Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Microorganisms
2.2. GC-FID Analysis of BEO
2.3. GC/MS Identification of Single Constituents of BEO
2.4. Antimicrobial Activity of BEO
2.5. Microencapsulation of BEO
2.6. Antimicrobial Activity of BEOMC
2.7. CH-Based Film Preparation
2.8. CH-Based Film Properties
2.9. Cooked Ham Wrapping
2.10. Statistical Analysis
3. Results and Discussion
3.1. BEO Chemical Composition
3.2. BEO Antimicrobial Activity
3.3. BEO Microencapsulation and Antimicrobial Activity of BEOMC
3.4. Preparation and Physicochemical Properties of CH-Based Films Grafted with BEOMC
3.5. Antimicrobial Activity of CH Films Grafted with BEOMC
3.6. Cooked Ham Wrapped with BEOMC Containing CH Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Suppakul, P.; Sonneveld, K.; Bigger, S.W.; Miltz, J. Loss of AM additives from antimicrobial films during storage. J. Food Eng. 2011, 105, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Biji, K.B.; Ravishankar, C.N.; Mohan, C.O.; Srinivasa Gopal, T.K. Smart packaging systems for food applications: A review. J. Food Sci. Technol. 2015, 52, 6125–6135. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Cai, M.; Liu, Y.-S.; Sun, P.-L.; Luo, S.-L. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ch, M.; Naz, S.; Sharif, A.; Akram, M.; Saeed, M. Biological and Pharmacological Properties of the Sweet Basil (Ocimum basilicum). Br. J. Pharm. Res. 2015, 7, 330–339. [Google Scholar] [CrossRef]
- Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; Da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial activity of essential oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Gaio, I.; Saggiorato, A.G.; Treichel, H.; Cichoski, A.J.; Astolfi, V.; Cardoso, R.I.; Toniazzo, G.; Valduga, E.; Paroul, N.; Cansian, R.L. Antibacterial activity of basil essential oil (Ocimum basilicum L.) in Italian-type sausage. J. Verbrauch. Lebensm. 2015, 10, 323–329. [Google Scholar] [CrossRef]
- Embuscado, M.E.; Huber, K.C. Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Kausadikara, S.; Gadhaveb, A.D.; Waghmareb, J. Microencapsulation of lemon oil by spray drying and its applicationin flavour tea. Adv. Appl. Sci. Res. 2015, 6, 69–78. [Google Scholar]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar]
- Nemethova, V. Vibration technology for microencapsulation: The restrictive role of viscosity. J. Bioprocess. Biotech. 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Han, X.Q. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 1993, 33, 501–547. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, M.; Kemerli, T. Innovative applications of micro and nanoencapsulation in food packaging. In Encapsulation and Controlled Release Technologies in Food Systems, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2016; pp. 333–378. ISBN 9781118946893. [Google Scholar]
- Quesada, J.; Sendra, E.; Navarro, C.; Sayas-Barberá, E. Antimicrobial active packaging including chitosan films with Thymus vulgaris L. essential oil for ready-to-eat meat. Foods 2016, 5, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.P.; Rodríguez-Rojo, S.; Serra, A.T.; Vila-Real, H.; Simplicio, A.L.; Delgadilho, I.; Beirão Da Costa, S.; Beirão Da Costa, L.; Nogueira, I.D.; Duarte, C.M.M. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov. Food Sci. Emerg. Technol. 2013, 20, 140–145. [Google Scholar] [CrossRef]
- Rodea-González, D.A.; Cruz-Olivares, J.; Román-Guerrero, A.; Rodríguez-Huezo, M.E.; Vernon-Carter, E.J.; Pérez-Alonso, C. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. J. Food Eng. 2012, 111, 102–109. [Google Scholar] [CrossRef]
- Peng, C.; Zhao, S.Q.; Zhang, J.; Huang, G.Y.; Chen, L.Y.; Zhao, F.Y. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014, 165, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, M.; Di Pierro, P.; Cammarota, M.; Dell’Olmo, E.; Arciello, A.; Porta, R. Development and properties of new chitosan-based films plasticized with spermidine and/or glycerol. Food Hydrocoll. 2019, 87, 245–252. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corp: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Goodner, K.L. Practical retention index models of OV-101, DB-1, DB-5, and DB-Wax for flavor and fragrance compounds. LWT-Food Sci. Technol. 2008, 41, 951–958. [Google Scholar] [CrossRef]
- Wiley Registry of Mass Spectral Data: WITH NIST Spectral Data CD-ROM: Inc. John Wiley & Sons: 9780470047866. Available online: https://www.bookdepository.com/Wiley-Registry-Mass-Spectral-Data-WITH-NIST-Spectral-Data-CD-ROM-Inc-John-Wiley-Sons/9780470047866 (accessed on 12 May 2020).
