Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Reagents, and Standards
2.2. Extraction of Sterols
2.3. GC-MS Analysis of Sterols
2.4. Statistical Analysis
3. Results and Discussion
3.1. Identification of Sterols by GC-MS
3.2. Sterol Contents in Studied Spices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Rubio, L.; Motilva, M.J.; Romero, M.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of herbs and spices for food preservation: Advantages and limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernandez-Lopez, J.; Perez-Alvarez, J.A. Spices as functional foods. Crit. Rev. Food Sci. Nutr. 2011, 51, 13–28. [Google Scholar] [CrossRef]
- Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Haley-Zitlin, V.; Bridges, W.; Alasvand, S. Efficacy of Common Spices on Improving Serum Lipids in Individuals with Type 2 Diabetes: Systematic Review and Meta-Analysis of Clinical Trials. Curr. Dev. Nutr. 2020, 4, 1. [Google Scholar] [CrossRef]
- Assefa, A.D.; Keum, Y.S.; Saini, R.K. A comprehensive study of polyphenols contents and antioxidant potential of 39 widely used spices and food condiments. J. Food Meas. Charact. 2018, 12, 1548–1555. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Assefa, A.D.; Keum, Y.S. Spices in the Apiaceae Family Represent the Healthiest Fatty Acid Profile: A Systematic Comparison of 34 Widely Used Spices and Herbs. Foods 2021, 10, 854. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegard, L.; Jessup, W.; Jones, P.J.; Lutjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A meta-analysis of randomised controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, E.; Mensink, R.P.; Plat, J. Effects of plant sterols and stanols on intestinal cholesterol metabolism: Suggested mechanisms from past to present. Mol. Nutr. Food Res. 2012, 56, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol. 2003, 49, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Othman, R.A.; Moghadasian, M.H. Beyond cholesterol-lowering effects of plant sterols: Clinical and experimental evidence of anti-inflammatory properties. Nutr. Rev. 2011, 69, 371–382. [Google Scholar] [CrossRef]
- Kozlowska, M.; Gruczynska, E.; Scibisz, I.; Rudzinska, M. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chem. 2016, 213, 450–456. [Google Scholar] [CrossRef]
- Sriti, J.; Talou, T.; Wannes, W.A.; Cerny, M.; Marzouk, B. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J. Sci. Food Agric. 2009, 89, 1659–1664. [Google Scholar] [CrossRef]
- Balbino, S.; Repajić, M.; Obranović, M.; Medved, A.M.; Tonković, P.; Dragović-Uzelac, V. Characterization of lipid fraction of Apiaceae family seed spices: Impact of species and extraction method. J. Appl. Res. Med. Aromat. Plants 2021, 25, 100326. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Detry, P.; Wannes, W.A.; Kenny, T.; Ksouri, R.; Sellami, I.H.; Fauconnier, M.-L. Green Extraction of Fennel and Anise Edible Oils Using Bio-Based Solvent and Supercritical Fluid: Assessment of Chemical Composition, Antioxidant Property, and Oxidative Stability. Food Bioprocess Technol. 2019, 12, 1798–1807. [Google Scholar] [CrossRef]
- Islam, M.A.; Jeong, B.G.; Jung, J.; Shin, E.C.; Choi, S.G.; Chun, J. Phytosterol Determination and Method Validation for Selected Nuts and Seeds. Food Anal. Methods 2017, 10, 3225–3234. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Morsel, J.T. Oil composition of coriander (Coriandrum sativum L.) fruit-seeds. Eur. Food Res. Technol. 2002, 215, 204–209. [Google Scholar] [CrossRef]
