Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Almond Samples
2.3. Antioxidants Extraction
2.4. Total Polyphenol Determination
2.5. Total Flavonoid Determination
2.6. Total Proanthocyanidin Determination
2.7. FRAP Assay
2.8. Determination of Flavonoid Compounds by HPLC
2.9. Method Validation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Extraction
3.2. Validation of Analytical Methods
3.3. Analysis of Almond Genotypes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monagas, M.; Garrido, I.; Lebrón-Aguilar, R.; Gómez-Cordovés, M.C.; Rybarczyk, A.; Amarowicz, R.; Bartolomé, B. Comparative flavan-3-ol profile and antioxidant capacity of roasted peanut, hazelnut, and almond skins. J. Agric. Food Chem. 2009, 57, 10590–10599. [Google Scholar] [CrossRef]
- Hou, Y.; Ojo, O.; Wang, L.; Wang, Q.; Jiang, Q.; Shao, X.; Wang, X. A randomized controlled trial to compare the effect of peanuts and almonds on the cardio-metabolic and inflammatory parameters in patients with type 2 diabetes mellitus. Nutrients 2018, 10, 1565. [Google Scholar] [CrossRef] [Green Version]
- Eslampour, E.; Asbaghi, O.; Hadi, A.; Abedi, S.; Ghaedi, E.; Lazaridi, A.; Miraghajani, M. The effect of almond intake on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2020, 50, 102399. [Google Scholar] [CrossRef]
- Dikariyanto, V.; Smith, L.; Francis, L.; Robertson, M.; Kusaslan, E.; O’Callaghan-Latham, M.; Palanche, C.; D’Annibale, M.; Christodoulou, D.; Basty, N.; et al. Snacking on whole almonds for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: The ATTIS study, a randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Beltrán Sanahuja, A.; Maestre Pérez, S.E.; Grané Teruel, N.; Valdés García, A.; Prats Moya, M.S. Variability of chemical profile in almonds (Prunus dulcis) of different cultivars and origins. Foods 2021, 10, 153. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their Co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, İ.; et al. Almonds (Prunus Dulcis mill. D. A. Webb): A source of nutrients and health-promoting compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Group of Almond and Hazelnut Exporters of Spain. Production Estimation for 2019/2020 Campaign in Spain. 2019. Available online: https://www.almendrave.com/el-sector/produccion (accessed on 15 March 2021).
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Santos, R.; Saavedra, M.J.; Aires, A.; Pascual-Seva, N.; Barros, A. Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Ind. Crop. Prod. 2019, 132, 186–196. [Google Scholar] [CrossRef]
- Tapia, M.I.; Sánchez-Morgado, J.R.; García-Parra, J.; Ramírez, R.; Hernández, T.; González-Gómez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Xie, L.; Roto, A.V.; Bolling, B.W. Characterization of Ellagitannins, Gallotannins, and bound Proanthocyanidins from California almond (Prunus dulcis) varieties. J. Agric. Food Chem. 2012, 60, 12151–12156. [Google Scholar] [CrossRef]
- Quiñones, M.; Miguel, M.; Aleixandre, A. Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutr. Hosp. 2012, 27, 76–89. [Google Scholar] [CrossRef]
- Ferreira, D.; Nel, R.J.J.; Bekker, R. Condensed Tannins. Compr. Nat. Prod. Chem. 1999, 3, 747–797. [Google Scholar] [CrossRef]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Gebhardt, S.; Prior, R.L. Concentrations of Proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004, 134, 613–617. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Jamei, R. Properties of biological activity of ten wild almond (Prunus amygdalus L.) species. Turk. J. Biol. 2012, 36, 201–209. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Stonestreet, E. Dósage des tannins du vin rouges et determination du leur structure. Anal. Chem. 1966, 48, 188–196. [Google Scholar]
- Benzie, I.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolling, B.W.; Dolnikowski, G.; Blumberg, J.B.; Oliver, C.Y. Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chem. 2010, 122, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Barwick, V. (Ed.) Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An. Aid to Accreditation, 3rd ed.; LGC: Teddington, UK, 2016; ISBN 978-0-948926-32-7. Available online: www.eurachem.org (accessed on 15 March 2021).