- Amor, G.; Caputo, L.; La Storia, A.; De Feo, V.; Mauriello, G.; Fechtali, T. Chemical composition and antimicrobial activity of Artemisia herba-alba and Origanum majorana essential oils from Morocco. Molecules 2019, 24, 4021. [Google Scholar] [CrossRef] [Green Version]
- Sbayou, H.; Ababou, B.; Boukachabine, K.; Manresa, A.; Zerouali, K.; Amghar, S. Chemical Composition and Antibacterial Activity of Artemisia herba-alba and Mentha pulegium Essential Oils. J. Life Sci. 2014, 8, 35–41. [Google Scholar]
- De Prisco, A.; Maresca, D.; Ongeng, D.; Mauriello, G. Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT Food Sci. Technol. 2015, 61, 452–462. [Google Scholar] [CrossRef]
- Ercolini, D.; La Storia, A.; Villani, F.; Mauriello, G. Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J. Appl. Microbiol. 2006, 100, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, P.; Chico, B.; Villalonga, R.; Mariniello, L.; Damiao, A.E.; Masi, P.; Porta, R. Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analysis of their mechanical and barrier properties. Biomacromolecules 2006, 7, 744–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM D882-09 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D882-09.htm (accessed on 14 December 2020).
- Giosafatto, C.; Sabbah, M.; Al-Asmar, A.; Esposito, M.; Sanchez, A.; Villalonga Santana, R.; Cammarota, M.; Mariniello, L.; Di Pierro, P.; Porta, R. Effect of Mesoporous Silica Nanoparticles on Glycerol-Plasticized Anionic and Cationic Polysaccharide Edible Films. Coatings 2019, 9, 172. [Google Scholar] [CrossRef] [Green Version]
- Filip, S. Basil (Ocimum basilicum L.) a source of valuable phytonutrients. Int. J. Clin. Nutr. Diet. 2017, 3, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milenković, L.; Stanojević, J.; Cvetković, D.; Stanojević, L.; Lalević, D.; Šunić, L.; Fallik, E.; Ilić, Z.S. New technology in basil production with high essential oil yield and quality. Ind. Crops Prod. 2019, 140, 111718. [Google Scholar] [CrossRef]
- Olugbade, T.A.; Kolipha-Kamara, M.I.; Elusiyan, C.A.; Onawunmi, G.O.; Ogundaini, A.O. Essential Oil Chemotypes of Three Ocimum Species Found in Sierra Leone and Nigeria. Med. Aromat. Plants 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Ghasemi Pirbalouti, A.; Malekpoor, F.; Salimi, A. Chemical composition and yield of essential oil from two Iranian species of basil (Ocimum ciliatum and Ocimum basilicum). Trends Phytochem. Res. 2017, 1, 3–8. [Google Scholar]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. J. Essent. Oil-Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Miele, M.; Dondero, R.; Ciarallo, G.; Mazzei, M. Methyleugenol in Ocimum basilicum L. cv. Genovese Gigante. J. Agric. Food Chem. 2001, 49, 517–521. [Google Scholar] [CrossRef]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Vanin, A.B.; Orlando, T.; Piazza, S.P.; Puton, B.M.S.; Cansian, R.L.; Oliveira, D.; Paroul, N. Antimicrobial and antioxidant activities of clove essential oil and eugenyl acetate produced by enzymatic esterification. Appl. Biochem. Biotechnol. 2014, 174, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim Sajjadi, S. Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran. J. Pharm. Sci. 2006, 14, 128–130. [Google Scholar]
