A Scientometric Study of Neurocomputing Publications (1992–2018): An Aerial Overview of Intrinsic Structure
Abstract
:1. Introduction
- This paper reports a detailed study of the generic bibliometric impression of the journal of NC publications by examining the most prominent articles, institutions, authors, author collaborations, institute collaborations, country collaborations, etc.
- The purpose of this study is to provide an intrinsic structure of NC publications and the targeted research areas where the contributions are made.
- A detailed study of the NC publication base is also performed to understand the knowledge base of NC publications.
- The top cited articles in this journal are listed to give highlights of the NC publications.
- The data of all the documents considered for this study have been retrieved from the Web of Science (WoS) database which comprises of several document types, such as articles, proceeding papers, letters, editorials, and reviews.
- Statistical techniques and analysis determines the nature of the NC citations and their structure.
2. Methodology and Performance Indicators
- (i)
- Co-citation analysis: This is another way to analyze the citation structure and provides a glimpse of the relationships between papers, and through them other entities, inside a research domain. It basically tells us that if two entities are co-cited, i.e., cited together more frequently then there are closer academic or disciplinary ties between them.
- (ii)
- Bibliographic coupling: This is the opposite of co-citation, it is the number of times two or more entities cite the same entity. Both co-citation and bibliographic coupling indicate disciplinary links. The number of co-authored documents identifies collaborative or co-authorship links between two entities, directly linking authors, institutions, or countries. (By entity we mean either an author, an organization, or a country.)
- (iii)
- Document co-citation analysis (DCA): This explores the citation base of publications giving an insight into the inspiration corpus.
- (i)
- Total Papers (TP)—the total number of papers from a particular source,
- (ii)
- Total Citations (TC)—the total number of citations generated by a particular publication within the database of WoS.
- (iii)
- Citations per Paper (CPP)—TP divided by TC,
- (iv)
- Hirsch index or h-index—This is equal to the number of papers (N) of an entity that has more than N citations each [40].
- (i)
- VOSviewer is a tool for generation and visualization of bibliographic networks. It has been used here for depicting bibliographic coupling and co-authorship between different entities VOSviewer can be used to construct networks of scientific publications, scientific journals, researchers, research organizations, countries, keywords, or terms. Items in VOSviewer are visualized in terms of nodes and edges connecting theses nodes. Items in these networks can be connected by co-authorship, co-occurrence, citation, bibliographic coupling, or co-citation links. Examples are bibliographic coupling links between publications, co-authorship links between researchers, and co-occurrence links between terms. Vosviewer version 1.6.5 has been used for this study.
- (ii)
- CiteSpace [41] has also been used here for visualization and analysis document co-citation of NC publications. It is an open source Java application used for visualizing trends from metadata of scientific literature. Citespace version 5.0 R4 SE has been used for this study.
3. Citation Structure of NC Publications
Top Authorship, Country, and Institutions
4. Bibliographic Landscape
5. Document Co-Citation Network
5.1. Cluster Detection and Analysis
5.2. References with Strong Citation Bursts
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia-Silvente, Y.A.M. An overview of iris recognition: A bibliometric analysis. Scientometrics 2014, 101, 2003–2033. [Google Scholar]
