Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mezcals
2.2. Wines
2.3. 1H-NMR Acquisition
- (a)
- Standard direct-excitation one-dimensional proton nuclear magnetic resonance spectra needed to prepare water-to-ethanol off-resonance multipresaturations [37,38,39] were carried out by recording a total of 64 transients, which were collected in 28,844 complex data, with a spectral width of 20 ppm (12,019 Hz), an optimized recovery delay of 6 s and acquisition times of 1.2 s, produced experimental times of 6 min per spectrum. No apodization function was applied during the Fourier Transform.
- (b)
- 1Hwater_presat NMR: 1D single pulse NOESY experiments with an off-resonance shaped-pulse water presaturation during both relaxation delay (10 s) and mixing times (100 milliseconds) and 8.19 × 10−4 W (vide infra) and 1.18 × 10−3 W power level irradiations, respectively, for wine and mezcal samples, were acquired for all samples at the following conditions: a total of 128 transients were collected within 28K complex data points, with a spectral width of 12,019 Hz and acquisition times of 1.2 s, producing experimental times of 16 min.
2.4. 1H-NMR Post-Processing and Multivariate Statistical Analysis (MSA)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and Nontargeted Wine Analysis by 1H NMR Spectroscopy Combined with Multivariate Statistical Analysis. Differentiation of Important Parameters: Grape Variety, Geographical Origin, Year of Vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef] [PubMed]
- Sárvári, I.; Franzén, C.; Taherzadeh, M.; Niklasson, C.; Lidén, G. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats. Appl. Environ. Microbiol. 2003, 69, 4076–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour. Technol. 2000, 74, 25–33. [Google Scholar] [CrossRef]
- Deborde, C.; Moing, A.; Roch, L.; Jacob, D.; Rolin, D.; Giraudeau, P. Plant metabolism as studied by NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102–103, 61–97. [Google Scholar] [CrossRef] [PubMed]
- Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res. Int. 2014, 60, 189–204. [Google Scholar] [CrossRef]
- Hatzakis, E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schievano, E.; Sbrizza, M.; Zuccato, V.; Piana, L.; Tessari, M. NMR carbohydrate profile in tracing acacia honey authenticity. Food Chem. 2020, 309, 125788. [Google Scholar] [CrossRef]
- Le Gall, G.; Puaud, M.; Colquhoun, I.J. Discrimination between orange juice and pulp wash by 1H nuclear magnetic resonance spectroscopy: Identification of marker compounds. J. Agric. Food Chem. 2001, 49, 580–588. [Google Scholar] [CrossRef]
- Gil, A.M.; Duarte, I.F.; Delgadillo, I.; Colquhoun, I.J.; Casuscelli, F.; Humpfer, E.; Spraul, M. Study of the Compositional Changes of Mango during Ripening by Use of Nuclear Magnetic Resonance Spectroscopy. J. Agric. Food Chem. 2000, 48, 1524–1536. [Google Scholar] [CrossRef]
- Papotti, G.; Bertelli, D.; Graziosi, R.; Maietti, A.; Tedeschi, P.; Marchetti, A.; Plessi, M. Traditional balsamic vinegar and balsamic vinegar of Modena analyzed by nuclear magnetic resonance spectroscopy coupled with multivariate data analysis. LWT Food Sci. Technol. 2015, 60, 1017–1024. [Google Scholar] [CrossRef]
- Shintu, L.; Caldarelli, S. Toward the Determination of the Geographical Origin of Emmental(er) Cheese via High Resolution MAS NMR: A Preliminary Investigation. J. Agric. Food Chem. 2006, 54, 4148–4154. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Cicero, N.; Mallamace, D.; Vasi, S.; Naccari, C.; Salvo, A.; Giofrè, S.V.; Dugo, G. HR-MAS and NMR towards foodomics. Food Res. Int. 2016, 89, 1085–1094. [Google Scholar] [CrossRef]
