Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics
Abstract
:1. Historical Perspectives
“Any serious pulp disease generally induces intracellular pressure in the pulp chamber and thrombi or strangulation in the apical vessels; the pulp tissue degenerates […]” [25].
2. Transitional Perspectives
- A culture is a dependable indicator of the microbiological status of the root canal
- Use of the culture acts as a check on an aseptic technique
- Culturing is useful for teaching purposes
- The use of the culture technique impresses the patient as being “scientific”
- The culture provides a check on the thoroughness of the canal preparation
- A negative culture allows for filling at the next visit
- Sampling for bacteria was significantly hindered by inaccessible areas of the root canal system
- Some critical species could be lost in transfers, allowing for overgrowth of opportunistic bacteria and contamination of the sample
- Lack of adequacy and appropriateness of the culture media, and failure to provide the necessary growth factors to enable bacteria to survive once they were obtained from the root canal
- Species could be uncultivable based on the techniques and materials used
- Bacterial identification was expensive, time-consuming, and for many species their taxonomy could not be defined
3. Contemporary Perspectives
3.1. Anachoresis
3.2. Biofilms
- Self-organization (autopoiesis),
- Resistance to environmental perturbations (homeostasis),
- Exhibition of synergy, and
- Responsiveness to environmental changes as a unit in communal fashion.
- Transport of microbe to substrate surface which is mediated by fimbriae, pili, flagella and extracellular polysaccharides (glycocalyx).
- Initial non-specific microbial–substrate adherence which occurs due to combination of electrostatic attraction, covalent and hydrogen bonding, dipole and hydrophobic interaction.
- Specific microbial substrate adherence phase. In this phase, adhesin or ligand on the bacterial cell surface binds to receptors on the substrate.
3.3. Dentinal Tubules and Bacteria
3.4. Extraradicular Infections
- Fusobacterium nucleatum
- Actinomyces spp.
- Prevotella spp.
- Treponema spp.
- Porphyromonas endodontalis and gingivalis
- Propionibacterium propionicum
- Streptococcus/Staphylococcus
- Parvimonas micra
- Bacteroides ureolytiocus
- Clostriduim botulinum and sordelli
- Campylobacter
- Pseudoramibacter alactolyticus
4. Observations and Conclusions
Author Contributions
Funding
Conflicts of Interest
Support in All Phases of Preparation
References
- Miller, W.H. Gangrenous tooth-pulps as centers of infection. Dent. Cosm. 1888, 30, 213–214. [Google Scholar]
- Miller, W.H. The human mouth as a focus of infection. Dent. Cosm. 1891, 33, 689–713. [Google Scholar] [CrossRef]
- Hunter, W. Oral sepsis as a cause of disease. Br. Med. J. 1900, 2, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Hunter, W. Oral Sepsis; Cassell and Company, Ltd.: London, UK, 1901. [Google Scholar]
- Hunter, W.; Goadby, K.W.; Godlee, R.J.; Dalton, N.; Goodall, E.W.; Thomson, S.; Tilley, H.; Arkövy, J.; Turner, J.G.; Bennett, N.G.; et al. Discussion on oral sepsis as a cause of disease in relation to general medicine. Br. Med. J. 1904, 2, 1358–1371. [Google Scholar]
- Hunter, W. The role of sepsis and of antisepsis in medicine. Lancet 1911, 1, 79–86. [Google Scholar]
- Hunter, W. The role of sepsis and of antisepsis in medicine. Dent. Cosm. 1918, 60, 585–602. [Google Scholar]
- Billings, F. Chronic focal infections and their etiologic relations to arthritis and nephritis. Arch. Intern. Med. 1912, 9, 484–498. [Google Scholar] [CrossRef]
- O’Reilly, P.G.; Claffey, N.M. A history of oral sepsis as a cause of disease. Periodontology 2000, 23, 13–18. [Google Scholar] [CrossRef]
- Buckley, J.P. Opening address. Trans. Panama Pac. Dent. Cong. 1915, 2, 307–313. [Google Scholar]
- Ulrich, H.L. Some medical aspects of certain mouth infections. Dent. Rev. 1914, 28, 1135–1144. [Google Scholar]
- Price, W.A. Dental Infections, Oral and Systemic; Penton Press Co: Cleveland, OH, USA, 1923. [Google Scholar]
- Price, W.A. Dental Infections and the Degenerative Diseases; Penton Press Co: Cleveland, OH, USA; 1923. [Google Scholar]
- Rosenow, E.C. Studies on focal infection, elective localization and cataphoretic velocity of streptococci. Dent. Cosm. 1934, 76, 721–744. [Google Scholar]
- Billings, F. Focal Infection; D Appleton & Co.: New York, NY, USA, 1916. [Google Scholar]
- Eastlick, K. Evaluation of the effect of dental foci of infection on health. J. Am. Dent. Assoc. 1951, 42, 615–697. [Google Scholar]
- Rickert, U.G.; Dixon, C.M. The controlling of root surgery. In Transactions of the Eighth International Dental Congress, Section III; Fédération Dentaire Internationale: Paris, France, 1931; pp. 15–22. [Google Scholar]
