Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Treatment
2.2. MAIH Processing
2.3. Appearance, Shucking Ratio, and Area Shrinkage Measurements
2.4. Microbiological Analyses
2.5. Color Analysis
2.6. Texture Determination
2.7. Analysis of Total Volatile Basic Nitrogen (TVBN) and pH Value
2.8. Statistical Analysis
3. Results and Discussion
3.1. Appearance, Shucking Ratio, and Area Shrinkage of Hard Clam
3.2. Microbial Count Determination of Hard Clam
3.3. Color of Hard Clam
3.4. Texture of Hard Clam
3.5. TVBN and pH Values of Hard Clam
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Q.; Sun, D.W.; Cheng, J.H.; Han, Z. Microwave processing techniques and their recent applications in the food industry. Trends Food Sci. Technol. 2017, 67, 236–247. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Verma, D.K.; Mahanti, N.K.; Thakur, M.; Chakraborty, S.K.; Srivastav, P.P. Microwave heating: Alternative thermal process technology for food application. In Emerging Thermal and Nonthermal Technologies in Food Processing; Srivastav, P.P., Verma, D.K., Patel, A.R., Al-Hilphy, A.R., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 25–67. [Google Scholar]
- Tang, Z.; Mikhaylenko, G.; Liu, F.; Mah, J.H.; Pandit, R.; Younce, F.; Tang, J. Microwave sterilization of sliced beef in gravy in 7-oz trays. J. Food Eng. 2008, 89, 375–383. [Google Scholar] [CrossRef]
- Vadivambal, R.; Jayas, D.S. Non-uniform temperature distribution during microwave heating of food materials-A review. Food Bioprocess Technol. 2010, 3, 61–71. [Google Scholar] [CrossRef]
- Hamoud-Agha, M.M.; Curet, S.; Simonin, H.; Boillereaux, L. Holding time effect on microwave inactivation of Escherichia coli K12: Experimental and numerical investigations. J. Food Eng. 2014, 143, 102–113. [Google Scholar] [CrossRef]
- Chizoba Ekezie, F.G.; Sun, D.W.; Han, Z.; Cheng, J.H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends Food Sci. Technol. 2017, 67, 58–69. [Google Scholar] [CrossRef]
- Tang, J. Unlocking potentials of microwaves for food safety and quality. J. Food Sci. 2015, 80, E1776–E1793. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Cánovas, G.V.; Medina-Meza, I.; Candoğan, K.; Bermúdez-Aguirre, D. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci. 2014, 98, 420–434. [Google Scholar] [CrossRef]
- Chang, H.I.; Chin, K.T.; Yu, Y.C.; Hsieh, J.K.; Lin, C.H. Cavity Detachable Modular Composite Microwave Heating System. Taiwan Patent I614457, 2 November 2018. [Google Scholar]
- Lee, Y.C.; Lin, C.Y.; Wei, C.I.; Tung, H.N.; Chiu, K.; Tsai, Y.H. Preliminary evaluation of a novel microwave-assisted induction heating (MAIH) system on white shrimp cooking. Foods 2021, 10, 545. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Hwang, C.C.; Lin, C.S.; Lin, C.Y.; Ou, T.Y.; Chang, T.H.; Lee, Y.C. Comparison of microwave-assisted induction heating system (MAIH) and individual heating methods on the quality of pre-packaged white shrimp. Innov. Food Sci. Emerg. Technol. 2021, 73, 102787. [Google Scholar] [CrossRef]
- Karnjanapratum, S.; Benjakul, S.; Kishimura, H.; Tsai, Y.H. Chemical compositions and nutritional value of Asian hard clam (Meretrix lusoria) from the coast of Andaman Sea. Food Chem. 2013, 141, 4138–4145. [Google Scholar] [CrossRef]