- Monakhova, Y.; Godelmann, R.; Kuballa, T.; Mushtakova, S.; Rutledge, D. Independent components analysis to increase efficiency of discriminant analysis methods (FDA and LDA): Application to NMR fingerprinting of wine. Talanta 2015, 141, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, P.; Spaccini, R.; Francesca, N.; Moschetti, G.; Piccolo, A. Metabolomic by 1H NMR spectrosocopy differentiates “Fiano di Avellino” white wines obtained with different yeast strains. J. Agric. Food Chem. 2013, 61, 10816–10822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougeon, L.; Da Costa, G.; Le Mao, I.; Ma, W.; Teissedre, P.; Guyon, F.; Richard, T. Wine Analysis and Authenticity Using 1H-NMR Metabolomics Data: Application to Chinese Wines. Food Anal. Methods 2018, 11, 3425–3434. [Google Scholar] [CrossRef]
- Hu, B.; Gao, J.; Xu, S.; Zhu, J.; Fan, X.; Zhou, X. Quality evaluation of different varieties of dry red wine based on nuclear magnetic resonance metabolomics. Appl. Biol. Chem. 2020, 63, 1–8. [Google Scholar] [CrossRef]
- Hu, B.; Cao, Y.; Zhu, J.; Xu, W.; Wu, W. Analysis of metabolites in chardonnay dry white wine with various inactive yeasts by 1 H NMR spectroscopy combined with pattern recognition analysis. AMB Express 2019, 9, 140. [Google Scholar] [CrossRef] [Green Version]
- Del Fresno, J.M.; Escott, C.; Loira, I.; Herbert-Pucheta, J.E.; Schneider, R.; Carrau, F.; Cuerda, R.; Morata, A. Impact of Hanseniaspora Vineae in Alcoholic Fermentation and Ageing on Lees of High-Quality White Wine. Fermentation 2020, 6, 66. [Google Scholar] [CrossRef]
- Duarte, I.; Barros, A.; Belton, P.S.; Righelato, R.; Spraul, M.; Humpfer, E.; Gil, A.M. High-Resolution Nuclear Magnetic Resonance Spectroscopy and Multivariate Analysis for the Characterization of Beer. J. Agric. Food Chem. 2002, 50, 2475–2481. [Google Scholar] [CrossRef]
- Rodrigues, J.E.; Gil, A.M. NMR methods for beer characterization and quality control. Magn. Reson. Chem. 2011, 49, S37–45. [Google Scholar] [CrossRef]
- Kew, W.; Goodall, I.; Uhrín, D. Analysis of Scotch Whisky by 1H NMR and chemometrics yields insight into its complex chemistry. Food Chem. 2019, 298, 125052. [Google Scholar] [CrossRef] [PubMed]
- Kew, W.; Bell, N.G.A.; Goodall, I.; Uhrín, D. Advanced solvent signal suppression for the acquisition of 1D and 2D NMR spectra of Scotch Whisky. Magn. Reson. Chem. 2017, 55, 785–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escalante-Minakata, P.; Barba de la Rosa, A.P.; Santos, L.; De León-Rodríguez, A. Aspectos Químicos y moleculares del Proceso de Producción del Mezcal. BioTecnología 2012, 16, 57–70. [Google Scholar]
- Kirchmayr, M.R.; Segura-García, L.E.; Lappe-Oliveras, P.; Moreno-Terrazas, R.; De la Rosa, M.; Gschaedler-Mathis, A. Impact of environmental conditions and process modifications on microbial diversity, fermentation efficiency and chemical profile during the fermentation of mezcal in Oaxaca. LWT Food Sci. Technol. 2017, 79, 160–169. [Google Scholar] [CrossRef]
- Villanueva-Rodriguez, S. Tequila and mezcal: Sensory attributes and sensory evaluation. Alcohol. Beverages Sens. Evaluation. Consum. Res. 2012, 359–378. [Google Scholar] [CrossRef]
- Nolasco-Cancino, H.; Santiago-Urbina, J.A.; Wacher, C.; Ruíz-Terán, F. Predominant Yeasts During Artisanal Mezcal Fermentation and Their Capacity to Ferment Maguey Juice. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- NOM-070-SCFI-2016. Bebidas Alcohólicas-Mezcal-Especificaciones. Norma Oficial Mexicana, Diario Oficial de la Federación. (Mexican Official Norm). Available online: https://dof.gob.mx/nota_detalle.php?codigo=5472787&fecha=23/02/2017 (accessed on 7 December 2020).
- Chavez-Parga, M.D.C.; Pérez Hernández, E.; González Hernández, J.C. Revisión del agave y el mezcal. Rev. Colomb. Biotecnol. 2016, 18, 148–164. [Google Scholar] [CrossRef]
- Agave Landscape and Ancient Industrial Facilities of Tequila. Available online: https://whc.unesco.org/en/list/1209/ (accessed on 7 December 2020).