- Goldman, M.; Pearson, A.H. A preliminary investigation of the “hollow tube” theory in endodontics: Studies with neotetrazolium. J. Oral Ther. Pharmacol. 1965, 1, 616–626. [Google Scholar]
- Torneck, C.D. Reaction of rat connective tissue to polyethylene tube implants. Part. I. Oral Surg. Oral Med. Oral Pathol. 1966, 21, 379–387. [Google Scholar] [CrossRef]
- Torneck, C.D. Reaction of rat connective tissue to polyethylene tube implants. Part. II. Oral Surg. Oral Med. Oral Pathol. 1967, 24, 674–683. [Google Scholar] [CrossRef]
- Phillips, J.M. Rat connective tissue response to hollow polyethylene tube implants. J. Can. Dent. Assoc. 1967, 33, 59–64. [Google Scholar] [PubMed]
- Grossman, L.I. History of the Philadelphia Root Canal Study Club: 1939. J. Endod 1981, 8, 41–42. [Google Scholar] [CrossRef]
- Amir, F.; Gutmann, J.L. The strangulation theory—A strangled concept. J. Hist. Dent. 2001, 49, 135. [Google Scholar] [PubMed]
- Brown, A.J. Strangulated nerve. Dent. Cosm. 1894, 36, 467–469. [Google Scholar]
- Grieves, C.J. The clinical and radiographic dental aspect of focal infection. Dent. Cosm. 1922, 64, 29–936. [Google Scholar]
- Boling, L.R.; Robinson, H.G.B. Vascular changes in inflamed dental pulp. J. Dent. Res. 1938, 17, 310. [Google Scholar]
- Van Hassel, H.J. Physiology of the human dental pulp. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 126–134. [Google Scholar] [CrossRef]
- Grossman, L.I. Root Canal Therapy; Lea & Febiger: Philadelphia, PA, USA, 1940. [Google Scholar]
- LaRoche, M. The Importance of bacterial findings in relation to the treatment of infected teeth. J. Allied Dent. Soc. 1918, 13, 154–156. [Google Scholar]
- Appleton, J.L.T. A note on the clinical value of bacteriologically controlling the treatment of periapical infection. Dent. Cosm. 1932, 74, 798–800. [Google Scholar]
- Bullreid, A. Bacteriologic studies of apical infection. Br. Dent. J. 1931, 52, 105–114, 145–151. [Google Scholar]
- MacPhee, G. The problem of the pulpless tooth. Br. Dent. J. 1936, 60, 119–125. [Google Scholar]
- Prader, F. Der bakteriologische Test in der Wurzelbehandlung. Schweiz. Mschr. Zahnheilk. 1937, 47, 35–59. [Google Scholar]
- Kanner, O. How may bacteria enter the pulps of intact teeth. J. Dent. Res. 1938, 17, 47–52. [Google Scholar] [CrossRef]
- Buchbinder, M. Results of culturing root canals by simple anaerobic method. J. Dent. Res. 1940, 19, 426. [Google Scholar]
- Morse, F.W., Jr.; Yates, M.F. Follow-up studies of root filled teeth in relation to bacteriologic findings. J. Am. Dent. Assoc. 1941, 28, 956–971. [Google Scholar] [CrossRef]
- Hayes, R. Clinical and bacteriological study of 340 pulp therapy cases. J. Dent. Res. 1943, 22, 301–307. [Google Scholar] [CrossRef]
- Shay, D. The selection of a suitable medium for culturing root canals. J. Dent. Res. 1947, 26, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Appleton, J.L.T., Jr. Bacteriologic Infection with Special Reference to Dental Practice; Lea & Febiger: Philadelphia, PA, USA, 1950. [Google Scholar]
- Alin, K.; Agren, E. The bacterial flora of odontogenic infections and its sensitivity to antibiotics. Acta Odontol. Scand. 1954, 12, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Cran, J.A., I. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment. Aust. J. Dent. 1954, 58, 291–296. [Google Scholar] [CrossRef]
- Cran, J.A., II. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment. Aust. J. Dent. 1955, 59, 82–84. [Google Scholar] [CrossRef]
- Cran, J.A., III. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment. Aust. Dent. J. 1956, 1, 161–164. [Google Scholar] [CrossRef]
- Leavitt, J.M.; Naidorf, I.J.; Shugaevesky, P. Aerobes and anaerobes in endodontics. Part I. The undetected anaerobes in endodontics. Part II. Sensitive culture medium for the detection of both aerobes and anaerobes. N. Y. State Dent. J. 1955, 25, 377–382. [Google Scholar]
- Strindberg, L.Z. The dependence of the results of pulp therapy on certain factors. An analytic study based on radiographic and clinical follow-up examination. Acta Odontol. Scand. 1956, 14 (Suppl 21), 1–175. [Google Scholar]
- Engström, B.; Frostell, B. A study of the bacteriology of the non-vital pulp in cases of intact pulp chambers. Svensk. Tandläk. T. 1957, 50, 287–301. [Google Scholar]
- Glasser, M.M. Bacteriologic control in endodontics. Oral Surg. 1958, 11, 1278–1283. [Google Scholar] [CrossRef]
- Grossman, L.I. Bacteriologic status in periapical tissues in 150 cases of infected pulpless teeth. J. Dent. Res. 1959, 38, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Shovelton, D.S.; Sidaway, D.A. Infection in root canals. Br. Dent. J. 1960, 108, 115–118. [Google Scholar]
- Chadwick, P.; Slade, J.H.R. Identification of bacteria by specific antibody conjugated with fluorescein isothiocyanate. J. Hyg. Camb. 1960, 58, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Prinz, H. Diseases of the Soft Structures of the Teeth and Their Treatment; Lea & Febiger: Philadelphia, PA, USA, 1928. [Google Scholar]
