35th National Radio Science Conference (NRSC), Cairo, Egypt, 20–22 March 2018; pp. 409–416. [Google Scholar]
- Santos, P.M.; Pereira-Filho, E.R.; Rodriguez-Saona, L.E. Application of Hand-Held and Portable Infrared Spectrometers in Bovine Milk Analysis. J. Agric. Food Chem. 2013, 61, 1205–1211. [Google Scholar] [CrossRef]
- Moreira, M.; França, J.A.D.; Filho, D.D.O.T.; Beloti, V.; Yamada, A.K.; França, M.B.D.M.; Ribeiro, L.D.S. A Low-Cost NIR Digital Photometer Based on InGaAs Sensors for the Detection of Milk Adulterations With Water. IEEE Sens. J. 2016, 16, 3653–3663. [Google Scholar] [CrossRef]
- Upreti, P.; McKay, L.L.; Metzger, L.E. Influence of Calcium and Phosphorus, Lactose, and Salt-to-Moisture Ratio on Cheddar Cheese Quality: Changes in Residual Sugars and Water-Soluble Organic Acids During Ripening. J. Dairy Sci. 2006, 89, 429–443. [Google Scholar] [CrossRef] [Green Version]
- Upreti, P.; Metzger, L.E. Influence of Calcium and Phosphorus, Lactose, and Salt-to-Moisture Ratio on Cheddar Cheese Quality: pH Changes During Ripening. J. Dairy Sci. 2007, 90, 1–12. [Google Scholar] [CrossRef]
- Stocco, G.; Cipolat-Gotet, C.; Ferragina, A.; Berzaghi, P.; Bittante, G. Accuracy and biases in predicting the chemical and physical traits of many types of cheeses using different visible and near-infrared spectroscopic techniques and spectrum intervals. J. Dairy Sci. 2019, 102, 9622–9638. [Google Scholar] [CrossRef]
- Augustin, M.A.; Margetts, C.L. Powdered Milk|Milk Powders in the Marketplace. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 4694–4702. [Google Scholar]
- Wu, D.; He, Y.; Feng, S. Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and wavelength assignment. Anal. Chim. Acta 2008, 610, 232–242. [Google Scholar] [CrossRef]
- Kong, W.W.; Zhang, C.; Liu, F.; Gong, A.P.; He, Y. Irradiation dose detection of irradiated milk powder using visible and near-infrared spectroscopy and chemometrics. J. Dairy Sci. 2013, 96, 4921–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.; Xiang, B.; Hao, G.; Xu, J.; Wang, Z.; Chen, C. Rapid Detection of Melamine in Milk Powder by near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2009, 17, 59–67. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z.; Wu, T. Detection of melamine adulteration in milk by near-infrared spectroscopy and one-class partial least squares. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, S. Sham or shame: Rethinking the China’s milk powder scandal from a legal perspective. J. Risk Res. 2009, 12, 725–747. [Google Scholar] [CrossRef]
- Allegrini, F.; Olivieri, A.C. IUPAC-Consistent Approach to the Limit of Detection in Partial Least-Squares Calibration. Anal. Chem. 2014, 86, 7858–7866. [Google Scholar] [CrossRef] [PubMed]
- Karunathilaka, S.R.; Yakes, B.J.; He, K.; Chung, J.K.; Mossoba, M. Non-targeted NIR spectroscopy and SIMCA classification for commercial milk powder authentication: A study using eleven potential adulterants. Heliyon 2018, 4, e00806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Commercial Name | Manufacturer | Wavelength (nm) | Measurement Mode | Light Source | Wavelength Selector | Detector | Weight and Size | Dairy Applications | Reference |
---|---|---|---|---|---|---|---|---|---|
MicroPhazir | Thermo Fisher Scientific Inc. (USA) | 1600–2400 | Reflectance Transmittance | Tungsten | MEMS | InGaAs | Weight: 1.2 kg | Liquid Milk (raw milk from individual cows) | [16] |
MicroNIR 2200 | VIAVI Solutions Inc. (USA), formerly known as JDS Uniphase Corporation, USA | 1128–2162 | Reflectance | Two tungsten lamps | LVF | InGaAs | Weight: <60 g | Milk powder | [17] |