- Merigó, J.M.; Rocafort, A.; Aznar-Alarcón, J.P. Bibliometric Overview of Business & Economics Research. J. Bus. Econ. Manag. 2016, 17, 397–413. [Google Scholar]
- Du, Y. A Bibliometrics Portrait of Chinese Research through the Lens of China Economic Review. A research proposal. Econ. Manag. Res. Proj. 2012, 1, 79–91. [Google Scholar]
- Hoepner, A.G.F.; Kant, B.; Scholtens, B.; Yu, P.S. Environmental and ecological economics in the 21st century: An age adjusted citation analysis of the influential articles, journals, authors and institutions. Ecol. Econ. 2012, 77, 193–206. [Google Scholar] [CrossRef]
- Kolle, S.R.; Vijayashree, M.S.; Shankarappa, T.H. Highly cited articles in malaria research: A bibliometric analysis. Collect. Build. 2017, 36, 45–57. [Google Scholar] [CrossRef]
- Jiang, H.; Qiang, M.; Lin, P. A topic modeling based bibliometric exploration of hydropower research. Renew. Sustain. Energy Rev. 2016, 57, 226–237. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Kurtbaş, I. A scientific approach with bibliometric analysis related to brick and tile drying: A review. Renew. Sustain. Energy Rev. 2016, 59, 206–224. [Google Scholar] [CrossRef]
- Lee, C.I.S.G.; Felps, W.; Baruch, Y. Toward a taxonomy of career studies through bibliometric visualization. J. Vocat. Behav. 2014, 85, 339–351. [Google Scholar] [CrossRef]
- El Khaled, D.; Novas, N.; Gazquez, J.A.; Manzano-Agugliaro, F. Dielectric and bioimpedance research studies: A Scientometric approach using the scopus database. Publications 2018, 6, 6. [Google Scholar] [CrossRef]
- Aaen-Stockdale, C. Selfish Memes: An Update of Richard Dawkins’ Bibliometric Analysis of Key Papers in Sociobiology. Publications 2017, 5, 12. [Google Scholar] [CrossRef]
- Vanleeuwen, T. Letter to the editor Publication trends in social psychology journals: A long-term bibliometric analysis. Eur. J. Soc. Psychol. 2013, 11, 9–11. [Google Scholar] [CrossRef]
- Arnott, D.; Pervan, G. A critical analysis of decision support systems research. Formul. Res. Methods Inf. Syst. 2015, 20, 127–168. [Google Scholar]
- Arnott, D.; Pervan, G. A Critical Analysis of Decision Support Systems Research Revisited: The Rise of Design Science. In Enacting Research Methods in Information Systems; Palgrave Macmillan: Cham, Switzerland, 2016; Volume 29, pp. 43–103. [Google Scholar]
- Kim, M.C.; Jeong, Y.K.; Song, M. Investigating the integrated landscape of the intellectual topology of bioinformatics. Scientometrics 2014, 101, 309–335. [Google Scholar] [CrossRef]
- Song, M.; Kim, S.; Zhang, G.; Ding, Y.; Chambers, T. Productivity and influence in bioinformatics: A biliographic analysis using PubMed central. J. Am. Soc. Inf. Sci. Technol. 2014, 65, 352–371. [Google Scholar] [CrossRef]
- Loock, M.; Hinnen, G. Heuristics in organizations: A review and a research agenda. J. Bus. Res. 2015, 68, 2027–2036. [Google Scholar] [CrossRef]
- Huang, Y.; Schuehle, J.; Porter, A.L.; Youtie, J. A systematic method to create search strategies for emerging technologies based on the Web of Science: Illustrated for ‘Big Data’. Scientometrics 2015, 105, 2005–2022. [Google Scholar] [CrossRef]
- Prathap, G. Big data and false discovery: Analyses of bibliometric indicators from large data sets. Scientometrics 2014, 98, 1421–1422. [Google Scholar] [CrossRef]
- Garousi, V. A bibliometric analysis of the Turkish software engineering research community. Scientometrics 2015, 105, 23–49. [Google Scholar] [CrossRef]
- Blanco-Mesa, F.; Merigó, J.M.; Gil-Lafuente, A.M. Fuzzy decision making: A bibliometric-based review. J. Intell. Fuzzy Syst. 2017, 32, 2033–2050. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Xu, Z.; Wang, W. Bibliometric analysis of fuzzy theory research in China: A 30-year perspective. Knowl.-Based Syst. 2018, 141, 188–199. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sharma, R.; Muhuri, P.K. A Review of the Scopes and Challenges of the Modern Real-Time Operating Systems. Int. J. Embed. Real-Time Commun. Syst. 2018, 9, 66–82. [Google Scholar] [CrossRef]
