Functional Materials Based on Metal Hydrides
Abstract
:References
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.-W. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Ley, M.; Jepsen, L.; Lee, Y.-S.; Cho, Y.; Colbe, J.; Dornheim, M.; Rokni, M.; Jensen, J.; Sloth, M.; Filinchuk, Y.; et al. Complex hydrides for hydrogen storage—New perspectives. Mater. Today 2014, 17, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Møller, K.T.; Sheppard, D.; Ravnsbæk, D.; Buckley, C.; Akiba, E.; Li, H.-W.; Jensen, T.R. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. Energies 2017, 10, 1645. [Google Scholar] [CrossRef]
- Yu, X.; Tang, Z.; Sun, D.; Ouyang, L.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1–48. [Google Scholar] [CrossRef]
- Paskevicius, M.; Jepsen, L.; Schouwink, P.; Ĉerný, R.; Ravnsbæk, D.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T.R. Metal Borohydrides and derivatives—Synthesis, structure and properties. Chem. Soc. Rev. 2017, 46, 1565–1634. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, L.; Ley, M.; Lee, Y.; Cho, Y.; Dornheim, M.; Jensen, J.; Filinchuk, Y.; Jørgensen, J.; Besenbacher, F.; Jensen, T.R. Boron-nitrogen based hydrides and reactive composites for hydrogen storage. Mater. Today 2014, 17, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Paskevicius, M.; Hansen, B.; Jørgensen, M.; Richter, B.; Jensen, T.R. Multifunctionality of silver closo-boranes. Nat. Commun. 2017, 8, 15136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payandeh GharibDoust, S.; Dorthe, B.; Černý, R.; Jensen, T.R. Synthesis, structure and properties of bimetallic sodium rare earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd. Dalton Trans. 2017, 46, 13421–13431. [Google Scholar] [CrossRef] [PubMed]
- Schouwink, P.; Ley, M.; Tissot, A.; Hagemann, H.; Jensen, T.R.; Smrčok, L.; Černý, R. Structure and properties of complex hydride perovskite material. Nat. Commun. 2014, 5, 5706. [Google Scholar] [CrossRef] [PubMed]
- Paskevicius, M.; Ley, M.; Sheppard, D.; Jensen, T.R.; Buckley, C. Eutectic melting in metal borohydrides. Phys. Chem. Chem. Phys. 2013, 15, 19774–19789. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Li, H.-W.; Nakajima, H.; Tumanov, N.; Filinchuk, Y.; Hwang, S.-J.; Sharma, M.; Hagemann, H.; Akiba, E. Synthesis of a bimetallic dodecaborate LiNaB12H12 with outstanding superionic conductivity. Chem. Mater. 2015, 27, 5483–5486. [Google Scholar] [CrossRef]
- Hansen, B.; Paskevicius, M.; Li, H.-W.; Akiba, E.; Jensen, T.R. Metal boranes: Progress and applications. Coord. Chem. Rev. 2016, 323, 60–70. [Google Scholar] [CrossRef]
- Harries, D.; Paskevicius, M.; Sheppard, D.A.; Price, T.; Buckley, C.E. Concentrating solar thermal heat storage using metal hydrides. Proc. IEEE 2012, 100, 539–549. [Google Scholar] [CrossRef]
- Sheppard, D.A.; Paskevicius, M.; Humphries, T.D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P.A.; Teprovich, J.A., Jr.; et al. Metal hydrides for concentrating solar-thermal power energy storage. Appl. Phys. A 2016, 122, 1–15. [Google Scholar] [CrossRef]
- Javadian, P.; Sheppard, D.; Jensen, T.R.; Buckley, C. Destabilization of lithium hydride and the thermodynamic assessment of the Li–Al–H system for solar thermal energy storage. RSC Adv. 2016, 6, 94927–94933. [Google Scholar] [CrossRef]
- Puszkiel, J.; Garroni, S.; Milanese, C.; Gennari, F.; Klassen, T.; Dornheim, M.; Pistidda, C. Tetra- hydroborates: Development and potential as hydrogen storage medium. Inorganics 2017, 5, 74. [Google Scholar] [CrossRef]
- Carrillo-Bucio, J.; Tena-García, J.; Suárez-Alcántara, K. Dehydrogenation of surface-oxidized mixtures of 2LiBH4 + Al/Additives (TiF3 or CeO2). Inorganics 2017, 5, 82. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Isobe, S.; Ohki, T.; Hashimoto, N. Unique hydrogen desorption properties of LiAlH4/h-BN composites. Inorganics 2017, 5, 71. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhong, H.; Li, H.-W.; Zhu, M. A recycling hydrogen supply system of NaBH4 based on a facile regeneration process: A review. Inorganics 2018, 6, 10. [Google Scholar] [CrossRef]
- Heere, M.; GharibDoust, S.; Brighi, M.; Frommen, C.; Sørby, M.; Černý, R.; Jensen, T.; Hauback, B. Hydrogen sorption in erbium borohydride composite mixtures with LiBH4 and/or LiH. Inorganics 2017, 5, 31. [Google Scholar] [CrossRef]