- Soković, M.; Van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Bagamboula, C.F.; Uyttendaele, M.; Debevere, J. Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol. 2004, 21, 33–42. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Regalado-González, C.; Vázquez-Landaverde, P.; Guerrero-Legarreta, I.; García-Almendárez, B.E. Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) oregano essential oils. Sci. World J. 2014, 2014. ID 641814. [Google Scholar] [CrossRef] [Green Version]
- Alves, V.L.C.D.; Rico, B.P.M.; Cruz, R.M.S.; Vicente, A.A.; Khmelinskii, I.; Vieira, M.C. Preparation and characterization of a chitosan film with grape seed extract-carvacrol microcapsules and its effect on the shelf-life of refrigerated Salmon (Salmo salar). LWT Food Sci. Technol. 2018, 89, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Lan, W.; Sameen, D.E.; Ahmed, S.; Qin, W.; Zhang, Q.; Chen, H.; Dai, J.; He, L.; Liu, Y. Preparation and characterization of grass carp collagen-chitosan-lemon essential oil composite films for application as food packaging. Int. J. Biol. Macromol. 2020, 160, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Rodsamran, P.; Sothornvit, R. Microencapsulation of Thai rice grass (O. Sativa cv. Khao Dawk Mali 105) extract incorporated to form bioactive carboxymethyl cellulose edible film. Food Chem. 2018, 242, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, J.P.; Chen, D.R.; Fu, C.Y.; Wang, P.; Li, Z.; Wei, W.; Li, H.; Dong, W.Q. The use of albendazole and diammonium glycyrrhizinate in the treatment of eosinophilic meningitis in mice infected with Angiostrongylus cantonensis. J. Helminthol. 2013, 87, 1–11. [Google Scholar] [CrossRef]
- Alarcón-Moyano, J.K.; Bustos, R.O.; Herrera, M.L.; Matiacevich, S.B. Alginate edible films containing microencapsulated lemongrass oil or citral: Effect of encapsulating agent and storage time on physical and antimicrobial properties. J. Food Sci. Technol. 2017, 54, 2878–2889. [Google Scholar] [CrossRef]
- Cai, C.; Ma, R.; Duan, M.; Deng, Y.; Liu, T.; Lu, D. Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. LWT 2020, 131, 109700. [Google Scholar] [CrossRef]
- Hosseini, M.H.; Razavi, S.H.; Mousavi, M.A. Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. J. Food Process. Preserv. 2009, 33, 727–743. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Grossmann, M.V.E.; Yamashita, F.; Pined, E.A.G. Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J. Agric. Food Chem. 2009, 57, 7499–7504. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef]
- López-Mata, M.A.; Ruiz-Cruz, S.; Silva-Beltrán, N.P.; Ornelas-Paz, J.D.J.; Zamudio-Flores, P.B.; Burruel-Ibarra, S.E. Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules 2013, 18, 13735–13753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raphaël, K.J.; Meimandipour, A. Antimicrobial activity of chitosan film forming solution enriched with essential oils; an in vitro assay. Iran. J. Biotechnol. 2017, 15, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, G.; Chen, X.; Li, D. Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Res. Int. 2016, 89, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef]
- Emiroǧlu, Z.K.; Yemiş, G.P.; Coşkun, B.K.; Candoǧan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat. Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef]
- Wen, Z.; You, X.; Jiang, L.; Liu, B.; Zheng, Z.; Pu, Y.; Cheng, B. Liposomal incorporation of rose essential oil by a supercritical process. Flavour Fragr. J. 2011, 26, 27–33. [Google Scholar] [CrossRef]