- Kakehashi, S.; Stanley, H.R.; Fitzgerald, R.J. The effects of surgical exposures of dental pulps in germ free and conventional laboratory rats. Oral Surg. 1965, 20, 340–349. [Google Scholar] [CrossRef]
- Makkes, P.C.; Thoden van Velzen, S.K.; Wesselink, P.R. Reactions of the living organism to dead and fixed tissue. J. Endod. 1978, 4, 17–21. [Google Scholar] [CrossRef]
- Möller, Å.J.R. Microbiological Examination of Root Canals and Periapical Tissues of Human Teeth. Odontol. Tidskr. 1966, 74 (Suppl), 1–380. [Google Scholar]
- Winkler, K.C.; Van Amerongen, J. Bacteriologic results from 4,000 root canal cultures. Oral Surg. Oral Med. Oral Pathol. 1959, 12, 857–875. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, M.; Wald, A.H. Improved method for culturing root canals. J. Am. Dent. Assoc. 1939, 26, 1697–1699. [Google Scholar] [CrossRef]
- Slack, G.L. The microbiology of the pulp and periapical tissues. In Transactions of the Second International Conference on Endodontics; University of Pennsylvania: Philadelphia, PA, USA, 1958; pp. 39–52. [Google Scholar]
- Bergenholtz, G.; Dahlén, G. Advances in the study of endodontic infections: Introduction. Endod. Top. 2004, 9, 1–4. [Google Scholar] [CrossRef]
- Onderdonk, T.W. The treatment of unfilled root canals. Int. Dent. J. 1901, 22, 20–22. [Google Scholar]
- Coolidge, E.D. Diagnosis and treatment of conditions resulting from diseased dental pulps. J. Natl. Dent. Assoc. 1919, 6, 337–341. [Google Scholar] [CrossRef]
- Lane, A.J.; Grossman, L.I. Culturing root canals by endodontic diplomates: A report based on a questionnaire. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 461–466. [Google Scholar] [CrossRef]
- Fish, E.W.; Maclean, I.H. The distribution of oral streptococci in the tissues. Br. Dent. J. 1936, 61, 336–363. [Google Scholar]
- Fish, E.W. Bone infection. J. Am. Dent. Assoc. 1939, 26, 691–712. [Google Scholar] [CrossRef]
- Grossman, L.I.; Stewart, G.C. An effective penicillin-streptomycin suspension for endodontic treatment. Oral Surg. Oral Med. Oral Pathol. 1949, 2, 374–378. [Google Scholar] [CrossRef]
- Buchbinder, M.; Bartels, H.A. Criticism of the use of root canal cultures in evaluating antibiotic therapy. Oral Surg. Oral Med. Oral Pathol. 1951, 4, 886–890. [Google Scholar] [CrossRef]
- Bender, I.B.; Seltzer, S. The advantages and disadvantages of the use of antibiotics in endodontics. Oral Surg. Oral Med. Oral Pathol. 1954, 9, 993–997. [Google Scholar] [CrossRef]
- Grossman, L.I.; Parris, L.; Cobe, H. Antibacterial effect of residual bacitracin during culturing from root canal. Oral Surg. Oral Med. Oral Pathol. 1957, 10, 426–429. [Google Scholar] [CrossRef]
- Crawford, J.J.; Shankle, R.J. Application of newer methods to study the importance of root canal and oral microbiota in endodontics. Oral Surg. Oral Med. Oral Pathol. 1961, 14, 1109–1123. [Google Scholar] [CrossRef]
- Seltzer, S.; Bender, I.B.; Turkenkopf, S. Factors affecting successful repair after root canal therapy. J. Am. Dent. Assoc. 1963, 67, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Bender, I.B.; Seltzer, S.; Turkenkopf, S. To culture or not to culture. Oral Surg. Oral Med. Oral Pathol. 1964, 18, 527–540. [Google Scholar] [CrossRef]
- Morse, D.R. The endodontic culture technique: A critical evaluation. Oral Surg. Oral Med. Oral Pathol. 1970, 30, 540–544. [Google Scholar] [CrossRef]
- Theilade, E. The microbiology of the necrotic pulp. In Textbook of Endodontology; Bergenholtz, G., Hørsted-Bindslev, P., Reit, C., Eds.; Blackwell Munksgaard: Oxford, UK, 2003; pp. 111–129. [Google Scholar]
- Crowley, M. The culture medium in relation to endodontic culturing. In Transactions of the Third International Conference on Endodontics; University of Pennsylvania: Philadelphia, PA, USA, 1963; pp. 72–79. [Google Scholar]
- Naidorf, I.J. Discussion—The culture medium in relation to endodontic culturing. In Transactions of the Third International Conference on Endodontics; University of Pennsylvania: Philadelphia, PA, USA, 1963; pp. 80–82. [Google Scholar]
- Berg, J.-O.; Nord, C.-E. A method for isolation of anaerobic bacteria from endodontic specimens. Scand. J. Dent. Res. 1973, 81, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Zielke, D.R.; Heggers, J.P.; Harrison, J.W. A statistical analysis of anerobic versus aerobic culturing in endodontic therapy. Oral Surg. Oral Med. Oral Pathol. 1976, 42, 830–837. [Google Scholar] [CrossRef]
- Sundqvist, G. Bacteriological Studies of Necrotic Dental pulps. No. 7. Odontological Dissertations. Ph.D. Thesis, Department of Oral Microbiology, Umeå University, Umeå, Sweden, 1976. [Google Scholar]
- Wittgow, W.C., Jr.; Sabiston, C.B., Jr. Microorganisms from pulpal chambers of intact teeth with necrotic pulps. J. Endod. 1975, 1, 168–171. [Google Scholar] [CrossRef]