- Saini, R.K.; Rauf, A.; Khalil, A.A.; Ko, E.-Y.; Keum, Y.-S.; Anwar, S.; Alamri, A.; Rengasamy, K.R.R. Edible mushrooms show significant differences in sterols and fatty acid compositions. S. Afr. J. Bot. 2021, 141, 344–356. [Google Scholar] [CrossRef]
- Cruz, R.; Casal, S.; Mendes, E.; Costa, A.; Santos, C.; Morais, S. Validation of a Single-Extraction Procedure for Sequential Analysis of Vitamin E, Cholesterol, Fatty Acids, and Total Fat in Seafood. Food Anal. Methods 2013, 6, 1196–1204. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- ICH Harmonised Tripartite Guideline. Validation of analytical procedures: Text and methodology. Q2 (R1) 2005, 1, 05. [Google Scholar]
- Goad, L.J.; Akihisa, T. Mass spectrometry of sterols. In Analysis of Sterols; Goad, L.J., Akihisa, T., Eds.; Springer: New York, NY, USA, 1997; pp. 152–196. [Google Scholar] [CrossRef]
- Pizzoferrato, L.; Nicoli, S.; Lintas, C. Gc-Ms Characterization and Quantification of Sterols and Cholesterol Oxidation-Products. Chromatographia 1993, 35, 269–274. [Google Scholar] [CrossRef]
- Isidorov, V.A. GC-MS of Biologically and Environmentally Significant Organic Compounds: TMS Derivatives; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Phillips, K.; Ruggio, D.M.; Exler, J.; Patterson, K.Y. Sterol composition of shellfish species commonly consumed in the United States. Food Nutr. Res. 2012, 56, 18931. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.; Ramezan, Y.; Arab, S. A comparative study on physicochemical characteristics and antioxidant activity of sumac (Rhus coriaria L.), cumin (Cuminum cyminum), and caraway (Carum carvil) oils. J. Food Meas. Charact. 2020, 14, 3175–3183. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.S.; Rengasamy, K.R.R. Profiling of nutritionally important metabolites in green/red and green perilla (Perilla frutescens Britt.) cultivars: A comparative study. Ind. Crops Prod. 2020, 151, 112441. [Google Scholar] [CrossRef]
- Piironen, V.; Lampi, A.-M. Occurrence and levels of phytosterols in foods. In Phytosterols as Functional Food Components and Nutraceuticals; Dutta, P.C., Ed.; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Kodad, O.; Fernández-Cuesta, Á.; Karima, B.; Velasco, L.; Ercişli, S. Natural variability in phytosterols in almond (Prunus amygdalus) trees growing under a southern Mediterranean climate. J. Hortic. Sci. Biotechnol. 2015, 90, 543–549. [Google Scholar] [CrossRef]
- Cabianca, A.; Müller, L.; Pawlowski, K.; Dahlin, P. Changes in the Plant β-Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode Meloidogyne incognita. Plants 2021, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Gawrysiak-Witulska, M.; Rudzińska, M.; Rusinek, R.; Gancarz, M.; Siger, A. Changes in phytosterol contents during rape seed storage under conditions simulating industrial silos. J. Stored Prod. Res. 2020, 88, 101687. [Google Scholar] [CrossRef]
Peak No. | Sterol | RT (min) | m/z (M]+• | Dill | Celery | Caraway | Coriander | Cumin | Fennel | Anise | Ajwain |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | Campesterol | 27.141 | 472 | 20.8 ±4.0 | 53.6 ± 1.9 a | 47.4 ± 1.0 | 33.4 ± 0.8 | 49.2 ± 6.3 a | 19.8 ± 1.7 | 19.3 ± 0.5 | 27.5 ± 0.3 |