- Yu, D.; Li, D.F.; Merigó, J.M.; Fang, L. Mapping development of linguistic decision making studies. J. Intell. Fuzzy Syst. 2016, 30, 2727–2736. [Google Scholar] [CrossRef]
- Emrouznejad, M.M.A. Ordered weighted averaging operators 1988–2014: A citation based literature survey. Int. J. Intell. Syst. 2014, 29, 994–1014. [Google Scholar] [CrossRef]
- Yu, D.; Shi, S. Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis. Appl. Soft Comput. 2015, 32, 189–198. [Google Scholar] [CrossRef]
- Cobo, M.J.; Martínez, M.A.; Gutiérrez-Salcedo, M.; Fujita, H.; Herrera-Viedma, E. 25years at Knowledge-Based Systems: A bibliometric analysis. Knowl.-Based Syst. 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Merigó, J.M.; Blanco-Mesa, F.; Gil-Lafuente, A.M.; Yager, R.R. Thirty years of the International Journal of Intelligent Systems: A bibliometric review. Int. J. Intell. Syst. 2017, 32, 526–554. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, D.; Kao, Y.; Lin, C.T. The structure and citation landscape of IEEE Transactions on Fuzzy Systems (1994–2015). IEEE Trans. Fuzzy Syst. 2018, 26, 430–442. [Google Scholar]
- Laengle, S.; Merigó, J.M.; Miranda, J.; Słowiński, R.; Bomze, I.; Borgonovo, E.; Dyson, R.G.; Oliveira, J.F.; Teunter, R. Forty years of the European Journal of Operational Research: A bibliometric overview. Eur. J. Oper. Res. 2017, 262, 803–816. [Google Scholar] [CrossRef]
- Cancino, C.; Merigó, J.M.; Coronado, F.; Dessouky, Y.; Dessouky, M. Forty years of Computers & Industrial Engineering: A bibliometric analysis. Comput. Ind. Eng. 2017, 113, 614–629. [Google Scholar]
- Yu, D.; Xu, Z.; Pedrycz, W.; Wang, W. Information Sciences 1968–2016: A retrospective analysis with text mining and bibliometric. Inf. Sci. 2017, 418–419, 619–634. [Google Scholar] [CrossRef]
- Merigó, J.M.; Pedrycz, W.; Weber, R.; De la Sotta, C. Fifty years of Information Sciences: A bibliometric overview. Inf. Sci. 2018, 432, 245–268. [Google Scholar] [CrossRef]
- Wakeling, S.; Willett, P.; Creaser, C.; Fry, J.; Pinfield, S.; Spezi, V. Transitioning from a Conventional to a ‘Mega’ Journal: A Bibliometric Case Study of the Journal Medicine. Publications 2017, 5, 7. [Google Scholar] [CrossRef]
- Muhuri, P.K.; Shukla, A.K.; Janmaijaya, M.; Basu, A. Applied Soft Computing: A Bibliometric Analysis of the Publications and Citations during (2004–2016). Appl. Soft Comput. 2018, 69, 381–392. [Google Scholar] [CrossRef]
- Amiguet, L.; Gil-Lafuente, A.M.; Kydland, F.E.; Merigó, J.M. One hundred and twenty-five years of the Journal of Political Economy: A bibliometric overview. J. Political Econ. 2017, 125, 6. [Google Scholar]
- Martínez-López, F.J.; Merigó, J.M.; Valenzuela, L.; Nicolás, C. Fifty years of the European Journal of Marketing: A bibliometric analysis. Eur. J. Mark. 2018, 52, 439–468. [Google Scholar] [CrossRef]
- Wang, W.; Laengle, S.; Merigó, J.M.; Yu, D.J.; Herrera-Viedma, E.; Cobo, M.J.; Bouchon-Meunier, B. A bibliometric analysis of the first twenty-five years of the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2018, 26, 169–193. [Google Scholar] [CrossRef]
- Tur-Porcar, A.; Mas-Tur, A.; Merigó, J.M.; Roig-Tierno, N.; Watt, J. A bibliometric history of the Journal of Psychology between 1936 and 2015. J. Psychol. 2018, 152, 199–225. [Google Scholar] [CrossRef] [PubMed]
- Neurocomputing. Available online: https://www.journals.elsevier.com/neurocomputi-ng (accessed on 21 February 2018).
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Assoc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50, 159–175. [Google Scholar] [CrossRef]
- Suykens, J.A.K.; Brabanter, J.D.; Lukas, L.; Vandewalle, J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing 2002, 48, 85–105. [Google Scholar] [CrossRef]