- Pan, M.H.; Huang, Y.T.; Chang, C.I.; Ho, C.T.; Pan, B.S. Apoptotic-inducing epidioxysterols identified in hard clam (Meretrix lusoria). Food Chem. 2007, 102, 788–795. [Google Scholar] [CrossRef]
- Tsai, J.S.; Chen, J.K.; Pan, B.S. ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria). Process Biochem. 2008, 43, 743–747. [Google Scholar] [CrossRef]
- Ovissipour, M.; Rasco, B.; Tang, J.; Sablani, S.S. Kinetics of quality changes in whole blue mussel (Mytilus edulis) during pasteurization. Food Res. Int. 2013, 53, 141–148. [Google Scholar] [CrossRef]
- Sae-leaw, T.; Benjakul, S.; Vongkamjam, K. Retardation of melanosis and quality loss of pre-cooked Pacific white shrimp using epigallocatechin gallate with the aid of ultrasound. Food Control 2018, 84, 75–82. [Google Scholar] [CrossRef]
- Cousin, M.A.; Jay, J.M.; Vasavada, P.C. Psychrotrophic microorganism. In Compendium of Methods for the Microbiological Examination of Foods; Vanderzand, C., Splittstoesser, D.F., Eds.; American Public Health Association: Washington, DC, USA, 1992; pp. 153–168. [Google Scholar]
- Cobb, B.F.; Alaniz, I.; Thompson, C.A. Biochemical and microbial studies on shrimp: Volatile nitrogen and amino nitrogen analysis. J. Food Sci. 1973, 38, 431–435. [Google Scholar] [CrossRef]
- He, H.; Adams, R.M.; Farkas, D.F.; Morrissey, M.T. Use of high-pressure processing for oyster shucking and shelf-life extension. J. Food Sci. 2002, 67, 640–645. [Google Scholar] [CrossRef]
- Bindu, J.; Ravishankar, C.N.; Srinivasa Gopal, T.K. Shelf life evaluation of a ready-to-eat black clam (Villorita cyprinoides) product in indigenous retort pouches. J. Food Eng. 2007, 78, 995–1000. [Google Scholar] [CrossRef]
- Kong, F.; Tang, J.; Rasco, B.; Crapo, C. Kinetics of salmon quality changes during thermal processing. J. Food Eng. 2007, 83, 510–520. [Google Scholar] [CrossRef]
- Gill, T.A. Objective analysis of seafood quality. Food Rev. Int. 1990, 6, 681–714. [Google Scholar] [CrossRef]
- Chouhan, A.; Kaur, B.P.; Rao, P.S. Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 151–160. [Google Scholar] [CrossRef]
- Hamm, R.; Deatherage, F. Changes in hydration, solubility and charges of muscle proteins during heating of meat. J. Food Sci. 1960, 25, 587–610. [Google Scholar] [CrossRef]
Temperature | First Stage Heating (s) | Second Stage Heating (s) | Total Heating Time (s) |
---|---|---|---|
MW + IH | IH | ||
130 °C | 50 | 30 | 80 |
60 | 30 | 90 | |
70 | 30 | 100 | |
80 | 30 | 110 | |
90 | 30 | 120 | |
90 °C | 60 | 30 | 90 |
80 | 30 | 110 | |
100 | 30 | 130 | |
120 | 30 | 150 | |
140 | 30 | 170 |
Temperatures | Heating Time (s) | APC (Log CFU/g) | PBC (Log CFU/g) | HBC (Log CFU/g) | Coliform (Log CFU/g) | E. coli (Log CFU/g) |
---|---|---|---|---|---|---|
Raw | 5.40 ± 0.06 a | 5.13 ± 0.04 a | 3.95 ± 0.40 | 2.72 ± 0.17 | <1.0 | |
130 °C | 80 | 3.70 ± 0.40 b | 3.97 ± 0.04 b | <2.0 | <1.0 | <1.0 |
90 | 3.78 ± 0.08 bc | 3.63 ± 0.13 c | <2.0 | <1.0 | <1.0 | |
100 | 3.47 ± 0.06 bc | 3.11 ± 0.01 d | <2.0 | <1.0 | <1.0 | |
110 | <2.0 d | <2.0 f | <2.0 | <1.0 | <1.0 | |
120 | <2.0 d | <2.0 f | <2.0 | <1.0 | <1.0 | |
90 °C | 90 | 3.40 ± 0.01 c | 3.14 ± 0.04 d | <2.0 | <1.0 | <1.0 |
110 | 3.36 ± 0.08 c | 2.86 ± 0.06 e | <2.0 | <1.0 | <1.0 | |
130 | <2.0 d | <2.0 f | <2.0 | <1.0 | <1.0 | |
150 | <2.0 d | <2.0 f | <2.0 | <1.0 | <1.0 | |
170 | <2.0 d | <2.0 f | <2.0 | <1.0 | <1.0 |
Treatments | Heating Time (s) | L* | a* | b* | W |
---|---|---|---|---|---|