- Petrou, S.; Tsiraki, M.; Giatrakou, V.; Savvaidis, I.N. Chitosan dipping or oregano oil treatments, singly or combined on modified atmosphere packaged chicken breast meat. Int. J. Food Microbiol. 2012, 156, 264–271. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernández-López, J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 2013, 30, 386–392. [Google Scholar] [CrossRef]
- Silva, C.M.G.; Glória, M.B.A. Bioactive amines in chicken breast and thigh after slaughter and during storage at 4 ± 1 °C and in chicken-based meat products. Food Chem. 2002, 78, 241–248. [Google Scholar] [CrossRef]
- Oral, N.; Vatansever, L.; Sezer, Ç.; Aydin, B.; Güven, A.; Gülmez, M.; Başer, K.H.C.; Kürkçüoǧlu, M. Effect of absorbent pads containing oregano essential oil on the shelf life extension of overwrap packed chicken drumsticks stored at four degrees Celsius. Poult. Sci. 2009, 88, 1459–1465. [Google Scholar] [CrossRef]
- Silva, C.M.G.; Glória, M.B.A. Biogenic Amine Sources in Cooked Cured Shoulder Pork. Food Chem. 2002, 78, 241–248. [Google Scholar] [CrossRef]
Gram | Microorganism | Source | Growth Condition |
---|---|---|---|
Positive | Brochothrix thermosphacta 7R1 | Meat | TSB 24 h at 20 °C |
Brochothrix thermosphacta D274 | Meat | TSB 24 h at 20 °C | |
Carnobacterium maltaromaticum 9P | Meat | TSB 24 h at 20 °C | |
Carnobacterium maltaromaticum D1203 | Meat | TSB 24 h at 25 °C | |
Enterococcus faecalis 226 | Milk | TSB 24 h at 30 °C | |
Staphylococcus xylosus ES1 | Fermented meat | TSB 24 h at 37 °C | |
Staphylococcus saprophyticus 3S | Fermented meat | TSB 24 h at 37 °C | |
Listeria innocua 1770 | Milk | TSB 24 h at 30 °C | |
Streptococcus salivarius GM | Milk | TSB 24 h at 30 °C | |
Negative | Hafnia alvei 53M | Meat | TSB 24 h at 30 °C |
Serratia proteamaculans 20P | Meat | TSB 24 h at 30 °C | |
Escherichia coli 32 | Meat | TSB 24 h at 37 °C |
N. | Compound Name | % | KI a | KI b | Identification c |
---|---|---|---|---|---|
1 | Santolina triene | 1.2 | 863 | 908 | 1,2 |
2 | Artemisia triene | Traces | 875 | 929 | 1,2 |
3 | α-pinene | 1.8 | 899 | 939 | 1,2,3 |
4 | β-pinene | 1.0 | 919 | 979 | 1,2,3 |
5 | δ-3-Carene | Traces | 939 | 1011 | 1,2 |
6 | p-Cymene | 0.1 | 948 | 1024 | 1,2,3 |
7 | 1,8-Cineole | 9.6 | 953 | 1096 | 1,2,3 |
8 | dehydro-sabina ketone | 0.3 | 973 | 1120 | 1,2 |
9 | neo-isopulegol | 0.3 | 989 | 1148 | 1,2 |
10 | iso-isopulegol | 0.7 | 994 | 1159 | 1,2 |
11 | Linalool | 41.3 | 1033 | 1096 | 1,2,3 |
12 | Terpinolene | 0.1 | 1035 | 1088 | 1,2,3 |
13 | (6Z)-Nonenal | 0.1 | 1037 | 1097 | 1,2 |
14 | iso-3-thujanol | 0.2 | 1039 | 1138 | 1,2 |
15 | neo-allo-ocimene | 0.1 | 1048 | 1144 | 1,2 |
16 | neo-iso-3-thujanol | Traces | 1050 | 1151 | 1,2 |
17 | iso-borneol | 0.3 | 1058 | 1160 | 1,2 |
18 | 3-thujanol | Traces | 1060 | 1168 | 1,2,3 |
19 | thuj-3-en-10-al | 0.2 | 1062 | 1184 | 1,2 |
20 | cis-dihydrocarvone | 0.1 | 1080 | 1192 | 1,2 |
21 | trans-pulegol | 0.6 | 1091 | 1214 | 1,2 |
22 | cis-sabinene hydrate | 1.4 | 1099 | 1221 | 1,2 |
23 | (Z)-Anethole | 3.2 | 1106 | 1252 | 1,2,3 |
24 | isobornyl acetate | 2.1 | 1189 | 1285 | 1,2 |
25 | δ-elemene | 0.2 | 1232 | 1338 | 1,2,3 |
26 | trans-p-menth-6-en-2,8-diol | 0.2 | 1240 | 1374 | 1,2 |
27 | α-ylangene | 0.1 | 1244 | 1375 | 1,2,3 |
28 | (z)-isoeugenol | 5.9 | 1259 | 1407 | 1,2 |
29 | α-gurjunene | 0.5 | 1269 | 1409 | 1,2 |