- Kim, K. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1–6. [Google Scholar] [CrossRef]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Zong, W.; Huang, G.B.; Chen, Y. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229–242. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part. B Cybern. 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 3, 27. [Google Scholar] [CrossRef]
- Huang, G.B.; Wang, D.H.; Yuan, L. Extreme learning machines: A survey. Int. J. Mach. Learn. Cybern. 2011, 2, 107–122. [Google Scholar] [CrossRef]
- John, H.; Krogh, A.; Palmer, R.G. Introduction to the Theory of Neural Computation; Addison-Wesley: Boston, MA, USA, 1991. [Google Scholar]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Macmillan Publishers: New York, NY, USA, 2004; p. 41. [Google Scholar]
- Fiala, D.; Tutoky, G. Computer Science Papers in Web of Science: A Bibliometric Analysis. Publications 2017, 5, 23. [Google Scholar] [CrossRef]
- Arik, B.T.; Arik, E. “Second Language Writing” Publications in Web of Science: A Bibliometric Analysis. Publications 2017, 5, 4. [Google Scholar] [CrossRef]
Year | ≥200 | ≥100 | ≥50 | ≥20 | ≥10 | ≥5 | ≥1 | 0 | TP | h-Index | TC | CPP |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 143 | 143 | 0 | 0 | 0.00 |
2017 | 0 | 0 | 0 | 1 | 4 | 9 | 264 | 854 | 1118 | 7 | 510 | 0.46 |
2016 | 0 | 0 | 3 | 21 | 93 | 419 | 1389 | 451 | 1840 | 20 | 5813 | 3.16 |
2015 | 0 | 0 | 1 | 73 | 322 | 715 | 1200 | 101 | 1301 | 27 | 9190 | 7.06 |
2014 | 0 | 1 | 8 | 106 | 321 | 576 | 845 | 57 | 902 | 31 | 8495 | 9.42 |
2013 | 0 | 2 | 13 | 115 | 296 | 468 | 663 | 39 | 702 | 35 | 8200 | 11.68 |
2012 | 0 | 0 | 14 | 89 | 207 | 296 | 398 | 29 | 427 | 36 | 5826 | 13.64 |
2011 | 1 | 1 | 20 | 91 | 189 | 260 | 350 | 19 | 369 | 33 | 5605 | 15.19 |
2010 | 1 | 2 | 19 | 94 | 187 | 261 | 329 | 16 | 345 | 36 | 5840 | 16.93 |
2009 | 0 | 2 | 27 | 124 | 235 | 313 | 389 | 25 | 414 | 41 | 7095 | 17.14 |
2008 | 1 | 7 | 30 | 115 | 199 | 277 | 367 | 26 | 393 | 40 | 7261 | 18.48 |
2007 | 1 | 4 | 24 | 75 | 151 | 227 | 322 | 20 | 342 | 35 | 5405 | 15.80 |
2006 | 1 | 3 | 16 | 82 | 153 | 219 | 305 | 30 | 335 | 35 | 7627 | 22.77 |
2005 | 1 | 4 | 17 | 53 | 97 | 154 | 233 | 22 | 255 | 32 | 3806 | 14.93 |
2004 | 0 | 0 | 8 | 46 | 104 | 161 | 261 | 34 | 295 | 27 | 3077 | 10.43 |
2003 | 4 | 9 | 21 | 57 | 92 | 131 | 210 | 42 | 252 | 33 | 5439 | 21.58 |
2002 | 2 | 5 | 11 | 47 | 102 | 162 | 257 | 51 | 308 | 31 | 4331 | 14.06 |
2001 | 1 | 1 | 6 | 30 | 67 | 108 | 230 | 27 | 257 | 22 | 2234 | 8.69 |
2000 | 0 | 2 | 10 | 27 | 56 | 97 | 185 | 34 | 219 | 24 | 2193 | 10.01 |
1999 | 0 | 1 | 5 | 25 | 47 | 82 | 162 | 22 | 184 | 24 | 1737 | 9.44 |
1998 | 2 | 7 | 17 | 40 | 58 | 79 | 96 | 12 | 108 | 30 | 3365 | 31.16 |
1997 | 0 | 1 | 3 | 17 | 26 | 39 | 59 | 15 | 74 | 18 | 982 | 13.27 |
1996 | 1 | 1 | 8 | 21 | 34 | 47 | 69 | 34 | 103 | 20 | 1407 | 13.66 |
1995 | 0 | 1 | 3 | 11 | 22 | 31 | 52 | 10 | 62 | 15 | 765 | 12.34 |
1994 | 0 | 2 | 3 | 7 | 11 | 15 | 25 | 14 | 39 | 10 | 516 | 13.23 |
1993 | 0 | 0 | 1 | 3 | 3 | 9 | 15 | 7 | 22 | 6 | 180 | 8.18 |
1992 | 0 | 0 | 0 | 1 | 3 | 9 | 17 | 12 | 29 | 6 | 106 | 3.66 |
Total | 16 | 56 | 288 | 1371 | 3079 | 5164 | 8692 | 2146 | 10,838 | |||
% | 0.14 | 0.51 | 2.65 | 12.64 | 28.40 | 47.64 | 80.19 | 19.8 |
Rank | Title | Authors | Year | TC | Citations per Year |
---|---|---|---|---|---|
1 | Extreme learning machine: Theory and applications | Huang GB; Zhu QY; Siew CK | 2006 | 2762 | 230.17 |
2 | Time series forecasting using a hybrid ARIMA and neural network model | Zhang GP | 2003 | 660 | 44.00 |
3 | Weighted least squares support vector machines: robustness and sparse approximation | Suykens JAK; De Brabanter J; Lukas L; Vandewalle J | 2002 | 615 | 38.44 |
4 | Financial time series forecasting using support vector machines | Kim KJ | 2003 | 463 | 30.87 |
5 | The self-organizing map | Kohonen T | 1998 | 462 | 23.10 |
