Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Obtaining Extracts
2.3. Chemical Analysis
2.3.1. Qualitative Tests
2.3.2. Quantification of Total Phenolic Content
2.3.3. Quantification of Total Flavonoids Content
2.3.4. Total Vitamin C Determination
2.3.5. Determination of Total Carotenoids
2.3.6. LC-MS Analysis
2.4. Antioxidant Activity of Extracts
2.4.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Method
2.4.2. ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic Acid)) Method
2.4.3. Ferric-Reducing Antioxidant Power Method
2.4.4. Oxidative Degradation of 2-Deoxyribose (2-DR) Method
2.4.5. Co-Oxidation of β-Carotene/Linoleic Acid Method
2.5. Micro-Plate Assay for Inhibition of Acetylcholinesterase
3. Results
3.1. Chemical Analyses
3.2. Antioxidant Activity
3.3. Inhibition of Acetylcholinesterase
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chatterjee, R.; Chatterjee, J. ROS and oncogenesis with special reference to EMT and stemness. Eur. J. Cell Biol. 2020, 99, 151073. [Google Scholar] [CrossRef] [PubMed]
- Schilder, W.H.; Tanumihardja, E.; Leferink, A.M.; Berg, A.V.D.; Olthuis, W. Determining the antioxidant properties of various beverages using staircase voltammetry. Heliyon 2020, 6, e04210. [Google Scholar] [CrossRef] [PubMed]
- Khadri, A.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Neffati, M.; Smiti, S.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of essential oils from Cymbopogon schoenanthus L. Spreng. Determination of chemical composition by GC–mass spectrometry and 13C NMR. Food Chem. 2008, 109, 630–637. [Google Scholar] [CrossRef]
- Nascimento, J.E.T.; Rodrigues, A.L.M.; Lisboa, D.S.; Liberato, H.R.; Falcão, M.J.C.; Silva, C.R.; Júnior, H.V.N.; Filho, R.B.; Junior, V.F.P.; Alves, D.R.; et al. Chemical Composition and Antifungal In Vitro and In Silico, Antioxidant, and Anticholinesterase Activities of Extracts and Constituents of Ouratea fieldingiana (DC.) Baill. Evid. Based Altern. Med. 2018, 2018, 1748487. [Google Scholar] [CrossRef] [PubMed]
- Petronilho, E.C.; Pinto, A.C.; Villar, J.D.F. Acetilcolinesterase: Alzheimer e Guerra Química. 2011. Available online: http://rmct.ime.eb.br/arquivos/RMCT_3_tri_2011/RMCT_067_E5A_11.pdf (accessed on 1 September 2021).
- Hernandez, M.F.; Falé, P.L.V.; Araújo, M.E.M.; Serralheiro, M.L.M. Acetylcholinesterase inhibition and antioxidant activity of the water extracts of several Hypericum species. Food Chem. 2010, 120, 1076–1082. [Google Scholar] [CrossRef]
- Rodrigues, B.R.A.; Nietsche, S.; Mercadante-Simões, M.O.; Pereira, M.C.T.; Ribeiro, L.M. Climatic seasonality influences the development of pollen grains and fruiting in Annona squamosa. Environ. Exp. Bot. 2018, 150, 240–248. [Google Scholar] [CrossRef]
- Sá, R.D.; Santana, A.S.C.O.; Padilha, R.J.R.; Alves, L.C.; Randau, K.P. Oxalic acid content and pharmacobotanical study of leaf blades of two species of Annona (Annonaceae). Flora 2019, 253, 10–16. [Google Scholar] [CrossRef]
- Mainasara, M.M.; Bakar, M.F.A.; Mohamed, M.; Linatoc, A.C.; Sabran, F. Sugar Apple—Annona squamosa Linn. Exot. Fruits 2018, 397–402. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhu, Z.Y.; Sun, H.Q.; Chen, L.J. Structural characterization and inhibition of α-glucosidase activity of the acid polysaccharide of Annona squamosa. Carbohydr. Polym. 2017, 174, 1–12. [Google Scholar] [CrossRef]