- Li, G.; Matsuo, M.; Takagi, S.; Chaudhary, A.-L.; Sato, T.; Dornheim, M.; Orimo, S. Thermodynamic properties and reversible hydrogenation of LiBH4–Mg2FeH6 composite materials. Inorganics 2017, 5, 81. [Google Scholar] [CrossRef]
- Huen, P.; Paskevicius, M.; Richter, B.; Ravnsbæk, D.; Jensen, T.R. Hydrogen storage stability of nanoconfined MgH2 upon cycling. Inorganics 2017, 5, 57. [Google Scholar] [CrossRef]
- Patelli, N.; Calizzi, M.; Pasquini, L. Interface enthalpy-entropy competition in nanoscale metal hydrides. Inorganics 2018, 6, 13. [Google Scholar] [CrossRef]
- Wang, L.; Aguey-Zinsou, K.-F. Synthesis of LiAlH4 nanoparticles leading to a single hydrogen release step upon Ti coating. Inorganics 2017, 5, 38. [Google Scholar] [CrossRef]
- Sleiman, S.; Huot, J. Microstructure and hydrogen storage properties of Ti1V0.9Cr1.1 alloy with addition of x wt % Zr (x = 0, 2, 4, 8, and 12). Inorganics 2017, 5, 86. [Google Scholar] [CrossRef]
- Yang, S.; Wang, H.; Ouyang, L.; Liu, J.; Zhu, M. Improvement in the electrochemical lithium storage performance of MgH2. Inorganics 2018, 6, 2. [Google Scholar] [CrossRef]
- Weeks, J.A.; Tinkey, S.C.; Ward, P.A.; Lascola, R.; Zidan, R.; Teprovich, J.A. Investigation of the reversible lithiation of an oxide free aluminum anode by a LiBH4 solid state electrolyte. Inorganics 2017, 5, 83. [Google Scholar] [CrossRef]
- Chong, M.; Autrey, T.; Jensen, C. Lewis base complexes of magnesium borohydride: Enhanced kinetics and product selectivity upon hydrogen release. Inorganics 2017, 5, 89. [Google Scholar] [CrossRef]
- Hansen, B.; Ravnsbæk, D.; Reed, D.; Book, D.; Gundlach, C.; Skibsted, J.; Jensen, T. Hydrogen storage capacity loss in a LiBH4–Al composite. J. Phys. Chem. C 2013, 117, 7423–7432. [Google Scholar] [CrossRef]
- Frommen, C.; Sørby, M.; Heere, M.; Humphries, T.; Olsen, J.; Hauback, B. Rare earth borohydrides-crystal structures and thermal properties. Energies 2017, 10, 2115. [Google Scholar] [CrossRef]
- Mansell, S.; Liddle, S. Rare earth and actinide complexes. Inorganics 2016, 4, 31. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Denys, R.V.; Dornheim, M.; Felderhoff, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; Jongh, P.; Latroche, M.; Walker, G.S.; et al. Mg-based compounds for hydrogen and energy storage. Appl. Phys. A 2016, 122, 85. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Dam, B.; Denys, R.V.; Dornheim, M.; Grant, D.M.; Huot, J.; Jensen, T.R.; Jongh, P.; Latroche, M.; Milanese, C.; et al. Review of magnesium hydride based materials: Development and optimisation. Appl. Phys. A 2016, 122, 97. [Google Scholar] [CrossRef]
- Nielsen, T.; Besenbacher, F.; Jensen, T. Nanoconfined hydrides for energy storage. Nanoscale 2011, 3, 2086–2098. [Google Scholar] [CrossRef] [PubMed]
- Huot, J.; Ravnsbæk, D.B.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T.R. Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 2013, 58, 30–75. [Google Scholar] [CrossRef]
Materials | Available Gravimetric Hydrogen Density (wt %) | Available Volumetric Hydrogen Density (g/L) | Gravimetric Energy Density (kWh/kg) * | Volumetric Energy Density (kWh/L) * | Ref. |
---|---|---|---|---|---|
Gaseous H2 (70 MPa) | 5.7 | 40 | 39 | 1.6 | [1] |
2LiBH4−MgH2 | 11.8 | 96 | 5.5 | 3.1 | [5] |
2LiBH4−Al/TiF3 | 9.3 | 125 | 3.6 | 2.4 | [17] |
LiAlH4−h-BN | 7.7 | 71 | 3.0 | 2.8 | [18] |
NaBH4 | 10.8 | 112 | 4.2 | 4.3 | [19] |
3LiBH4−Er(BH4)3−3LiH | 9.0 | 147 | 3.5 | 2.3 | [20] |
LiBH4−Mg2FeH6 | 6.0 | 151 | 2.3 | 4.1 | [21] |
MgH2 | 7.6 | 110 | 3.0 | 4.4 | [22,23] |
LiAlH4 | 7.9 | 73 | 3.1 | 2.9 | [24] |
Ti1V0.9Cr1.1/4 wt %Zr | 3.5 | 210 | 1.4 | 4.3 | [25] |
MgH2–TiO2–EG | None | None | 0.05 ** | 0.07 ** | [26] |
Al anode/LiBH4 electrolyte | None | None | 0.3 ** | 0.8 ** | [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-W.; Zhu, M.; Buckley, C.; Jensen, T.R. Functional Materials Based on Metal Hydrides. Inorganics 2018, 6, 91. https://doi.org/10.3390/inorganics6030091
Li H-W, Zhu M, Buckley C, Jensen TR. Functional Materials Based on Metal Hydrides. Inorganics. 2018; 6(3):91. https://doi.org/10.3390/inorganics6030091
Chicago/Turabian StyleLi, Hai-Wen, Min Zhu, Craig Buckley, and Torben R. Jensen. 2018. "Functional Materials Based on Metal Hydrides" Inorganics 6, no. 3: 91. https://doi.org/10.3390/inorganics6030091
APA StyleLi, H. -W., Zhu, M., Buckley, C., & Jensen, T. R. (2018). Functional Materials Based on Metal Hydrides. Inorganics, 6(3), 91. https://doi.org/10.3390/inorganics6030091