6 | Convex incremental extreme learning machine | Huang GB; Chen L | 2007 | 454 | 41.27 |
7 | Enhanced random search based incremental extreme learning machine | Huang GB; Chen L | 2008 | 376 | 37.60 |
8 | Blind separation of convolved mixtures in the frequency domain | Smaragdis P | 1998 | 361 | 18.05 |
9 | Optimization method based extreme learning machine for classification | Huang GB; Ding XJ; Zhou HM | 2010 | 335 | 41.88 |
10 | Designing a neural network for forecasting financial and economic time series | Kaastra I; Boyd M | 1996 | 322 | 14.64 |
11 | The support vector machine under test | Meyer D; Leisch F; Hornik K | 2003 | 291 | 19.40 |
12 | Evaluation of simple performance measures for tuning SVM hyperparameters | Duan K; Keerthi SS; Poo AN | 2003 | 280 | 18.67 |
13 | (2D)(2)PCA: Two-directional two-dimensional PCA for efficient face representation and recognition | Zhang DQ; Zhou ZH | 2005 | 265 | 20.38 |
14 | An approach to blind source separation based on temporal structure of speech signals | Murata N; Ikeda S; Ziehe A | 2001 | 240 | 14.12 |
15 | Error-backpropagation in temporally encoded networks of spiking neurons | Bohte SM; Kok JN; La Poutre H | 2002 | 235 | 14.69 |
16 | Recent advances and trends in visual tracking: A review | Yang HX; Shao L; Zheng F; Wang L; Song Z | 2011 | 229 | 32.71 |
17 | Modified support vector machines in financial time series forecasting | Tay FEH; Cao LJ | 2002 | 194 | 12.13 |
18 | Support vector machines experts for time series forecasting | Cao LJ | 2003 | 192 | 12.80 |
19 | A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine | Cao LJ; Chua KS; Chong WK; Lee HP; Gu QM | 2003 | 191 | 12.73 |
20 | Empirical evaluation of the improved Rprop learning algorithms | Igel C; Husken M | 2003 | 188 | 12.53 |
21 | Determination of the spread parameter in the Gaussian kernel for classification and regression | Wang WJ; Xu ZB; Lu WZ; Zhang XY | 2003 | 186 | 12.40 |
22 | Evolutionary tuning of multiple SVM parameters | Friedrichs F; Igel C | 2005 | 185 | 14.23 |
23 | A survey on fall detection: Principles and approaches | Mubashir M; Shao L; Seed L | 2013 | 174 | 34.80 |
24 | WEBSOM - Self-organizing maps of document collections | Kaski S; Honkela T; Lagus K; Kohonen T | 1998 | 169 | 8.45 |
25 | Asymptotic and robust stability of genetic regulatory networks with time-varying delays | Ren F; Cao J | 2008 | 168 | 16.80 |
26 | Natural Actor-Critic | Peters J; Schaal S | 2008 | 167 | 16.70 |
27 | Artificial neural networks in hardware A survey of two decades of progress | Misra J; Saha I | 2010 | 165 | 20.63 |
28 | Learning And Generalization Characteristics Of The Random Vector Functional-Link Net | Pao YH; Park GH; Sobajic DJ | 1994 | 163 | 6.79 |
29 | A new correlation-based measure of spike timing reliability | Schreiber S; Fellous JM; Whitmer D; Tiesinga P; Sejnowski TJ | 2003 | 158 | 10.53 |
30 | Time-series prediction using a local linear wavelet neural network | Chen YH; Yang B; Dong JW | 2006 | 156 | 13.00 |
31 | A fast pruned-extreme learning machine for classification problem | Rong HJ; Ong YS; Tan AH; Zhu ZX | 2008 | 154 | 15.40 |
32 | The nonlinear PCA learning rule in independent component analysis | Oja E | 1997 | 154 | 7.33 |
33 | Weighted extreme learning machine for imbalance learning | Zong WW; Huang GB; Chen YQ | 2013 | 147 | 29.40 |
34 | A case study on using neural networks to perform technical forecasting of forex | Yao JT; Tan CL | 2000 | 143 | 7.94 |
35 | Hopfield neural networks for optimization: study of the different dynamics | Joya G; Atencia MA; Sandoval F | 2002 | 142 | 8.88 |
36 | Fully complex extreme learning machine | Li MB; Huang GB; Saratchandran P; Sundararajan N | 2005 | 140 | 10.77 |
37 | Ensemble of online sequential extreme learning machine | Lan Y; Soh YC; Huang GB | 2009 | 139 | 15.44 |