MicroNIR 1700/1700ES | VIAVI Solutions Inc. (USA), formerly known as JDS Uniphase Corporation, USA | 950–1650 | Reflectance; Transmittance; Transflectance | Two integrated vacuum tungsten lamps | LVF | InGaAs | Weight: 64 g Size: 45 × 50 mm | Liquid milk (pasteurized retail milks, UHT milks) | [18,19] |
Cheese | [20] | ||||||||
Phazir 1624 | Polychromix Inc. (USA), sold to Thermo Fisher Scientific in 2010 | 1600–2400 | Reflectance | - | MEMS | InGaAs | 1.7 kg | Liquid Milk (raw milk from individual cows) | [21] |
NIRONE | Spectral Engines (Finland) | 1100–2500 | Transmittance | Two tungsten vacuum lamps | MEMS | InGaAs | Weight: 15 g; Size: 25 × 25 × 17.5 mm | Liquid milk (raw milk from individual cows) | [22] |
X-NIR | Dinamica Generale | 950–1800 | Reflectance | - | - | Weight: 1.6 kg; | Cheese | [23] | |
NeoSpectra | Si-Ware Systems (Egypt/Europe/ USA) | 1350–2500 | Reflectance | Three lamps | MEMS | photodetector | Spectral resolution:16 nm; Weight: 17 g; Size: 32 × 32 × 22 mm | Liquid Milk (raw milk from individual cows; commercial UHT milks) | [24,25] |
NIR-S-G1 | InnoSpectra Co., (Taiwan) | 750–1700 | Reflectance | Tungsten-Halogen | Based on Texas Instruments DLP technology | InGaAs | Weight: 87 g; Size: 76 × 82 × 27 mm | Milk powder | [26] |
SCiO | Consumer Physics (Israel) | 740–1070 | Reflectance | - | - | - | Weight: 35 g; Size: 3.15 × 9.5 × 27.5 mm | Cheese | [25,27,28] |
Liquid milk (commercial UHT milks) |
Reference | Research Objective, Predictive Models, Number and Type of Samples | Handheld/Portable NIR Spectrometer | Benchtop NIR Spectrometer | ||||
---|---|---|---|---|---|---|---|
Instrument | Multivariate Model | Performance | Instrument | Multivariate Model | Performance | ||
[18] | Organic milk authentication, N = 37 organic milk and N = 50 non-organic retail milks | MicroNIR 1700 (VIAVI Solution Inc., Scottsdale, AZ, USA) 908–1670 nm | PLS-DA | CCR = 73% | NIRFlex N-500 (Buchi, Flawil, Switzerland) 1000–2500 nm | PLS-DA | CCR = 78% |
[19] | Lactose-free milk authentication, N = 30 regular UHT milk samples and N = 41 lactose-free UHT milks | MicroNIR 1700 (VIAVI Solution Inc., Scottsdale, AZ, USA) 908–1670 nm | PLS-DA | CCR = 100% | FT-NIR Spectrum Frontier (Perkin Elmer, USA) 833–2500 nm | PLS-DA | CCR = 100% |
SPA-LDA | CCR = 80% | SPA-LDA | CCR = 100% | ||||
GL-LDA | CCR = 100% | GL-LDA | CCR = 100% | ||||
[69] | Moisture, protein, lipids; N = 197 cheese samples | LabSpec2500 (ASD Inc., USA) 350–1830 nm | Bayesian regression (whole spectral range,350–1830 nm) | Moisture: R2CV = 0.96 RMSECV = 2.10% | NIRsystems5000 (FOSS, Denmark) 1100–2498 nm, in reflectance; grinding the sample | Bayesian regression (whole spectral range, 1100–2498 nm) | Moisture: R2CV = 0.83 RMSECV = 4.51% |
Protein: R2CV = 0.88 RMSECV = 1.77% | Protein: R2CV = 0.81 RMSECV = 2.25% | ||||||
Lipids: R2CV = 0.85 RMSECV = 2.03% | Lipids: R2CV = 0.67 RMSECV = 3.20% | ||||||
Bayesian regression (common spectral range,1100–1830 nm) | Moisture: R2CV = 0.96 RMSECV = 2.00% | Bayesian regression (common spectral range, 1100–1830 nm) | Moisture: R2CV = 0.84 RMSECV = 4.39% | ||||
Protein: R2CV = 0.91 RMSECV = 1.59% | Protein: R2CV = 0.76 RMSECV = 2.51% | ||||||
Lipids: R2CV = 0.85 RMSECV = 2.03% | Lipids: R2CV = 0.69 RMSECV = 3.11% | ||||||
LabSpec2500 (ASD Inc., USA) 350–1830 nm | Bayesian regression (whole spectral range,350–1830 nm) | Moisture: R2CV = 0.96 RMSECV = 2.10% | FoodScan (FOSS, Denmark) 850–1048 nm, in transmittance; grinding the sample | Bayesian regression (whole spectral range, 350–1830 nm) | Moisture: R2CV = 0.83 RMSECV = 4.51% | ||
Protein: R2CV = 0.88 RMSECV = 1.77% | Protein: R2CV = 0.81 RMSECV = 2.25% | ||||||
Lipids: R2CV = 0.85 RMSECV = 2.03% | Lipids: R2CV = 0.67 RMSECV = 3.20% | ||||||