- NMX-V-013-NORMEX-2019. Bebidas Alcohólicas-Determinación del Contenido Alcohólico (Por Ciento de Alcohol en Volumen a 20 °C) (%Alc. Vol.)-Métodos de Ensayo (Prueba). Normas Mexicanas. Dirección General de Normas (Mexican Official Norm). Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5594809&fecha=11/06/2020 (accessed on 8 December 2020).
- NMX-V-014-1986. Bebidas Alcohólicas Destiladas Determinación de Alcoholes Superiores (aceite de fusel). Normas Mexicanas. Dirección General de Normas. (Mexican Official Norm). Available online: https://www.colpos.mx/bancodenormas/nmexicanas/NMX-V-014-1986.PDF (accessed on 8 December 2020).
- NMX-V-021-1986. Bebidas Alcohólicas Destiladas. Determinación de Metanol. Normas Mexicanas. Dirección General de Normas. (Mexican Official Norm). Available online: https://www.colpos.mx/bancodenormas/nmexicanas/NMX-V-021-1986.PDF (accessed on 8 December 2020).
- NMX-V-017-S-2014. Bebidas Alcohólicas. Determinación De Extracto Seco y Cenizas. Normas Mexicanas. Dirección General de Normas. (Mexican Official Norm). Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5594808&fecha=11/06/2020 (accessed on 8 December 2020).
- NOM-006-SCFI-2012. Norma Oficial Mexicana NOM-006-SCFI-2005, Bebidas alcohólicas-Tequila-Especificaciones Normas Mexicanas. Dirección General de Normas. (Mexican Official Norm). Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5282165&fecha=13/12/2012 (accessed on 8 December 2020).
- NMX-V-012-NORMEX-2005; NMX-V-012-1986. Bebidas alcohólicas. Vinos. Especificaciones. Alcoholic Beverages. Wines. Specifications. Normas Mexicanas. Dirección General de Normas. (Mexican Official Norm). Available online: https://www.colpos.mx/bancodenormas/nmexicanas/NMX-V-012-1986.PDF (accessed on 8 December 2020).
- International Oenological CODEX, World Organization of Vine and Wine. Available online: http://www.oiv.int/public/medias/6550/codex-2019-en.pdf (accessed on 8 December 2020).
- Herbert-Pucheta, J.E.; Padilla-Maya, G.; Milmo-Brittingham, D.; Lojero, D.; Gilmore, A.D.; Raventós-Llopart, L.; Hernández-Pulido, K.E.; Zepeda-Vallejo, L.G. Multivariate spectroscopy for targeting phenolic choreography in wine with A-TEEMTM and NMR crosscheck non-targeted metabolomics. EDP Sci. BIO Web Conf. 2019, 15, 02006. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Leyva, S.; Vallejo-Castillo, L.; López-Morales, C.A.; Herbert-Pucheta, J.E.; Zepeda-Vallejo, L.G.; Velasco-Velázquez, M.; Pavón, L.; Pérez-Tapia, S.M.; Medina-Rivero, E. Identity profiling of complex mixtures of peptide products by structural and mass mobility orthogonal analysis. Anal. Chem. 2019, 91, 14392–14400. [Google Scholar] [CrossRef]
- López-Morales, C.A.; Vázquez-Leyva, S.; Vallejo-Castillo, L.; Carballo-Uicab, G.; Muñoz-García, L.; Herbert-Pucheta, J.E.; Zepeda-Vallejo, L.G.; Velasco-Velázquez, M.; Pavón, L.; Pérez-Tapia, S.M.; et al. Determination of Peptide Profile Consistency and Safety of Collagen Hydrolysates as Quality Attributes. J. Food Sci. 2019, 84, 430–439. [Google Scholar] [CrossRef]