38 | Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform | Yang L; Guo BL; Ni W | 2008 | 133 | 13.30 |
39 | A comprehensive review of current local features for computer vision | Li J; Allinson NM | 2008 | 127 | 12.70 |
40 | Methodology for long-term prediction of time series | Sorjamaa A; Hao J; Reyhani N; Ji YN; Lendasse A | 2007 | 125 | 11.36 |
Rank | Name | Country | Affiliation | TP | TC | CPP | h-Index |
---|---|---|---|---|---|---|---|
1 | Cao JD | China | Southeast University | 74 | 1574 | 21.27 | 23 |
2 | Yang J | China | Beijing Institute of Technology | 74 | 510 | 6.89 | 11 |
3 | Wang J | China | Tsinghua University | 72 | 374 | 5.19 | 12 |
4 | Zhang HG | China | Northeastern University | 64 | 899 | 14.05 | 17 |
5 | Li J | China | Xidian University | 60 | 528 | 8.80 | 13 |
6 | Liu Y | China | Northeastern University | 60 | 495 | 8.25 | 14 |
7 | Zhang J | China | Beijing Institute of Technology | 58 | 429 | 7.40 | 10 |
8 | Wang Y | China | Central South University | 55 | 344 | 6.25 | 10 |
9 | Zhang Y | China | Tongji University | 54 | 448 | 8.30 | 11 |
10 | Yuan Y | China | Chinese Academy of Sciences | 52 | 615 | 11.83 | 15 |
11 | Li XL | China | Chinese Academy of Sciences | 50 | 461 | 9.22 | 12 |
12 | Sanchez VD | USA | University of Miami | 50 | 197 | 3.94 | 7 |
13 | Wang D | China | Dalian University of Technology | 49 | 565 | 11.53 | 13 |
14 | Wang L | China | Wuhan University | 48 | 662 | 13.79 | 12 |
15 | Liu J | China | Qingdao Agricultural University | 45 | 215 | 4.78 | 8 |
16 | Huang TW | Qutar | Texas A&M University | 44 | 496 | 11.27 | 13 |
17 | Liu YR | China | Yangzhou University | 43 | 712 | 16.56 | 14 |
18 | Zhang H | China | PLA University of Science & Technology | 43 | 365 | 8.49 | 11 |
19 | Zhang L | China | Hong Kong Polytechnic University | 43 | 323 | 7.51 | 12 |
20 | Gao XB | China | Xidian University | 42 | 362 | 8.62 | 12 |
Rank | Country | TP | TC | CPP | h-Index |
---|---|---|---|---|---|
1 | Peoples R China | 5179 | 45,688 | 8.82 | 63.00 |
2 | USA | 1498 | 13,933 | 9.30 | 46.00 |
3 | England | 590 | 6596 | 11.18 | 37.00 |
4 | Spain | 564 | 4880 | 8.65 | 31.00 |
5 | Germany | 492 | 5145 | 10.46 | 30.00 |
6 | Japan | 439 | 3584 | 8.16 | 27.00 |
7 | France | 346 | 3909 | 11.30 | 30.00 |
8 | Australia | 343 | 2846 | 8.30 | 25.00 |
9 | Italy | 294 | 2825 | 9.61 | 26.00 |
10 | Singapore | 278 | 8764 | 31.53 | 35.00 |
11 | India | 277 | 3046 | 11.00 | 26.00 |
12 | South Korea | 276 | 3016 | 10.93 | 27.00 |
13 | Brazil | 256 | 1899 | 7.42 | 21.00 |
14 | Canada | 253 | 2481 | 9.81 | 27.00 |
15 | Taiwan | 244 | 2516 | 10.31 | 25.00 |
16 | Iran | 174 | 1511 | 8.68 | 20.00 |
17 | Saudi Arabia | 170 | 1550 | 9.12 | 21.00 |
18 | Finland | 149 | 2434 | 16.34 | 23.00 |
19 | Poland | 139 | 1427 | 10.27 | 23.00 |
20 | Belgium | 118 | 2074 | 17.58 | 21.00 |
21 | The Netherlands | 111 | 1410 | 12.70 | 20.00 |
22 | Scotland | 104 | 840 | 8.08 | 16.00 |
23 | Mexico | 101 | 686 | 6.79 | 15.00 |
24 | Greece | 86 | 900 | 10.47 | 17.00 |
25 | Malaysia | 77 | 393 | 5.10 | 10.00 |
Rank | Institute (Countries) | TP | TC | CPP | h-Index |
---|---|---|---|---|---|
1 | Chinese Academy of Sciences, China | 526 | 4752 | 9.03 | 31 |
2 | Harbin Institute of Technology, China | 219 | 2123 | 9.69 | 23 |
3 | Southeast University China, China | 206 | 3267 | 15.86 | 31 |
4 | Nanjing University of Science Technology, China | 180 | 1943 | 10.79 | 22 |
5 | Huazhong University of Science Technology, China | 169 | 1662 | 9.83 | 21 |
6 | Tsinghua University, China | 166 | 1243 | 7.49 | 19 |
7 | Shanghai Jiao Tong University, China | 164 | 1508 | 9.20 | 21 |
8 | Xidian University, China | 158 | 1178 | 7.46 | 19 |
9 | Zhejiang University, China | 158 | 1167 | 7.39 | 18 |
10 | Northeastern University, China | 157 | 1492 | 9.50 | 23 |
11 | University Of Electronic Science Technology of China, China | 149 | 1395 | 9.36 | 21 |
12 | Nanyang Technological University, Singapore | 147 | 6862 | 46.68 | 30 |