2. | Stigmasterol | 27.991 | 484 | 109.3 ± 6.3 | 228.6 ± 1.3 a | 156.9 ± 7.1 | 108.2 ± 4.0 | 175.4 ± 8.0 | 182.4 ± 1.7 | 129.9 ± 6.2 | 87.7 ± 2.9 |
3. | β-Sitosterol | 29.861 | 486 | 57.4 ± 4.0 | 152.7 ± 4.0 | 243.1 ± 5.9 a | 121.7 ± 6.2 | 196.3 ± 8.1 | 132.9 ± 4.5 | 121.7 ± 0.7 | 64.0 ± 8.5 |
4. | α-Spinasterol | 29.904 | 484 | 62.6 ± 1.4 | n.d. | n.d. | n.d. | n.d. | n.d. | 109.9 ± 1.3 a | 98.1 ± 7.7 |
U1. | Unidentified 1 (m/z 484) | 30.390 | 484 | n.d. | 39.2 ± 0.1 | 38.1 ± 4.7 | 23.9 ± 16.5 | 29.4 ± 2.2 | 66.4 ± 16.5 a | 24.7 ± 2.7 | 20.4 ± 0.1 |
U2 | Unidentified 2 (m/z 486) | 32.045 | 486 | 93.7 ± 6.4 | 49.5 ± 3.1 | 75.3±4.3 | 73.7 ± 1.8 | 31.9 ± 1.0 | 85.4 ± 0.6 | 121.2 ± 4.6 a | 63.3 ± 4.0 |
U3 | Unidentified 3 (m/z 484) | 32.951 | 484 | 17.5 ± 0.1 | 22.7 ± 1.9 | 41.4 ± 0.5 a | 25.5 ± 1.3 | 17.3 ± 4.9 | 30.4 ± 3.2 | 25.2 ± 0.6 | 15.2 ± 1.7 |
Total | 361.4 ± 22.4 | 546.2 ± 12.4 | 602.2 ± 12.9 a | 386.4 ± 28.1 | 499.5 ± 30.5 | 517.3 ± 28.3 | 551.9 ± 14.0 | 376.2 ± 5.5 |
Common Name | Oil Contents (%) | Campesterol | Stigmasterol | β-Sitosterol | α-Spinasterol | Δ7-Stigmasterol | Δ7-Avenasterol | Δ5-Avenasterol | Total Sterols | Analytical Technique Used | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Caraway | 8.14 | 38.8 a | 160.3 a | 240.2 a | 19.8 a | 29.3 a | 46.4 a | n.d. | 570.3 a | GC-MS | [18] |
19.8 | 61.1 a | 79.1 a | 226.6 a | n.d. | 10.7 a | 8.8 a | 0.8 a | 405 a | GC-MS | [30] | |
18.9 | 31.7 a | 245.4 a | 244.9 a | n.d. | n.d. | 23.7 a | 87.1 a | 739.4 a | GC-FID | [16] | |
Coriander | 13.3 | 49.0 a | 109.6 a | 177.6 a | 18.3 a | 70.3 a | 24.3 a | n.d. | 468.8 a | GC-MS | [18] |
22.1 | 36.6 a | 118.0 a | 100.9 a | n.d. | n.d. | 15.2 a | 54.4 a | 358.4 a | GC-FID | [16] | |
19.2 | 44.4 a | 136.9 a | 231.4 a | n.d. | 106.4 a | 26.9 a | 21.0 a | 629 a | GC-MS | [17] | |
- | 50.8 a | 154.8 a | 146.4 a | n.d. | n.d. | 24.4 a | 123.5 a | 518.6 a | GC-FID | [21] | |
Cumin | 26.8 | 214 a | 73.3 a | 104.1 a | n.d. | 14.0 a | 5.4 a | 11.5 a | 426 a | GC-MS | [30] |
Fennel | 7.89 | 35.0 a | 172.5 a | 140.2 a | 19.7 a | 53.0 a | 30.9 a | n.d. | 492.4 a | GC-MS | [18] |
20.1 c | 49 a | 223 a | 161 a | n.d. | n.d. | 18 a | 6 a | 464 a | GC-FID | [19] | |
- | 9.0 b | 57.6 b | 48.8 b | n.d. | n.d. | n.d. | 40.9 b | 156.3 b | GC-FID | [20] | |
Anise | 5.98 | 67.7 a | 206.9 a | 211.6 a | 206.2 a | 140.4 a | 47.0 a | n.d. | 903.9 a | GC-MS | [18] |
24.1 c | 119 a | 118 a | 238 a | n.d. | n.d. | 9 a | 3 a | 385 a | GC-FID | [19] | |
5.4 | 91.1 a | 67.9 a | 626.4 a | n.d. | n.d. | n.d. | n.d. | 849.9 a | GC-FID | [16] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R.K.; Song, M.-H.; Yu, J.-W.; Shang, X.; Keum, Y.-S. Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS. Foods 2021, 10, 2378. https://doi.org/10.3390/foods10102378
Saini RK, Song M-H, Yu J-W, Shang X, Keum Y-S. Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS. Foods. 2021; 10(10):2378. https://doi.org/10.3390/foods10102378
Chicago/Turabian StyleSaini, Ramesh Kumar, Min-Ho Song, Ji-Woo Yu, Xiaomin Shang, and Young-Soo Keum. 2021. "Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS" Foods 10, no. 10: 2378. https://doi.org/10.3390/foods10102378
APA StyleSaini, R. K., Song, M.-H., Yu, J.-W., Shang, X., & Keum, Y.-S. (2021). Phytosterol Profiling of Apiaceae Family Seeds Spices Using GC-MS. Foods, 10(10), 2378. https://doi.org/10.3390/foods10102378