- Kantz, W.E.; Henry, C.A. Isolation and classification of anaerobic bacteria from intact pulp chambers of non-vital teeth in man. Arch. Oral. Biol. 1974, 19, 91–96. [Google Scholar] [CrossRef]
- Shah, H.N.; Collins, D.M. Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. Int. J. Syst. Bacteriol. 1990, 40, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Conrads, G.; Gharbia, S.E.; Gulabivala, K.; Lampert, F.; Shah, H.N. The use of a 16S rDNA directed PCR for the detection of endodontopathogenic bacteria. J. Endod 1997, 23, 433–438. [Google Scholar] [CrossRef]
- Munson, M.A.; Pitt-Ford, T.; Chong, B.; Weightman, A.; Wade, W.G. Molecular and cultural analysis of the microflora associated with endodontic infections. J. Dent. Res. 2002, 11, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Dahle, U.R.; Titterud Sunde, P.; Tronstad, L. Treponemas and endodontic infections. Endod. Top. 2003, 6, 160–170. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Rôças, I.N. Polymerase chain reaction detection of Propionibacterium propionicus and Actinomyces radicidentis in primary and persistent endodontic infections. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 96, 215–222. [Google Scholar] [CrossRef]
- Sakamoto, M.; Rôças, I.N.; Siqueira, J.F., Jr.; Benno, Y. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol. Immunol. 2006, 21, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Vianna, M.E.; Conrads, G.; Gomes, B.P.; Horz, H.P. Quantification and characterization of Synergistes in endodontic infections. Oral Microbiol. Immunol. 2007, 22, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, L.L.; Vaishnavi, C. Endodontic microbiology. J. Conserv. Dent. 2010, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Sakko, M.; Tjäderhane, L.; Rautemaa-Richardson, R. Microbiology of root canal infections. Prim. Dent. J. 2016, 5, 84–89. [Google Scholar] [PubMed]
- Claesson, R.; Sjögren, U.; Esberg, A.; Brundin, M.; Granlund, M. Actinomyces radicidentis and Actinomyces haliotis, coccoid Actinomyces species isolated from the human oral cavity. Anaerobe 2017, 48, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.J., Jr.; Rôças, I.N. Molecular analysis of endodontic infections. In Endodontic Microbiology, 2nd ed.; Fouad, A., Ed.; Wiley & Sons, Inc.: Hoboken NJ, USA, 2017. [Google Scholar]
- Fouad, A. Endodontic Microbiology, 2nd ed.; Wiley & Sons, Inc.: Hoboken NJ, USA, 2017. [Google Scholar]
- Sundqvist, G. Taxonomy, ecology and pathogenicity of the root canal flora. Oral Surg. Oral Med. Oral Pathol. 1994, 78, 522–530. [Google Scholar] [CrossRef]
- Özok, A.R.; Persoon, I.F.; Huse, S.M.; Keijser, B.J.; Wesselink, P.R.; Crielaard, W.; Zaura, E. Ecology of the microbiome of the infected root canal system: A comparison between apical and coronal root segments. Int. Endod. J. 2012, 45, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Rôças, I.N.; Alves, F.R.; Santos, A.L.; Rosado, A.S.; Siqueira, J.F., Jr. Apical root canal microbiota as determined by reverse-capture checkerboard analysis of cryogenically ground root samples from teeth with apical periodontitis. J. Endod. 2010, 36, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.J., Jr.; Alves, F.R.; Rôças, I.N. Pyrosequencing analysis of the apical root canal microbiota. J. Endod. 2011, 37, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.J., Jr.; Rôças, I.N.; Alves, F.R.; Silva, M.G. Bacteria in the apical root canal of teeth with primary apical periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Gibbons, R.J.; Dale, A.C.; Bortnick, L.; Rosenthal, E.; MacDonald, J.B. The microbiota of the gingival crevice area of man. I. Total microscopic and viable counts and counts of specific organisms. Arch. Oral Biol. 1963, 8, 275–280. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Scoransky, S.S.; Sawyer, S.; Kapsimalis, G.; MacDonald, J.B. The microbiota of the gingival crevice area of man. II. The predominant cultivable organisms. Arch. Oral Biol. 1963, 8, 281–289. [Google Scholar] [CrossRef]
- Spratt, D.A. Significance of bacterial identification by molecular biology. Endod. Top. 2004, 9, 5–14. [Google Scholar] [CrossRef]