- Abdualrahman, M.A.Y.; Ma, H.; Zhou, C.; Yagoub, A.E.; Ali, A.O.; Tahir, H.E.; Wali, A. Postharvest physicochemical properties of the pulp and seed oil from Annona squamosa L. (Gishta) fruit grown in Darfur region, Sudan. Arab. J. Chem. 2019, 12, 4514–4521. [Google Scholar] [CrossRef] [Green Version]
- Matos, F.J.A. Introdução a Fitoquímica Experimental, 2nd ed.; Edições UFC: Fortaleza, Brazil, 1997. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lammela-Ranvenson, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 200, 152–178. [Google Scholar] [CrossRef]
- Kosalec, I.; Bakmaz, M.; Pepeliniak, S.; Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar] [PubMed]
- Zenebon, O.; Pascuet, N.S.; Tiglea, P. Métodos Físico-Químicos para Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Huang, W.Y.; Cai, Y.Z.; Corke, H.; Sun, M. Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. J. Food Compos. Anal. 2010, 3, 510–517. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.G.; Pérez-jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre DPPH; Comunicado Técnico on Line: Fortaleza, Brazil, 2007. [Google Scholar]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.G.; Pérez-jiménez, J.; Saura-Colixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas pela Captura do Radical Livre ABTS+; Comunicado Técnico on Line: Fortaleza, Brazil, 2007. [Google Scholar]
- Minotti, G.; Aust, S.D. An investigation into the mechanism of citrate-Fe2+- dependent lipid peroxidation. Free Radic. Biol. Med. 1887, 3, 379–387. [Google Scholar] [CrossRef]
- Puntel, R.L.; Nogueira, C.W.; Rocha, J.B.T. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem. Res. 2005, 30, 225–255. [Google Scholar] [CrossRef] [PubMed]
- Rufino, M.S.M.; Alves, R.E.; Brito, E.S.; Morais, S.M.; Sampaio, C.G.; Pérez-Jiménez, J.; Saura-Calixto, F.D. Metodologia Científica: Determinação da Atividade Antioxidante Total em Frutas no Sistema β-Caroteno/Ácido Linoleico; Comunicado Técnico on Line: Fortaleza, Brazil, 2006. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Calviño, L.C.; Cala, D.J.; Fernández, R.G.; Barrientos, A.B.; Hechavarría, M.E.S.; Vadell, H.C. Estudio farmacognóstico preliminar de la especie Annona squamosa L. Rev. Cuba. Plantas Med. 2018, 23, 1–10. [Google Scholar]
- Kalidindi, N.; Thimmaiah, N.V.; Jagadeesh, N.V.; Nandeep, R.; Swetha, S.; Kalidindi, B. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. J. Food Drug Anal. 2015, 23, 795–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhawalidy, A.S.R.; Hossain, M.A. Study on total phenolics and antioxidant activity of leaves crude extracts of Annona squamosa traditionally used for the treatment of cancerous tumours. Asian Pac. J. Trop. Dis. 2015, 5, S142–S144. [Google Scholar] [CrossRef]
- Reddy, C.V.K.; Sreeramulu, D.; Raghunath, M. Antioxidant activity of fresh and dry fruits commonly consumed in India. Food Res. Int. 2010, 43, 285–288. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; Sousa, P.H.M.; Arriaga, A.M.C.; Prado, G.M.; Magalhães, C.E.C.M.; Maia, G.A.; Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef] [Green Version]