Raw | 58.08 ± 1.10 *d | 4.27 ± 0.04 a | 9.97 ± 0.21 f | 56.70 ± 1.10 e | |
130 °C | 80 | 60.77 ± 0.70 c | 3.95 ± 0.06 b | 13.16 ± 0.12 d | 58.44 ± 0.20 d |
90 | 64.89 ± 0.80 a | 2.25 ± 0.11 e | 13.39 ± 0.22 d | 62.36 ± 0.40 a | |
100 | 63.05 ± 0.70 ab | 2.15 ± 0.20 ef | 13.55 ± 0.32 d | 59.73 ± 0.20 c | |
110 | 62.95 ± 0.51 b | 2.28 ± 0.11 e | 15.84 ± 0.15 b | 58.76 ± 0.14 d | |
120 | 61.11 ± 0.42 c | 3.16 ± 0.30 cd | 17.57 ± 0.28 a | 58.88 ± 0.30 d | |
90 °C | 90 | 61.60 ± 0.20 c | 2.19 ± 0.06 e | 12.91 ± 0.12 de | 59.43 ± 0.18 c |
110 | 64.83 ± 0.31 a | 1.94 ± 0.22 f | 12.63 ± 0.32 e | 62.58 ± 0.80 a | |
130 | 63.69 ± 0.29 ab | 2.73 ± 0.12 d | 15.12 ± 0.11 c | 60.58 ± 0.20 b | |
150 | 62.69 ± 0.25 b | 2.63 ± 0.44 d | 15.29 ± 0.24 c | 59.59 ± 0.12 c | |
170 | 58.14 ± 0.30 d | 3.37 ± 0.09 c | 17.02 ± 0.25 a | 54.69 ± 0.22 f |
Temperatures | Heating Time (s) | Hardness (g) | Cohesiveness | Springiness (mm) | Chewiness (mJ) |
---|---|---|---|---|---|
Raw | 31.50 ± 6.53 d | 0.28 ± 0.09 c | 6.68± 1.17 a | 0.88 ± 0.15 d | |
130 °C | 80 | 39.80 ± 5.30 c | 0.65 ± 0.09 b | 6.09 ± 0.87 a | 1.46 ± 0.44 bc |
90 | 40.50 ± 2.96 c | 0.66 ± 0.06 b | 6.90 ± 0.46 a | 1.59 ± 0.61 bc | |
100 | 44.50 ± 6.23 c | 0.85 ± 0.10 a | 6.14 ± 1.35 a | 1.73 ± 0.39 bc | |
110 | 56.50 ± 5.33 bc | 0.81 ± 0.08 ab | 6.35 ± 0.53 a | 1.94 ± 0.58 b | |
120 | 61.75 ± 5.39 b | 0.79 ± 0.07 ab | 6.48 ± 1.03 a | 2.89 ± 0.39 a | |
90 °C | 90 | 51.50 ± 5.12 bc | 0.65 ± 0.08 b | 6.46 ± 0.55 a | 2.01 ± 0.67 b |
110 | 51.33 ± 6.71 bc | 0.72 ± 0.07 ab | 6.19 ± 0.92 a | 2.37 ± 0.44 ab | |
130 | 53.33 ± 4.93 bc | 0.73 ± 0.06 ab | 6.06 ± 0.70 a | 2.23 ± 0.13 ab | |
150 | 60.33 ± 7.53 b | 0.79 ± 0.03 ab | 6.14 ± 0.15 a | 2.61 ± 0.57 ab | |
170 | 70.25 ± 8.84 a | 0.72± 0.05 ab | 6.28 ± 0.56 a | 2.98 ± 0.47 a |
Temperatures | Heating Time (s) | pH | TVBN (mg/100 g) |
---|---|---|---|
Raw | 7.10 ± 0.01 c | 9.24 ± 0.48 *a | |
130 °C | 80 | 7.52 ± 0.05 a | 4.20 ± 1.96 b |
90 | 7.49 ± 0.02 a | 4.95 ± 0.70 b | |
100 | 7.54 ± 0.04 a | 3.73 ± 1.71 b | |
110 | 7.44 ± 0.07 a | 3.27 ± 0.86 b | |
120 | 7.48 ± 0.03 a | 3.83 ± 0.16 b | |
90 °C | 90 | 7.33 ± 0.04 b | 4.11 ± 1.80 b |
110 | 7.16 ± 0.08 b | 4.85 ± 3.08 b | |
130 | 7.21 ± 0.06 b | 3.83 ± 0.32 b | |
150 | 7.22 ± 0.02 b | 3.73 ± 0.86 b | |
170 | 7.28 ± 0.02 b | 2.71 ± 0.43 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-C.; Lin, C.-S.; Zeng, W.-H.; Hwang, C.-C.; Chiu, K.; Ou, T.-Y.; Chang, T.-H.; Tsai, Y.-H. Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria). Foods 2021, 10, 2299. https://doi.org/10.3390/foods10102299
Lee Y-C, Lin C-S, Zeng W-H, Hwang C-C, Chiu K, Ou T-Y, Chang T-H, Tsai Y-H. Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria). Foods. 2021; 10(10):2299. https://doi.org/10.3390/foods10102299
Chicago/Turabian StyleLee, Yi-Chen, Chung-Saint Lin, Wei-Han Zeng, Chiu-Chu Hwang, Kuohsun Chiu, Tsung-Yin Ou, Tien-Hsiang Chang, and Yung-Hsiang Tsai. 2021. "Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria)" Foods 10, no. 10: 2299. https://doi.org/10.3390/foods10102299
APA StyleLee, Y.-C., Lin, C.-S., Zeng, W.-H., Hwang, C.-C., Chiu, K., Ou, T.-Y., Chang, T.-H., & Tsai, Y.-H. (2021). Effect of a Novel Microwave-Assisted Induction Heating (MAIH) Technology on the Quality of Prepackaged Asian Hard Clam (Meretrix lusoria). Foods, 10(10), 2299. https://doi.org/10.3390/foods10102299