- Jacob, D.; Deborde, C.; Lefevbre, M.; Maucourt, M.; Moing, A. NMRProcFlow: A graphical and interactive tool dedicated to 1D spectra processing for NMR-based metabolomics. Metabolomics 2017, 13, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.; De Iorio, M.; Brown, I.J.; Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008, 453, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Qing-Song, X.; Yi-Zeng, L. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- De Meyer, T.; Sinnaeve, D.; Van Gasse, B.; Tsiporkova, E.; Rietzschel, E.; De Buyzere, M.; Gillebert, T.; Bekaert, S.; Martins, J.C.; Van Criekinge, W. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Anal. Chem. 2008, 80, 3783–3790. [Google Scholar] [CrossRef] [PubMed]
- Bloemberg, T.; Gerretzen, J.; Wouters, H.; Gloerich, J.; Dael, M.V.; Wessels, H.; Heuvel, L.; Eilers, P.; Buydens, L.; Wehrens, R. Improved parametric time warping for proteomics. Chemom. Intell. Lab. Syst. 2010, 104, 65–74. [Google Scholar] [CrossRef]
- O’Leary, M. Carbon isotope fractionation in plants. Phytochemistry 1981, 20, 553–567. [Google Scholar] [CrossRef]
- Thomas, F.; Randet, C.; Gilbert, A.; Silvestre, V.; Jamin, E.; Akoka, S.; Remaud, G.; Segebarth, N.; Guillou, C. Improved Characterization of the Botanical Origin of Sugar by Carbon-13 SNIF-NMR Applied to Ethanol. J. Agric. Food Chem. 2010, 58, 11580–11585. [Google Scholar] [CrossRef]
- Torres-García, I.; Rendón-Sandoval, F.J.; Blancas, J.; Casas, A.; Moreno-Calles, A.I. The genus Agave in agroforestry systems of Mexico. Bol. Soc. Bot. Mex. 2019, 97, 263–290. [Google Scholar]
- De los Rios-Deras, G.C.; Rutiaga-Quiñones, O.M.; López-Miranda, J.; Páez-Páez-Lerma, J.B.; López, M.; Soto-Cruz, N.O. Improving Agave duranguensis must for enhanced fermentation. C/N ratio effects on mezcal composition and sensory properties. Rev. Mex. Ing. Química. 2015, 14, 363–371. [Google Scholar]
- Plant metabolomics Repository of Bordeaux (MeRy-B). Available online: https://services.cbib.u-bordeaux.fr/MERYB/query/raw_data_query.php?&taxo_id=29760 (accessed on 30 December 2020).
Mezcal Sampling | Agave Species | County | Region | Process |
---|---|---|---|---|
1 | Agave potatorum | TM | Oaxaca | Artisanal |
2 | Agave angustifolia Haw | TM | Oaxaca | Artisanal |
3 | Agave angustifolia Haw | SJT | Oaxaca | Artisanal |
4 | Agave angustifolia Haw | TV | Oaxaca | Artisanal |
5 | Agave potatorum | TV | Oaxaca | Artisanal |
6 | Agave angustifolia Haw | VSV | Oaxaca | Ancestral |
7 | Agave potatorum | VSV | Oaxaca | Ancestral |
8 | Agave angustifolia Haw | VSV | Oaxaca | Ancestral |
9 | Agave potatorum | VSV | Oaxaca | Ancestral |
10 | Agave potatorum | VSV | Oaxaca | Ancestral |
11 | Agave angustifolia Haw | VSV | Oaxaca | Ancestral |
12 | Agave angustifolia Haw | VSV | Oaxaca | Ancestral |
13 | Agave cupreata | SFS | Oaxaca | Ancestral |
14 | Blend No. 1 | SFS | Oaxaca | Ancestral |
15 | Agave angustifolia Haw | VSV | Oaxaca | Ancestral |
16 | Agave potatorum | VSV | Oaxaca | Ancestral |
17 | Blend No. 2 | VSV | Oaxaca | Ancestral |
18 | Agave angustifolia Haw | ZA | Oaxaca | Artisanal |
19 | Agave angustifolia Haw | ZA | Oaxaca | Artisanal |
20 | Agave potatorum | SAA | Oaxaca | Artisanal |
21 | Agave potatorum | SBC | Oaxaca | Artisanal |
22 | Agave angustifolia Haw | SM | Oaxaca | Artisanal |
23 | Agave potatorum | CA | Puebla | Artisanal |
24 | Agave angustifolia Haw | AT | Puebla | Artisanal |
25 | Agave salmiana ssp. crassispina | AH | San Luis Potosí | Artisanal |
26 | Agave salmiana ssp. crassispina | MC | San Luis Potosí | Artisanal |