13 | Xi An Jiaotong University, China | 136 | 1588 | 11.68 | 17 |
14 | Beihang University, China | 132 | 884 | 6.70 | 16 |
15 | Centre National De La Recherche Scientifique CNRS, France | 128 | 1704 | 13.31 | 22 |
16 | Dalian University of Technology, China | 127 | 1104 | 8.69 | 18 |
17 | University of California System, USA | 126 | 1276 | 10.13 | 16 |
18 | King Abdulaziz University, Saudi Arabia | 120 | 1302 | 10.85 | 21 |
19 | Hong Kong Polytechnic University, Hong Kong | 114 | 1350 | 11.84 | 20 |
20 | University of Chinese Academy Of Sciences CAS, China | 106 | 729 | 6.88 | 16 |
21 | South China University of Technology, China | 99 | 624 | 6.30 | 13 |
22 | Chongqing University, China | 98 | 1194 | 12.18 | 19 |
23 | National University of Singapore, Singapore | 98 | 2691 | 27.46 | 20 |
24 | Tianjin University, China | 97 | 613 | 6.32 | 13 |
25 | University of London, England | 96 | 1005 | 10.47 | 20 |
Rank | Title | Year | Source | Authors |
---|---|---|---|---|
1 | Extreme Learning Machine for Regression and Multiclass Classification | 2012 | IEEE transactions on systems, man, and cybernetics | Huang GB, Zhou H, Ding X, Zhang R |
2 | Extreme learning machine: Theory and applications | 2006 | Neurocomputing | Huang GB, Zhu QY, Siew CK |
3 | LIBSVM: A library for support vector machines | 2011 | ACM Transactions on Intelligent Systems and Technology | Chang CC, Lin CJ |
4 | Extreme learning machines: a survey | 2011 | International Journal of Machine Learning and Cybernetics | Hung GB, Wang DH, Lan Y |
5 | Letters: Convex incremental extreme learning machine | 2007 | Neurocomputing | Huang GB, Chen L |
6 | Enhanced random search based incremental extreme learning machine | 2008 | Neurocomputing | Huang GB, Chen L |
7 | Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes | 2006 | IEEE TRANSACTIONS ON NEURAL NETWORKS | Huang GB, Chen L, Siew CK |
8 | Graph Embedding and Extensions: A General Framework for Dimensionality Reduction | 2007 | IEEE Transactions on Pattern Analysis and Machine Intelligence | Yan SC, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S |
9 | Object detection with discriminatively trained part-based models | 2010 | IEEE Transactions on Pattern Analysis and Machine Intelligence | Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D. |
10 | OP-ELM: Optimally Pruned Extreme Learning Machine | 2010 | IEEE Transactions on Neural Networks | Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A |
Cluster ID | Size | Silhouette | Label (TFIDF) | Label (LLR) | Label (MI) | Mean (Year) |
---|---|---|---|---|---|---|
0 | 89 | 0.919 | Spiking neurons | Spiking neurons | Nonlinear interactions | 1998 |
1 | 91 | 0.938 | Neural networks | Neural networks | Nonlinear interactions | 2007 |
2 | 84 | 0.889 | Neural networks | Theoretical results | Nonlinear interactions | 1990 |
3 | 76 | 0.916 | Face recognition | Face recognition | Nonlinear interactions | 2007 |
4 | 74 | 0.944 | Independent component analysis | Independent component analysis | Nonlinear interactions | 1997 |
5 | 59 | 0.948 | Neural networks | Conjugate Gradient | Nonlinear interactions | 1991 |
6 | 49 | 0.954 | Neural networks | Periodic solution | Nonlinear interactions | 2003 |
7 | 47 | 0.934 | Neural networks | Kernel method | Nonlinear interactions | 1999 |
8 | 42 | 0.929 | Spatio-temporal receptive fields | Visual cortex | Nonlinear interactions | 1995 |
9 | 40 | 0.891 | Computational model | Weakly electric fish | Nonlinear interactions | 1996 |
10 | 37 | 0.982 | Extreme learning machine | Extreme learning machine | Nonlinear interactions | 2008 |
11 | 36 | 0.977 | Class | Fuzzy systems | Nonlinear interactions | 2013 |
References | Year | Strength | Begin | End | 1992–2018 |
---|---|---|---|---|---|
Hertz J, 1991, Intro Theory Neural, V, P | 1991 | 15.3824 | 1994 | 1999 | |
Hornik K, 1989, Neural Networks, V2, P359 | 1989 | 12.3758 | 1994 | 1997 | |