- Zandi, H.; Kristoffersen, A.K.; Ørstavik, D.; Rôças, I.N.; Siqueira, J.; Enersen, M. Microbial analysis of endodontic infections in root-filled teeth with apical periodontitis before and after irrigation using pyrosequencing. J. Endod. 2018, 44, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sanhueza, G.; Bello-Toledo, H.; González-Rocha, G.; Gonçalves, A.T.; Valenzuela, V.; Gallardo-Escárate, C. Metagenomic study of bacterial microbiota in persistent endodontic infections using Next-generation sequencing. Int. Endod. J. 2018. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Luo, T.; Lee, K.H.; Guerreiro, D.; Botero, T.M.; McDonald, N.J.; Rickard, A.H. Deciphering endodontic microbial communities by next-generation sequencing. J. Endod. 2018, 44, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Widmer, C.; Skutas, J.; Easson, C.; Lopez, J.V.; Torneck, C.; Flax, M.; Sayin, T.C. Culture-independent characterization of the microbiome of health pulp. J. Endod. 2018, 44, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Buchan, B.W.; Ledeboer, N.A. Emerging technologies for the clinical microbiology laboratory. Clin. Microbiol. Rev. 2014, 27, 783–822. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.B.G.; Boling, L.R. The anachoretic effect in pulpitis I. Bacteriologic studies. J. Am. Dent. Assoc. 1941, 28, 268–282. [Google Scholar] [CrossRef]
- Csernyei, J. Anacoric effect of chronic periapical inflammations. J. Dent. Res. 1939, 18, 527–531. [Google Scholar] [CrossRef]
- Gier, R.E.; Mitchell, D.F. Anachoretic effect of pulpitis. J. Dent. Res. 1968, 47, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Roghanizadeh, L. Partial necrosis consequence of the infection spreading from an adjacent apical periodontitis: A case report. Iran. Endod. J. 2018, 13, 420–423. [Google Scholar] [PubMed]
- Cowan, M.; Taylor, K.G.; Doyle, R.J. Energetics of the initial phase of adhesion of streptococcus sanguis to hydroxyapatite. J. Bacteriol. 1987, 169, 2995–3000. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Lewandowski, Z.; DeBeer, D.; Caldwell, D.; Korber, D.; James, G. Biofilms, the customized microniche. J. Bacteriol. 1994, 176, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, D.E.; Atuku, E.; Wilkie, D.C.; Wivcharuk, K.P.; Karthikeyan, S.; Korber, D.R.; Schmid, D.F.; Wolfaardt, G.M. Germ theory vs. community theory in understanding and controlling the proliferation of biofilms. Adv. Dent. Res. 1997, 11, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.G.; Parsek, M.R.; Pearson, J.P.; Iglewski, B.H.; Costerton, J.W.; Greenberg, E.P. The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 1998, 280, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilm: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S. Battling biofilms. Sci. Am. 2001, 285, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, P.; Maira-Litran, T.; McBain, A.J.; Rickard, A.H.; Whyte, F.W. The physiology and collective recalcitrance of microbial biofilm communities. Adv. Microb. Physiol. 2002, 46, 202–256. [Google Scholar] [PubMed]
- Marsh, P.D. Dental plaque as a microbial biofilm. Caries Res. 2004, 38, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Invasion of dentinal tubules by root canal bacteria. Endod. Top. 2004, 9, 52–65. [Google Scholar] [CrossRef]
- Wuertz, S.; Okabe, S.; Hausner, M. Microbial communities and their interactions in biofilm systems: An overview. Water Sci. Technol. 2004, 49, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Mazmanian, S.K. Has the microbiota played a critical role in the evolution of the adapative immune system. Science 2010, 330, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Signoretti, F.G.; Endo, M.S.; Gomes, B.P.; Montagner, F.; Tosello, F.B.; Jacinto, R.C. Persistent extraradicular infection in root-filled asymptomatic human tooth: Scanning electron microscopic analysis and microbial investigation after apical microsurgery. J. Endod. 2011, 37, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Biofilm–substrate interactions from initial adhesion to complex interactions and biofilm maturity. Endod. Top. 2012, 22, 50–57. [Google Scholar] [CrossRef]
- Diaz, P.I. Microbial diversity and interactions in subgingival biofilm communities. Front. Oral Biol. 2012, 15, 17–40. [Google Scholar] [PubMed]
- Chávez de Paz, L.E. Development of a multispecies biofilm community by four root canal bacteria. J. Endod. 2012, 38, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Dufour, D.; Leung, V.; Levesque, C.M. Bacterial biofilm: Structure, function, and antimicrobial resistance. Endod. Top. 2012, 22, 3–10. [Google Scholar]
- Siqueira, J.J., Jr.; Rôças, I.N.; Ricucci, D. Biofilms in endodontic infection. Endod. Top. 2012, 22, 33–49. [Google Scholar] [CrossRef]