- Silva, K.D.R.R.; Sirasa, M.S.F. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018, 238, 203–208. [Google Scholar] [CrossRef]
- Huchin, V.M.M.; Mota, I.E.; Leon, R.E.; Glory, L.C.; Vazquez, E.O.; Vargas, M.L.V.; Ancona, D.B.; Sauri-Duch, E.S. Determination of some physicochemical characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, Mexico. Food Chem. 2014, 152, 508–515. [Google Scholar] [CrossRef]
- Baskaran, R.; Pullencheri, D.; Somasundaram, R. Characterization of free, esterified and bound phenolics in custard apple (Annona squamosa L) fruit pulp by UPLC-ESI-MS/MS. Food Res. Int. 2016, 82, 121–127. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Y.; Ma, C.; Wang, X.; Li, Y.; Miao, Y.; Chen, J.; Li, X. Antitumor activity of Annona squamosa seed oil. J. Ethnopharmacol. 2016, 193, 362–367. [Google Scholar] [CrossRef]
- Jayendra; Kumar, Y. New compound 6,7-dimethoxy-2-methylisoquinolinium from Indian medicinal plant Annona squamosa L. Int. J. Chem. Anal. Sci. 2013, 4, 161–168. [Google Scholar] [CrossRef]
- Ravaomanarivo, L.H.R.R.; Razafindraleva, H.A.; Raharimalala, F.N.; Rasoahantaveloniaina, B.; Ravelonandro, P.H.; Mavingui, P. Efficacy of seed extracts of Annona squamosa and Annona muricata (Annonaceae) for the control of Aedes albopictus and Culex quinquefasciatus (Culicidae). Asian Pac. J. Trop. Biomed. 2014, 4, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Jáuregui, M.E.C.; Carrillo, M.C.C.; Romo, F.P.G. Carotenoides y su función antioxidante. Arch. Latinoam. Nutr. 2011, 61, 233–241. [Google Scholar]
- Sawczuk, R.; Karpinska, J.; Filipowska, D.; Bajguz, A.; Hryniewicka, M. Evaluation of total phenols content, anti-DPPH activity and the content of selected antioxidants in the honeybee drone brood homogenate. Food Chem. 2022, 368, 130745. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, G.D.F.L.; Cruz, M.A.D.A.S.; de Abreu, J.P.; Santos, M.C.B.; Fanaro, G.B.; Júnior, M.R.M.; Silva, O.F.; Moreira, R.F.A.; Cameron, L.C.; Ferreira, M.S.L.; et al. Evaluation of the antioxidant capacity, volatile composition and phenolic content of hybrid Vitis vinifera L. varieties sweet sapphire and sweet surprise. Food Chem. 2022, 366, 130644. [Google Scholar] [CrossRef]
- Almeida, M.A.; Conegundes, J.L.M.; Evangelista, M.R.; Freitas, P.H.S.; Scio, E. Avaliação do perfil fitoquímico e do potencial antioxidante do extrato aquoso das folhas de Siparuna guianensis Aublet. J. Biol. Pharm. Agric. Manag. 2021, 17, 251–270. [Google Scholar]
- Degáspari, C.H.; Waszczynskyj, N. Propriedades antioxidantes de compostos fenólicos. Visão Acadêmica Curitiba 2004, 5, 33–40. [Google Scholar] [CrossRef]
- Santos, J.T.; Krutzmann, M.W.; Bierhals, C.C.; Feksa, L.R. Os efeitos da suplementação com vitamina C. Rev. Conhecimento Online 2019, 1, 139–163. [Google Scholar] [CrossRef] [Green Version]
- Luiggi, F.G.G.; Pacheco, P.D.G.; Racanicci, A.M.C.; Muynarsk, E.S.M.; Sartori, M.M.P.; Sartori, J.R. O uso da bixina como antioxidante natural em dietas de frangos de corte formuladas com óleo de soja fresco ou oxidado. Arch. Vet. Sci. 2020, 25, 79–93. [Google Scholar] [CrossRef]