Wine Sampling | Variety | County | Region | Ageing Process (Year of Vintage) |
---|---|---|---|---|
1 | Cabernet Sauvignon | P | Coahuila | Demptos American barrel (2018) |
2 | Cabernet Sauvignon | VG | Baja California | Boutes French barrel (2018) |
3 | Merlot | EM | Querétaro | T. d’Aquitaine French barrel (2017) |
4 | Merlot | EM | Querétaro | Demptos American barrel (2018) |
5 | Merlot | EM | Querétaro | Boutes French barrel (2018) |
6 | Merlot | EM | Querétaro | T. d’Aquitaine French barrel (2018) |
7 | Merlot | EM | Querétaro | Fermentation tank (2018) |
Molecular Reduced Formula (Assigned 1H in Red) | (δ, ppm), J (Hz), Multiplicity |
Caftaric acid | δ = 7.70 ppm, J = 15.02 Hz, doublet |
Shikimic acid | δ = 6.64 ppm, J = 8.1 Hz, doublet |
Fumaric acid | δ = 6.49 ppm, J = 15.1 Hz, doublet |
Sorbic acid | δ = 5.98 ppm, multiplet |
β-glucose | δ = 5.77 ppm, J = 7.55 Hz, doublet |
Fructose | δ = 4.00 ppm, multiplet |
Citric acid | δ = 2.60 ppm, singlet |
Molecular Reduced Formula (Assigned 1H in Red) | (δ, ppm), J (Hz), Multiplicity |
Acetoine | δ = 2.18 ppm, singlet |
γ-amino butyric acid (GABA) | δ = 2.40 ppm, J= 7.31 Hz, triplet |
Malic acid (diastereotopic protons) | δ = 2.33 ppm, J = 8.7 Hz, overlaid triplets |
Acetate | δ = 2.05 ppm, singlet |
Arginine | δ = 1.70 ppm, J = 6.7 Hz, multiplet |
Lactic acid | δ = 1.34 ppm, J = 6.7 Hz, doublet |
Valine/Isoleucine | δmax = 0.83 ppm, multiplet |
Molecular Reduced Formula (Assigned 1H in Red) | (δ, ppm), J (Hz), Multiplicity |
Acetaldehyde | δ = 9.55 ppm, J = 2.82 Hz, quartet |
5-substituted furanaldehyde and 2-furfural | δ = 9.37 ppm, singlet δ = 9.19 ppm, singlet |
2-furfural | δ = 7.97 ppm, multiplet |
2-furfural | δ = 7.34 ppm, multiplet |
Phenethyl alcohol | δ = 7.17 ppm, J = 7.47 Hz, multiplet |
Phenethyl acetate | δ = 7.09 ppm, J = 7.48 Hz, multiplet |
2-furoic acid | δ = 6.54 ppm, J = 3.6 Hz/1.57 Hz, doublet of doublets |
Molecular Reduced Formula (Assigned 1H in Red) | (δ, ppm), J (Hz), Multiplicity |
(Furan-2-yl)-methanol | δ = 6.24 ppm, J = 3.3 Hz, doublet |
Acetate | δ = 3.99 ppm, J = 7.2 Hz, quartet |
1-butanol | δ = 1.54 ppm, J = 6.67 Hz, multiplet |
2-butanol | δ = 1.49 ppm, J = 6.67 Hz, multiplet |
2-methylpropan-1-ol | δ = 1.38 ppm, J = 7.1 Hz, heptuplet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Aguilar, R.; Zuleta-Prada, H.; Hernández-Montes, A.; Herbert-Pucheta, J.E. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods 2021, 10, 157. https://doi.org/10.3390/foods10010157
López-Aguilar R, Zuleta-Prada H, Hernández-Montes A, Herbert-Pucheta JE. Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods. 2021; 10(1):157. https://doi.org/10.3390/foods10010157
Chicago/Turabian StyleLópez-Aguilar, Rosa, Holber Zuleta-Prada, Arturo Hernández-Montes, and José Enrique Herbert-Pucheta. 2021. "Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes" Foods 10, no. 1: 157. https://doi.org/10.3390/foods10010157
APA StyleLópez-Aguilar, R., Zuleta-Prada, H., Hernández-Montes, A., & Herbert-Pucheta, J. E. (2021). Comparative NMR Metabolomics Profiling between Mexican Ancestral & Artisanal Mezcals and Industrialized Wines to Discriminate Geographical Origins, Agave Species or Grape Varieties and Manufacturing Processes as a Function of Their Quality Attributes. Foods, 10(1), 157. https://doi.org/10.3390/foods10010157