Bayesian regression (common spectral range,850–1050 nm) | Moisture: R2CV = 0.96 RMSECV = 2.30% | Bayesian regression (common spectral range,850–1050 nm) | Moisture: R2CV = 0.77 RMSECV = 5.26% | ||||
Protein: R2CV = 0.91 RMSECV = 1.57% | Protein: R2CV = 0.73 RMSECV = 2.62% | ||||||
Lipids: R2CV = 0.85 RMSECV = 2.03% | Lipids: R2CV = 0.64 RMSECV = 3.28% | ||||||
[27] | Moisture and fat, N = 46 cheese samples (whole and grated) | SCiO (Consumer Physics, Israel); 740–1070 nm | PLSR (on whole cheese) | Moisture: R2P = 0.94 RMSEP = 1.14% | NIRFlex N-500 (Buchi, Flawil, Switzerland); 1000–2500 nm | PLSR (on whole cheese) | Moisture: R2P = 0.94 RMSEP = 1.10% |
Fat: R2P = 0.98 RMSEP = 1.19% | Fat: R2P = 0.94 RMSEP = 1.90% | ||||||
PLSR (on grated cheese) | Moisture: R2P = 0.93 RMSEP = 1.71% | PLSR (on grated cheese) | Moisture: R2P = 0.96 RMSEP = 0.93% | ||||
Fat: R2P = 0.99 RMSEP = 0.82% | Fat: R2P = 0.99 RMSEP = 0.77% | ||||||
[23] | Dry matter, fat and protein; N = 195 Grana Padano cheese | X-NIR (Dinamica Generale Electronic Solutions & Sensors, Italy) 950–1800 nm | PLSR (on grinded cheese pasture) | Dry matter: R2P = 0.62 RMSEP = 0.65% | NIRFlex N-500 (Buchi, Flawil, Switzerland); 1000–2500 nm | PLSR (on grinded cheese pasture) | Dry matter: R2P = N/A RMSEP = 0.71% |
Fat: R2P = 0.91 RMSEP = 0.46% | Fat: R2P = N/A RMSEP = 0.54% | ||||||
Protein: R2P = 0.83 RMSEP = 0.40% | Protein: R2P = N/A RMSEP = 0.49% | ||||||
[17] | Melamine detection; N = 111 milk powder samples | MicroNIR2200 (VIAVI Solution Inc., Scottsdale, AZ, USA); 1128–2162 nm | PLSR | R2P = 0.96 RMSEP = 0.27% | NIRFlex N-500 (Buchi, Flawil, Switzerland); 1000–2500 nm | PLSR | R2P = 0.96 RMSEP = 0.28% |
MicroPhazir (Thermo Fisher Scientific, Waltham, MA, USA); 1600–2400 | PLSR | R2P = 0.95 RMSEP = 0.33% | |||||
[77] | Non-targeted milk powder authentication; (N > 67) | Phazir 1624 (Thermo Fisher Scientific, Waltham, MA, USA) 1596–2400 nm | SIMCA | The authors highlighted hat portable device of limited utility for non-targeted detection of adulteration of this food commodity | FT-NIR (Bruker Multi Purpose Analyser (MPA), USA) 800–2500 nm | SIMCA | CCR = 100% for Melamine, Aminothiazole, Biuret at a 0.6–2% adulteration level |
FT-NIR (Perkin Elmer, USA) 1000–2500 nm | |||||||
[26] | Whey protein powders authentication; (N = 819) | NIR-S-G1 (InnoSpectra Co., Taiwan); 750–1700 nm | PLSR (common spectral range 950–1650 nm) | Urea: R2P = 0.91 RMSEP = 0.25% | MetriNIR (MetriNIR Research, Development and Service Co., Hungary); 950–1650 nm | PLSR (common spectral range 950–1650 nm) | Urea: R2P = 0.92 RMSEP = 0.23% |
Glycine: R2P = 0.75 RMSEP = 1.03% | Glycine: R2P = 0.85 RMSEP = 0.82% | ||||||
Taurine: R2P = 0.85 RMSEP = 1.37% | Taurine: R2P = 0.90 RMSEP = 1.14% | ||||||
Melamine: R2P = 0.82 RMSEP = 0.53% | Melamine: R2P = 0.86 RMSEP = 0.21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Y.; Pérez-Marín, D.; O’Shea, N.; Garrido-Varo, A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods 2021, 10, 2377. https://doi.org/10.3390/foods10102377
Pu Y, Pérez-Marín D, O’Shea N, Garrido-Varo A. Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods. 2021; 10(10):2377. https://doi.org/10.3390/foods10102377
Chicago/Turabian StylePu, Yuanyuan, Dolores Pérez-Marín, Norah O’Shea, and Ana Garrido-Varo. 2021. "Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders" Foods 10, no. 10: 2377. https://doi.org/10.3390/foods10102377
APA StylePu, Y., Pérez-Marín, D., O’Shea, N., & Garrido-Varo, A. (2021). Recent Advances in Portable and Handheld NIR Spectrometers and Applications in Milk, Cheese and Dairy Powders. Foods, 10(10), 2377. https://doi.org/10.3390/foods10102377