- Chávez de Paz, L.E.; Davies, J.R.; Bergenholtz, G.; Svensäter, G. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria. Int. Endod. J. 2015, 48, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.F., Jr.; Lopes, W.S.; Vieira, A.R.; Rôças, I.N. Extraradicular infection as the cause of persistent symptoms: A case series. J. Endod. 2015, 41, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Candeiro, G.T.; Bugea, C.; Siqueira, J.F., Jr. Complex apical Intraradicular infection and extraradicular mineralized biofilms as the cause of wet canals and treatment failure: Report of 2 cases. J. Endod. 2016, 42, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, P.; Romero, M.; Vera, J.; Daood, U.; Khan, A.U.; Yan, A.; Cheung, G.S.P. Biofilms in endodontics—Current status and future directions. Int. J. Mol. Sci. 2017, 18, 1748. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Pal, S. Cross-species communication in bacterial world. J. Cell Commun. Signal. 2017, 11, 87–190. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M.; Jenkinson, H.F. Invasion of dentinal tubules by oral bacteria. Crit. Rev. Oral Biol. Med. 2002, 13, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Yang, J.; Gutmann, J.L.; Fan, M. Root canal systems in mandibular first premolars with C-shaped root configurations. Part I: Microcomputed tomography mapping of the radicular groove and associated root canal cross-sections. J. Endod. 2008, 34, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Tay, F.R.; Gutmann, J.L.; Fan, B.; Fan, W.; Huang, Z.; Sun, Q. Micro computed tomography assessment of apical accessory canal morphologies. J. Endod. 2016, 42, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Bacterial adhesins—Their role in tubule invasion and endodontic disease. Aust. Endod. J. 2002, 28, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Quah, S.Y.; Bergenholtz, G.; Tan, K.S. Fusobacterium nucleatum induces cytokine production through toll-like-receptor-independent mechanism. Int. Endod. J. 2014, 47, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Brittan, J.L.; Sprague, S.V.; Huntley, S.; Bell, C.N.; Jenkinson, H.F.; Love, R.M. Collagen-like peptide sequences inhibit bacterial invasion of root dentine. Int. Endod. J. 2016, 49, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Ando, N.; Hoshino, E. Predominant obligate anaerobes invading the deep layers of root dentin. Int. Endod. J. 1990, 23, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; De Uzeda, M.; Fonseca, M.E. A scanning electron microscopic evaluation of in vitro dentinal tubules penetration by selected anaerobic bacteria. J. Endod. 1996, 22, 308–310. [Google Scholar] [CrossRef]
- Peters, L.B.; Wesselink, P.R.; Buijs, J.F.; Van Winkelhoff, A.J. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J. Endod. 2001, 27, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Siqueira, J.F., Jr.; Ricucci, D.; Lopes, W.S. Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: A case report. J. Endod. 2012, 38, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Tronstad, L.; Barnett, F.; Riso, K.; Slots, J. Extraradicular endodontic infections. Endod. Dent. Traumatol. 1987, 3, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Tronstad, L.; Sunde, P.T. The evolving new understanding of endodontic infections. Endod. Top. 2003, 6, 57–77. [Google Scholar] [CrossRef]
- Tronstad, L.; Kreshtool, D.; Barnett, F. Microbiological monitoring and results of treatment of extraradicular endodontic infection. Endod. Dent. Traumatol. 1990, 6, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Gatti, J.J.; Dobeck, J.M.; Smith, C.; White, R.R.; Socransky, S.S.; Skobe, Z. Bacteria of asymptomatic periradicular endodonticlesions identified by DNA–DNA hybridization. Endod. Dent. Traumatol. 2000, 16, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Sunde, P.; Olsen, I.; Lind, P.O.; Tronstad, L. Extraradicular infection: A methodological study. Endod. Dent. Traumatol. 2000, 16, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Sunde, P.T.; Olsen, I.; Debelian, G.J.; Tronstad, L. Microbiota of periapical lesions refractory to endodontic therapy. J. Endod. 2002, 28, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, Y.; Chen, W.; Zhu, C.; Liang, J. Bacterial flora and extraradicular biofilm associated with the apical segment of teeth with post-treatment apical periodontitis. J. Endod. 2012, 38, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Grgurević, J.; Ivanišević Malčić, A.; Tambić Andrašević, A.; Prpić Mehičić, G.; Kuzmac, S.; Jukić, S. Frequency of bacetrial content finding in persistant periapical lesions. Acta Stomatol. Croat. 2017, 51, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, G.; Figdor, D.; Persson, S.; Sjögren, U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg. Oral Med. Oral Pathol. 1998, 85, 86–93. [Google Scholar] [CrossRef]
- Ricucci, D.; Lopes, W.S.P.; Loghin, S.; Rôças, I.N.; Siqueira, J.K., Jr. Large bacterial floc causing an independent extraradicular infection and posttreatment apical periodontitis: A case report. J. Endod. 2018, 44, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Siqueira, J.K., Jr. Apical actinomycosis as a continuum of intraradicular and extraradicular infection: Case report and critical review on its involvement with treatment failure. J. Endod. 2008, 34, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.N. On the causes of persistent apical periodontitis: A review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef] [PubMed]