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Núñez, M. Extraction of antioxidant phenolics from almond hulls (prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Rivera-Mondragón, A.; Broeckx, G.; Bijttebier, S.; Naessens, T.; Fransen, E.; Kiekens, F.; Caballero-George, C.; Vander Heyden, Y.; Apers, S.; Pieters, L.; et al. Ultrasound-assisted extraction optimization and validation of an HPLC-DAD method for the quantification of polyphenols in leaf extracts of cecropia species. Sci. Rep. 2019, 9, 2028. [Google Scholar] [CrossRef] [PubMed]
- Garrido, I.; Monagas, M.; Lebrón-Aguilar, R.; Bartolome, B.; Gómez-Cordovés, C. Almond (Prunus dulcis (Mill.) D.A. Webb) skins as a potential source of Bioactive polyphenols. J. Agric. Food Chem. 2007, 55, 8498–8507. [Google Scholar] [CrossRef]
- Milbury, P.E.; Chen, C.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef] [PubMed]
- Yusof, A.; Abd Gani, S.; Zaidan, U.; Halmi, M.; Zainudin, B. Optimization of an ultrasound-assisted extraction condition for flavonoid compounds from cocoa shells (Theobroma cacao) using response surface methodology. Molecules 2019, 24, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahlaoui, M.; Borotto Dalla Vecchia, S.; Giovine, F.; Ben Haj Kbaier, H.; Bouzouita, N.; Barbosa Pereira, L.; Zeppa, G. Characterization of Polyphenolic compounds extracted from different varieties of almond hulls (Prunus dulcis L.). Antioxidants 2019, 8, 647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pongmalai, P.; Devahastin, S.; Chiewchan, N.; Soponronnarit, S. Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pre-treatment. Sep. Purif. Technol. 2015, 144, 37–45. [Google Scholar] [CrossRef]
- Barreira, J.C.; Ferreira, I.C.; Oliveira, M.B.; Pereira, J.A. Effects of different phenols extraction conditions on antioxidant activity of almond (Prunus dulcis) fruits. J. Food Biochem. 2009, 33, 763–776. [Google Scholar] [CrossRef]
- Matić, P.; Sabljić, M.; Jakobek, L. Validation of Spectrophotometric methods for the determination of total Polyphenol and total flavonoid content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef]
- Dini, I.; Seccia, S.; Senatore, A.; Coppola, D.; Morelli, E. Development and validation of an analytical method for total polyphenols quantification in extra virgin olive oils. Food Anal. Methods 2019, 13, 457–464. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Elamrani, A.; Abid, M.; Drouet, S.; Kiani, R.; Garros, L.; Kabra, A.; Addi, M.; Hano, C. A quick green and simple ultrasound-assisted extraction for the valorization of antioxidant phenolic acids from Moroccan almond cold-pressed oil residues. Appl. Sci. 2020, 10, 3313. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.; Meyer, A.; Afonso, S.; Ribeiro, C.; Gonçalves, B. Morphological, mechanical and antioxidant properties of Portuguese almond cultivars. J. Food Sci. Technol. 2017, 55, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Summo, C.; Palasciano, M.; De Angelis, D.; Paradiso, V.M.; Caponio, F.; Pasqualone, A. Evaluation of the chemical and nutritional characteristics of almonds (Prunus dulcis (Mill). D.A.Webb) as influenced by harvest time and cultivar. J. Sci. Food. Agric. 2018, 98, 5647–5655. [Google Scholar] [CrossRef] [Green Version]
- Bolling, B.W. Almond polyphenols: Methods of analysis, contribution to food quality, and health promotion. Compr. Rev. Food Sci. Food Saf. 2017, 16, 346–368. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, H.; Seyfettin, H.; Tosun, M.; Ercisli, S.; Pinar, H. Antioxidant activity, total phenolic and flavonoid content of some local and cultivated almonds. Oxid. Commun. 2014, 37, 733–740. [Google Scholar]