30 | €-Caryophyllene | 2.4 | 1288 | 1419 | 1,2,3 |
31 | β-Ylangene | 1.1 | 1304 | 1420 | 1,2,3 |
32 | β-copaene | 0.5 | 1314 | 1432 | 1,2,3 |
33 | α-trans-bergamotene | 4.6 | 1326 | 1434 | 1,2 |
34 | Aromadendrene | 0.3 | 1330 | 1441 | 1,2,3 |
35 | α-humulene | 0.8 | 1338 | 1454 | 1,2,3 |
36 | allo-aromadendrene | 1.1 | 1347 | 1460 | 1,2 |
37 | cis-muurola-4-(14),5-diene | 0.9 | 1365 | 1466 | 1,2 |
38 | γ-gurjunene | 0.5 | 1371 | 1477 | 1,2,3 |
39 | γ-muurolene | 0.8 | 1380 | 1479 | 1,2,3 |
40 | Aristolochene | 1.4 | 1391 | 1488 | 1,2 |
41 | γ-himalachene | 0.4 | 1396 | 1482 | 1,2 |
42 | trans-muurola-4-(14),5-diene | 2.8 | 1395 | 1493 | 1,2 |
43 | cis-calamenene | 0.3 | 1402 | 1529 | 1,2 |
44 | δ-cadinene | 0.4 | 1403 | 1523 | 1,2 |
45 | 10-epi-cubebol | 0.1 | 1410 | 1,2 | |
46 | trans-cadina-1,4-diene | 0.2 | 1416 | 1534 | 1,2 |
47 | cis-muurol-5-en-4-β-ol | 0.1 | 1435 | 1551 | 1,2 |
48 | germacrene B | 0.3 | 1444 | 1561 | 1,2,3 |
49 | Spathulenol | 1.0 | 1456 | 1578 | 1,2,3 |
50 | cis-β—elemenone | 0.4 | 1481 | 1589 | 1,2 |
51 | 1,10-di-epi-cubenol | 1.2 | 1492 | 1619 | 1,2 |
52 | 1-epi-cubenol | 4.8 | 1514 | 1628 | 1,2 |
Total | 97.8 | ||||
Monoterpene hydrocarbons | 3.1 | ||||
Oxygenated monoterpenes | 66.4 | ||||
Sesquiterpene hydrocarbons | 19.5 | ||||
Oxygenated sesquiterpenes | 7.6 | ||||
Other | 1.2 |
Scheme | Gentamicin | Tetracycline | BEO |
---|---|---|---|
B. thermosphacta 7R1 | 18.3 ± 1.5 | 19.3 ± 1.2 | 17.3 ± 1.1 |
B. thermosphacta D274 | 6.0 ± 0.0 | 8.7 ± 1.2 | 17.7 ± 0.6 a,b |
C. maltaromaticum 9P | 6.0 ± 0.0 | 24.3 ± 1.2 | 11.7 ± 0.6 a |
C. maltaromaticum D1203 | 6.0 ± 0.0 | 22.3 ± 0.6 | 20.0 ± 1.0 a |
E. coli 32 | 14.7 ± 0.6 | 18.7 ± 1.2 | 20.7 ± 0.6 a |
E. faecalis 226 | 6.0 ± 0.0 | 9.0 ± 1.0 | 12.7 ± 0.6 a,b |
E. faecalis E21 | 6.0 ± 0.0 | 14.7 ± 0.6 | 11.3 ± 1.1 b |
H. alvei 53M | 11.7 ± 1.5 | 9.6 ± 0.6 | 11.7 ± 0.6 b |
L. innocua 1770 | 25.3 ± 0.6 | 20.3 ± 1.5 | 16.3 ± 1.1 |
S. proteamaculans 20P | 12.3 ± 0.6 | 24.3 ± 1.2 | 10.3 ± 0.6 |
S. salivarius GM | 6.0 ± 0.0 | 18.7 ± 1.2 | 19.7 ± 0.6 a |
S. saprophyticus 3S | 24.0 ± 1.0 | 29.0 ± 3.6 | 17.7 ± 0.4 |
S. xylosus ES1 | 19.3 ± 1.2 | 29.3 ± 1.2 | 18.0 ± 1.0 |
Strains | BEO | |
---|---|---|
MIC (μL/mL) | MLC (μL/mL) | |
C. maltaromaticum D1203 | 1.25 | 2.50 |
S. salivarius GM | 1.25 | 2.50 |
S. saprophyticus 3S | 2.50 | 2.50 |
E. coli 32 | 1.25 | 1.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amor, G.; Sabbah, M.; Caputo, L.; Idbella, M.; De Feo, V.; Porta, R.; Fechtali, T.; Mauriello, G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods 2021, 10, 121. https://doi.org/10.3390/foods10010121
Amor G, Sabbah M, Caputo L, Idbella M, De Feo V, Porta R, Fechtali T, Mauriello G. Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods. 2021; 10(1):121. https://doi.org/10.3390/foods10010121
Chicago/Turabian StyleAmor, Ghita, Mohammed Sabbah, Lucia Caputo, Mohamed Idbella, Vincenzo De Feo, Raffaele Porta, Taoufiq Fechtali, and Gianluigi Mauriello. 2021. "Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging" Foods 10, no. 1: 121. https://doi.org/10.3390/foods10010121
APA StyleAmor, G., Sabbah, M., Caputo, L., Idbella, M., De Feo, V., Porta, R., Fechtali, T., & Mauriello, G. (2021). Basil Essential Oil: Composition, Antimicrobial Properties, and Microencapsulation to Produce Active Chitosan Films for Food Packaging. Foods, 10(1), 121. https://doi.org/10.3390/foods10010121