- Del Fabbro, M.; Samaranayake, L.P.; Lolato, A.; Weinstein, T.; Taschieri, S. Analysis of the secondary endodontic lesions focusing on the extraradicular microorganisms: An overview. J. Investig. Clin. Dent. 2014, 5, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, W.; Jiang, Y.; Liang, J. Imaging of extraradicular biofilm using combined scanning electron microscopy and stereomicroscopy. Microsc. Res. Tech. 2013, 76, 979–983. [Google Scholar] [CrossRef] [PubMed]
- Ricucci, D.; Loghin, S.; Gonçalves, L.S.; Rôças, I.N.; Siqueira, J.F., Jr. Histobacteriologic Conditions of the Apical Root Canal System and Periapical Tissues in Teeth Associated with Sinus Tracts. J. Endod. 2018, 44, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lomçali, G.; Sen, B.H.; Cankaya, H. Scanning electron microscopic observations of apical root surfaces of teeth with apical periodontitis. Endod. Dent. Traumatol. 1996, 12, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Felippe, W.T.; Ruschel, M.F.; Felippe, G.S.; Pozzobon, M.H.; Felippe, M.C. SEM evaluation of the apical external root surface of teeth with chronic periapical lesion. Aust. Endod. J. 2009, 35, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, M.R.; Rossi, M.A.; Silva, L.A.; Ito, I.Y.; Bonifácio, K.C. EM evaluation of bacterial biofilm and microorganisms on the apical external root surface of human teeth. J. Endod. 2002, 28, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, M.R.; Rossi, M.A.; Bonifácio, K.C.; Da Silva, L.A.; Assed, S. Scanning electron microscopy of the apical structure of human teeth. Ultrastruct. Pathol. 2007, 31, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.K.; Dummer, P.M.; Wesselink, P.R. Consequences of and strategies to deal with residual post-treatment root canal infection. Int. Endod. J. 2006, 39, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Shen, Y.A. Current therapeutic options for endodontic biofilms. Endod. Top. 2012, 22, 79–98. [Google Scholar] [CrossRef]
- Portenier, I.; Waltimo, M.T.T.; Haapasalo, M. Enterococcus faecalis—The root canal survivor and ‘star’ in post-treatment disease. Endod. Top. 2003, 6, 135–139. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, L.; Brosh, Y.; Gelman, D.; Coppenhagen-Glazer, S.; Beyth, S.; Proadosu-Cohen, R.; Que, Y.-K.; Beyth, N.; Hasan, R. Targeting Enterococcus faecalis biofilms with phage therapy. App. Environ. Microbiol. 2015, 81, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
- Molander, A.; Reit, C.; Dahlen, G.; Kvist, T. Microbiological status of root-filled teeth with apical periodontitis. Int. Endod. J. 1998, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Zhang, C.F.; Chu, C.H.; Zhu, X.F. Prevalence of Enterococcus faecalis in saliva and filled root canals of teeth associated with apical periodontitis. Int. J. Oral. Sci. 2012, 4, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N.; Ricucci, D.; Hülsmann, M. Causes and management of post-treatment apical periodontitis. Br. Dent. J. 2014, 216, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Waltimo, T.; Trope, M.; Haapasalo, M.; Orstavik, D. Clinical efficacy of treatment procedures in endodontic infection control and one-year follow-up of periapical healing. J. Endod. 2005, 31, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Vidana, R.; Sullivan, A.; Billström, H.; Ahlquist, M.; Lund, B. Enterococcus faecalis infection in root canals—Host-derived or exogenous source? Lett. Appl. Microbiol. 2011, 52, 109–115. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Reference |
---|---|---|
La Roche M. | 1918 | The importance of bacteriologic findings in relation to the treatment of infected teeth. J. Allied. Dent. Sci. 13, 154–156 [29]. |
Appleton Jr., JLT. | 1927 | Bacteriologic control of the treatment of periapical infection. Dent. Item Int. 49, 589–597 [30]. |
Bullreid A. | 1931 | Bacteriologic studies of apical infection. Brit. Dent. J. 52, 105–114; 145–151 [31]. |
MacPhee G. | 1936 | The problem of the pulpless tooth. Brit. Dent. J. 60, 119–125 [32]. |
Prader F. | 1937 | Der bakteriologische Test in der Wurzelbehandlung. Schweiz Mschr Zahnheilk 47, 35–59 [33]. |
Kanner O. | 1938 | How may bacteria enter the pulps of intact teeth. J. Dent. Res. 17, 47–52 [34]. |
Buchbinder M. | 1940 | Results of culturing root canals by simple anaerobic method. J. Dent. Res. 19, 426 [35]. |
Morse Jr., FW, Yates MF. | 1941 | Follow-up studies of root filled teeth in relation to bacteriologic findings. J. Am. Dent. Assoc. 28, 956–971 [36]. |
Hayes R. | 1943 | Clinical and bacteriological study of 340 pulp therapy cases. J. Dent. Res. 22, 301–307 [37]. |
Shay D. | 1947 | The selection of a suitable medium for culturing root canals. J. Dent. Res. 26, 327–333 [38]. |
Appleton Jr., JLT. | 1950 | Bacteriologic Infection with Special Reference to Dental Practice. Lea and Febiger, Philadelphia [39]. |