- Tomás-Barberán, F. Los polifenoles de los alimentos y la salud. Alim. Nutr. Salud 2003, 10, 41–53. [Google Scholar]
- Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the degree of maturity of walnuts (Juglans regia L.) and their variety on the antioxidant potential and the content of tocopherols and polyphenols. Molecules 2019, 24, 2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis mill. D.A. Webb) skin and its industrial byproducts. Ind. Crop. Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Côrrea, A.P.; Michel, I.; Brandeli, A.; Tessaro, I.C.; Marczak, L.D. Evaluation of the phenolic content and antioxidant activity of different seed and nut cakes from the edible oil industry. J. Am. Oil Chem. Soc. 2014, 91, 1773–1782. [Google Scholar] [CrossRef]
- Wijeratne, S.S.; Abou-Zaid, M.M.; Shahidi, F. Antioxidant polyphenols in almond and its Coproducts. J. Agric. Food Chem. 2006, 54, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Barral-Martínez, M.; Fraga-Corral, M.; García-Pérez, P.; Simal-Gandara, J.; Prieto, M.A. (2021). Almond by-products: Valorization for sustainability and competitiveness of the industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Gültekin-Özgüven, M.; Davarcı, F.; Paslı, A.A.; Demir, N.; Özçelik, B. Determination of phenolic compounds by ultra high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT Food Sci. Technol. 2015, 64, 42–49. [Google Scholar] [CrossRef]
- Banjanin, T.; Nikolic, D.; Uslu, N.; Gökmen, F.; Özcan, M.M.; Milatovic, D.; Zec, G.; Boškov, Đ.; Dursun, N. Physicochemical properties, fatty acids, phenolic compounds, and mineral contents of 12 Serbia regional and commercial almond cultivars. J. Food Process. Preserv. 2020, 45, e15015. [Google Scholar] [CrossRef]
Autonomous Community | Production 2018 (Almond Kernel, t) | Forecast 2019 (Almond Kernel, t) | Variation 2018–2019 | Variation 2019 over Average 2014–2018 |
---|---|---|---|---|
Andalucia | 11,500 | 14,950 | +30.00% | +28.15% |
Aragon | 18,588 | 16,850 | −9.35% | +7.78% |
Baleares | 1250 | 1000 | −20.00% | −24.03% |
Castilla La Mancha | 11,666 | 7954 | −31.82% | +9.08% |
Cataluña | 4563 | 6533 | +43.17% | +60.76% |
La Rioja | 250 | 400 | +60.00% | −36.16% |
Murcia | 5520 | 5800 | +5.07% | +7.87% |
Extremadura | 2000 | 2460 | +6.00% | +146.00% |
Comunidad Valenciana | 6500 | 6890 | +23.00% | +22.55% |
Other | 190 | 200 | +5.26% | −5.70% |
Linear Equation | R2 | Coefficient Linearity (%) | LOD (μg/mL) | LOQ (μg/mL) | Repeatability (%RSD) | Reproducibility (%RSD) | |
---|---|---|---|---|---|---|---|
Total polyphenols | 0.0022x + 0.0036 | 0.9949 | 99 | 1.0 | 3.0 | 8.5 | 9.0 |
Total flavonoids | 0.0036x + 0.0018 | 0.9987 | 96 | 2.0 | 2.0 | 5.5 | 6.5 |
Total proanthocyanidins | 0.0058x + 0.0015 | 0.9965 | 93 | 1.0 | 1.0 | 6.8 | 7.3 |
FRAP assay | 0.0069x − 0.00036 | 0.9997 | 98 | 1.0 | 1.0 | 2.8 | 3.2 |
Added Concentration (μg/mL) | Recovery (%) | |
---|---|---|
Total polyphenols | 25 | 99 |
75 | 96 | |
100 | 104 | |
Total flavonoids | 8 | 88 |
15 | 113 | |
Total proanthocyanidins | 2 | 107 |
FRAP assay | 25 | 120 |
50 | 107 |
Linear Equation | R2 | Coefficient Linearity (%) | LOD (μg/mL) | LOQ (μg/mL) | Accuracy Injection (%RSD) | Repeatability (%RSD) | Reproducibility (%RSD) | |
---|---|---|---|---|---|---|---|---|
(+)-Catechin | 108.7x − 3.6 | 0.9937 | 99 | 0.01 | 0.02 | 4.0 | 6.4 | 9.3 |