- Vikas, B.; Akhil, B.S.; Remani, P.; Sujathan, K. Free Radical Scavenging Properties of Annona squamosa. Asian Pac. J. Cancer Prev. 2017, 18, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N. Lipoxygenase inhibition by novel fatty acid ester from Annona squamosa seeds. J. Enzym. Inhib. Med. Chem. 2008, 23, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Vitamin C and genomic stability. Mutat. Res. 2001, 475, 29–35. [Google Scholar] [CrossRef]
- Zorzetto, R. Antes do Esquecimento. Rev. Pesqui. Fapesp. 2018, 273, 19–23. [Google Scholar]
- Chen, J.J.; Gong, Y.H.; He, L. Role of GPR40 in pathogenesis and treatment of Alzheimer’s disease and type 2 diabetic dementia. J. Drug Target. 2019, 27, 347–354. [Google Scholar] [CrossRef]
- Martins, G.V.; Alves, D.R.; Vieira-Araújo, F.M.; Rondon, F.; Braz-Filho, R.; Morais, S.M. Estudo químico e avaliação das atividades antioxidantes, antiacetilcolinesterase e antileishmanial de extratos de Jatropha gossypifolia L. (Pião Roxo). Rev. Virtual Quim. 2018, 10, 21–36. [Google Scholar] [CrossRef]
- Santos, A.L.M.; Fraga, V.G.; Magalhães, C.A.; Souza, L.C.; Gomes, K.B. Doença de Alzheimer e Diabetes Mellitus tipo 2: Qual a relação? Rev. Bras. Neurol. 2017, 53, 17–26. [Google Scholar]
Total Phenolics (µg GAE/mg Ext.) | Total Flavonoids (µg QE/g Ext.) | Vitamin C (mg AA/100 g) | Caratenoids (µg of β-Carotene/10 mg) | |
---|---|---|---|---|
Seeds | 32.53 ± 2.13 a | 893.30 ± 6.66 a | 0.57 ± 0.07 a | 0.45 ± 0.01 a |
Pulp | 2.20 ± 0.09 b | 246.60 ± 23.33 b | 1.01 ± 0.08 b | 0.38 ± 0.03 a |
IC50 (mg/mL) | |||||
---|---|---|---|---|---|
DPPH | ABTS | Fe3+ Reduction | 2-DR Protection | β-Carotene Protection | |
Seeds | 0.36 ± 0.02 | 0.14 ± 0.02 | 0.57 ± 0.01 | 0.41 ± 0.019 | 0.16 ± 0.03 |
Pulp | 0.83 ± 0.02 | 0.38 ± 0.02 | 0.74 ± 0.05 | 0.43 ± 0.16 | 1.36 ± 0.02 |
Vitamin C * | 0.011 ± 0.04 | 0.004 ± 0.01 | 0.031 ± 0.05 | 0.042 ± 0.04 | 0.95 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, D.O.D.; Camilo, C.J.; Nonato, C.d.F.A.; Carvalho, N.K.G.d.; Salazar, G.J.T.; de Morais, S.M.; Costa, J.G.M.d. Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts. Foods 2021, 10, 2343. https://doi.org/10.3390/foods10102343
Leite DOD, Camilo CJ, Nonato CdFA, Carvalho NKGd, Salazar GJT, de Morais SM, Costa JGMd. Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts. Foods. 2021; 10(10):2343. https://doi.org/10.3390/foods10102343
Chicago/Turabian StyleLeite, Débora Odília Duarte, Cicera Janaine Camilo, Carla de Fatima Alves Nonato, Natália Kelly Gomes de Carvalho, Gerson Javier Torres Salazar, Selene Maia de Morais, and José Galberto Martins da Costa. 2021. "Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts" Foods 10, no. 10: 2343. https://doi.org/10.3390/foods10102343
APA StyleLeite, D. O. D., Camilo, C. J., Nonato, C. d. F. A., Carvalho, N. K. G. d., Salazar, G. J. T., de Morais, S. M., & Costa, J. G. M. d. (2021). Chemical Profile and Evaluation of the Antioxidant and Anti-Acetylcholinesterase Activities of Annona squamosa L. (Annonaceae) Extracts. Foods, 10(10), 2343. https://doi.org/10.3390/foods10102343