Alin K., Agren E. | 1954 | The bacterial flora of odontogentic infections and its sensitivity to antibiotics. Acta Odont. Scand. 12, 85–98 [40]. |
Cran JA. | 1954 | I. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment. Aust. J. Dent. 58, 291–296 [41]. |
Cran JA. | 1955 | II. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment. Aust. J. Dent. 59, 82–84 [42]. |
Cran JA. | 1956 | III. Study of the pathology and bacteriology of the pulpless tooth and its bearing on treatment Aust. J. Dent. 1, 161–164 [43]. |
Leavitt JM., Naidorf IJ., Shugaevesky P. | 1955 | Aerobes and anaerobes in endodontics. Part I. The undetected anaerobes in endodontics. Part II. Sensitive culture medium for the detection of both aerobes and anaerobes. NY State Dent. J. 2, 377–382 [44]. |
Strindberg LZ. | 1956 | The dependence of the results of pulp therapy on certain factors. An analytic study based on radiographic and clinical follow-up examination. Acta Odonto. Scand. 14, Suppl 21, 1–175 [45]. |
Engström B., Frostell G. | 1957 | A study of the bacteriology of the non-vital pulp in cases of intact pulp chambers. Svensk. Tandläk. T. 50, 287–301 [46]. |
Glasser MM. | 1958 | Bacteriologic control in endodontics. Oral Surg. 11, 1278–1283 [47]. |
Grossman LI. | 1959 | Bacteriologic status in periapical tissues in 150 cases of infected pulpless teeth. J. Dent. Res. 38, 101–104 [48]. |
Shovelton DS., Sidaway DA. | 1960 | Infection in root canals. Brit. Dent. J. 108, 115–118 [49]. |
Brain–heart infusion broth (BHI) |
Trypticase dextrose/soy broth |
Brewer’s thioglycolate medium |
Serum dextrose broth |
Hormone broth |
Rosenow’s glucose brain broth |
Rosenow’s liver broth |
Glucose ascites broth |
Prereduced supplemental brain heat infusion (PRS) |
Oxoid BHI medium |
Robertson’s cooked meat medium |
Tryptose starch yeast extract |
|
|
Gram-negative anaerobic rods |
Prevotella Porphyromonas |
Gram-positive anaerobic rods |
Pseudoramibacter alactolyticus Filifactor alocis Slackia exigua Actinomyces spp. Propionibacterium propionicum Eubacterium spp. Olsenella spp. Mogibacterium timidum |
Gram-positive cocci |
Parvimonas micra (previously Peptostreptococcus micros or Micromonas micros) Streptococcus spp. Streptococcus anginosus Streptococcus mitisi Streptococcus sanguinis Enterococcus faecalis (primarily secondary infections) |
Spirochetes |
Treponema spp. |
Species present in variable amounts |
Campylobacterspp (Gram-negative anaerobic rods) Campylobacter rectus and Campylobacter gracilis. Catonella morbi (obligate anaerobic Gram-negative rods) Veillonella parvula Capnocytophaga gingivalis Centipeda periodontii Eikenella corrodens Granulicatella adiacens Neisseria mucosa Gemella morbillorum Corynebacterium matruchotii Bifidobacterium dentium and anaerobic lactobacilli Tannerella forsythia (previously Bacteroides forsythus) Dialister (asaccharolytic obligately anaerobic Gram-negative coccobacilli) Fusobacterium nucleatum and periodonticum |
Viable but not routinely culturable (VNBC) |
Dialister oral clone BSO16 Migasphaera oral clone BSO16 Solobacterium Olsenella Eubacterium Cytophaga Bacteroidetes oral clone XO 83 Lachnospiraceae oral clone 55A-34 Lachnospiraceae oral clone MCE 7–60 Veillonella oral clone BP 1–85 Prevotella oral clone PUS 9.180 Eubacterium oral clone BP 1–89 and Other microorganisms in pulpal/periapical infections Synergistes spp. |
Fungi—Viruses |
Candida albicans Herpes spp. |
Polymerase chain reaction (PCR) Real-time PCR (RT-PCR) Quantitative PCR (qPCR) Multiplex PCR Species-specific PCR Nested PCR Microarray Checkerboard DNA (DNA hybridization) Stand displacement amplification Transcription-mediated amplification Helicase-dependent amplification Two-stage nested PCR Whole-genome sequencing (WGS) Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) MS Digital PCR Next-generation sequencing (NGS) Nucleic acid sequencing Nucleic acid amplification tests (NAAT) using thermostable polymerase (PCR) Loop-mediated isothermal amplification (LAMP) Helicase-dependent amplification (HDA) Transcription-mediated amplification (TMA) of a nucleic acid target Mass spectrometry (MS) Fluorescence spectroscopy |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutmann, J.L.; Manjarrés, V. Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics. Dent. J. 2018, 6, 49. https://doi.org/10.3390/dj6040049
Gutmann JL, Manjarrés V. Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics. Dentistry Journal. 2018; 6(4):49. https://doi.org/10.3390/dj6040049
Chicago/Turabian StyleGutmann, James L., and Vivian Manjarrés. 2018. "Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics" Dentistry Journal 6, no. 4: 49. https://doi.org/10.3390/dj6040049
APA StyleGutmann, J. L., & Manjarrés, V. (2018). Historical and Contemporary Perspectives on the Microbiological Aspects of Endodontics. Dentistry Journal, 6(4), 49. https://doi.org/10.3390/dj6040049