Haykin S, 1994, Neural Networks Comp, V, P | 1994 | 10.6235 | 1996 | 2002 | |
Cybenko G, 1989, Mathematics Of Control, And Systems | 1989 | 8.6326 | 1996 | 1997 | |
Rumelhart De, 1986, Parallel Distributed, V1, P318 | 1986 | 7.5576 | 1993 | 1994 | |
Poggio T, 1990, P IEEE, V78, P1481 | 1990 | 7.4954 | 1995 | 1998 | |
Chen S, 1991, IEEE T Neural Networ, V2, P302 | 1991 | 7.2449 | 1996 | 1999 | |
Moody J, 1989, Neural Computation, V1, P281 | 1989 | 7.2193 | 1995 | 1997 | |
Pao Y-H, 1989, Adaptive Pattern Rec, V, P | 1989 | 7.1573 | 1994 | 1997 | |
Kohonen T, 1990, P IEEE, V78, P1464 | 1990 | 6.3202 | 1996 | 1998 | |
Fahlman S E, 1990, Adv Neural Informati, V2, P524 | 1990 | 6.3202 | 1996 | 1998 | |
Narendra K S, 1990, Ieee Trans Neural Netw, V1, P4 | 1990 | 6.2445 | 1995 | 1998 | |
Funahashi K, 1989, Neural Networks, V2, P183 | 1989 | 5.8544 | 1994 | 1997 | |
Rumelhart De, 1986, Parallel Distributed, V1, P | 1986 | 5.4868 | 1992 | 1994 | |
Kohonen Teuvo, 1989, Self Org Ass Memory, V, P | 1989 | 5.3089 | 1996 | 1997 | |
Waibel A, 1989, Ieee T Acoust Speech, V37, P328 | 1989 | 5.2033 | 1994 | 1997 | |
Jacobs Ra, 1988, Neural Networks, V1, P295 | 1988 | 4.6453 | 1994 | 1996 | |
Xu L, 1994, Neural Networks, V7, P609 | 1994 | 4.3694 | 1995 | 1998 | |
Bishop C, 1991, Neural Computation, V3, P579 | 1991 | 4.0149 | 1995 | 1996 | |
Baum E B, 1989, Neural Computation, V1, P151 | 1989 | 3.9806 | 1996 | 1997 | |
Ritter H, 1992, Neural Computation S, V, P | 1992 | 3.7901 | 1996 | 1998 | |
Battiti R, 1992, Neural Comput, V4, P141 | 1992 | 3.5404 | 1994 | 1999 | |
Barnard E, 1992, Ieee T Neural Networ, V3, P232 | 1992 | 3.5404 | 1994 | 1999 | |
Ku Cc, 1995, Ieee T Neural Networ, V6, P144 | 1995 | 3.521 | 1997 | 2000 | |
Rumelhart De, 1986, Nature, V323, P533 | 1986 | 3.4325 | 1993 | 1994 | |
Drago Gp, 1992, Ieee T Neural Networ, V3, P627 | 1992 | 3.4191 | 1996 | 2000 | |
Girosi F, 1995, Neural Comput, V7, P219 | 1995 | 3.4191 | 1996 | 2000 | |
Kohonen T, 1988, Self Org Ass Memory, V, P | 1988 | 3.3453 | 1995 | 1996 | |
Broomhead D S, 1988, Complex Systems, V2, P321 | 1988 | 3.3453 | 1995 | 1996 | |
Hornik K, 1990, Neural Networks, V3, P551 | 1990 | 3.3453 | 1995 | 1996 |
Journal | Induction Year | TP (10 Years) | TC (10 Years) | CPP | Impact Factor |
---|---|---|---|---|---|
Information Sciences (INS) | 1968 | 5125 | 102,308 | 20.0 | 4.832 |
Soft Computing (SC) | 1997 | 1620 | 14,096 | 8.7 | 2.472 |
Knowledge-Based Systems (KBS) | 1987 | 2092 | 31,516 | 15.1 | 4.529 |
Engineering Applications of Artificial Intelligence (EAAI) | 1988 | 1617 | 22,107 | 13.7 | 2.894 |
IEEE Transactions on Fuzzy Systems (IEEE TFS) | 1993 | 1186 | 42,013 | 35.4 | 7.651 |
Applied Soft Computing (ASOC) | 2001 | 3581 | 56,584 | 15.8 | 3.541 |
Neurocomputing (NC) | 1989 | 7954 | 63,491 | 7.98 | 3.317 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janmaijaya, M.; Shukla, A.K.; Abraham, A.; Muhuri, P.K. A Scientometric Study of Neurocomputing Publications (1992–2018): An Aerial Overview of Intrinsic Structure. Publications 2018, 6, 32. https://doi.org/10.3390/publications6030032
Janmaijaya M, Shukla AK, Abraham A, Muhuri PK. A Scientometric Study of Neurocomputing Publications (1992–2018): An Aerial Overview of Intrinsic Structure. Publications. 2018; 6(3):32. https://doi.org/10.3390/publications6030032
Chicago/Turabian StyleJanmaijaya, Manvendra, Amit K. Shukla, Ajith Abraham, and Pranab K. Muhuri. 2018. "A Scientometric Study of Neurocomputing Publications (1992–2018): An Aerial Overview of Intrinsic Structure" Publications 6, no. 3: 32. https://doi.org/10.3390/publications6030032
APA StyleJanmaijaya, M., Shukla, A. K., Abraham, A., & Muhuri, P. K. (2018). A Scientometric Study of Neurocomputing Publications (1992–2018): An Aerial Overview of Intrinsic Structure. Publications, 6(3), 32. https://doi.org/10.3390/publications6030032