(−)-Epicatechin | 107.1x − 4.0 | 0.9848 | 99 | 0.02 | 0.03 | 0.6 | 4.7 | 10.6 |
Isorhamnetin-3-O-glucoside | 159.4x + 0.59 | 0.9988 | 99 | 0.01 | 0.03 | 1.3 | 1.9 | 6.5 |
Kaempferol-3-O-glucoside | 219.4x − 3.3 | 0.9808 | 100 | 0.007 | 0.01 | 1.8 | 3.3 | 6.6 |
Isorhamnetin-3-O-rutinoside | 175.7x + 0.92 | 0.9961 | 99 | 0.01 | 0.02 | 0.3 | 2.0 | 10.9 |
Genotype | Polyphenols (mg GAE/100 g) | Flavonoids (mg CAT/100 g) | Proanthocyanidins (mg CYN/100 g) | FRAP Assay (µmol Fe2+/100 g) |
---|---|---|---|---|
G-2-22 | 245.2 ± 8.2 e | 105.7 ± 1.6 f | 103.4 ± 3.2 d | 4507.1 ± 153.9 e |
G-3-3 | 359.9 ± 8.2 c | 122.0 ± 2.3 cde | 163. 9 ± 1.7 c | 5405.3 ± 47.5 de |
G-3-4 | 422.7 ± 16.6 b | 149.5 ± 1.5 b | 236.1 ± 4.3 b | 8256.3 ± 135.7 bc |
G-5-25 | 438.6 ± 21.8 ab | 127.2 ± 3.4 cd | 216.1 ± 5.1 b | 7898.5 ± 337.8 c |
I-3-67 | 299.1 ± 8.7 de | 133.3 ± 2.0 c | 157.1 ± 6.7 c | 5817.5 ± 79.4 d |
BELONA | 424.9 ± 10.2 b | 156.0 ± 2.2 ab | 281.3 ± 11.1 a | 9077.5 ± 320.1 ab |
MARDIA | 307.9 ± 12.9 cd | 113.3 ± 2.0 ef | 154.8 ± 3.9 c | 5406.2 ± 100.4 de |
GUARA | 486.8 ± 4.7 a | 151.7 ± 2.2 b | 240.3 ± 9.4 b | 9137.3 ± 77.6 ab |
SOLETA | 324.7 ± 6.4 cd | 112.3 ± 4.9 ef | 153.9 ± 1.3 c | 5791.9 ± 187.5 d |
VAIRO | 317.9 ± 2.4 cd | 118.3 ± 2.2 def | 169.1 ± 0.8 c | 5959.9 ± 82.7 d |
VIALFAS | 476.4 ± 19.9 ab | 168.1 ± 3.3 a | 286.6 ± 8.0 a | 9785.4 ± 178.1 a |
Genotype | (+)-Catechin | (−)-Epicatechin | Isorhamentin-3-O-glucoside | Kaempferol- 3-O-rutinoside | Isorhamentin-3-O-rutinoside | Sum Flavan-3-ols | Sum Flavanols |
---|---|---|---|---|---|---|---|
G-2-22 | 10.79 ± 1.57 ab | 5.50 ± 0.34 c | 2.74 ± 0.21 bc | 0.11 ± 0.10 c | 8.35 ± 0.37 a | 16.29 | 11.21 |
G-3-3 | 9.69 ± 0.79 ab | 5.52 ± 0.30 c | 0.54 ± 0.05 f | <LOQ | 2.01 ± 0.04 d | 15.21 | 2.55 |
G-3-4 | 12.82 ± 0.70 ab | 9.34 ± 0.68 abc | 1.64 ± 0.09 de | 0.31 ± 0.04 bc | 5.20 ± 1.25 bc | 22.16 | 7.15 |
G-5-25 | 8.72 ± 0.32 ab | 6.24 ± 0.17 c | 0.87 ± 0.04 ef | 0.53 ± 0.07 b | 3.29 ± 0.17 cd | 14.96 | 4.69 |
I-3-67 | 11.57 ± 1.94 ab | 11.92 ± 2.02 ab | 3.87 ± 0.22 a | <LOQ | 7.11 ± 0.28 ab | 23.49 | 10.98 |
BELONA | 12.80 ± 0.54 ab | 13.81 ± 1.04 a | 2.67 ± 0.14 bc | 0.96 ± 0.05 a | 5.46 ± 0.55 bc | 26.62 | 9.10 |
MARDIA | 8.89 ± 1.59 ab | 5.25 ± 0.51 c | 2.29 ± 0.14 cd | 0.11 ± 0.09 c | 4.14 ± 0.26 cd | 14.14 | 6.54 |
GUARA | 16.58 ± 3.22 a | 13.35 ± 1.67 a | 3.51 ± 0.03 ab | <LOQ | 6.80 ± 0.28 ab | 29.93 | 10.32 |
SOLETA | 8.46 ± 1.00 b | 7.10 ± 0.63 bc | 1.26 ± 0.09 ef | 0.40 ± 0.09 b | 3.42 ± 0.11 cd | 15.56 | 5.08 |
VAIRO | 8.21 ± 1.39 b | 6.12 ± 0.92 c | 1.67 ± 0.36 de | <LOQ | 4.29 ± 0.88 cd | 14.33 | 5.96 |
VIALFAS | 9.31 ± 1.50 ab | 6.35 ± 0.80 c | 0.67 ± 0.07 f | <LOQ | 3.53 ± 0.27 cd | 15.66 | 4.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno Gracia, B.; Laya Reig, D.; Rubio-Cabetas, M.J.; Sanz García, M.Á. Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds. Foods 2021, 10, 2334. https://doi.org/10.3390/foods10102334
Moreno Gracia B, Laya Reig D, Rubio-Cabetas MJ, Sanz García MÁ. Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds. Foods. 2021; 10(10):2334. https://doi.org/10.3390/foods10102334
Chicago/Turabian StyleMoreno Gracia, Blanca, Diego Laya Reig, María José Rubio-Cabetas, and María Ángeles Sanz García. 2021. "Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds" Foods 10, no. 10: 2334. https://doi.org/10.3390/foods10102334
APA StyleMoreno Gracia, B., Laya Reig, D., Rubio-Cabetas, M. J., & Sanz García, M. Á. (2021). Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds. Foods, 10(10), 2334. https://doi.org/10.3390/foods10102334