Biogenic Fabrication of Ag-NPs@Hydroxyapatite from Goat Bone Waste: A Sustainable Route for Photocatalytic and Antioxidant Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of GHAP and Ag@GHAP
2.1.1. SEM Analysis
2.1.2. AFM Analysis
2.1.3. Powder XRD Analysis
2.1.4. DLS Analysis
2.1.5. Zeta Potential Studies
2.1.6. FTIR Investigation
2.2. Antioxidant Activity of GHAP and Ag@GHAP
2.3. Photocatalytic Activity of GHAP and Ag@GHAP
2.3.1. Effect of Catalyst Dose
2.3.2. Effect of Illumination Time
2.3.3. Effect of pH
2.3.4. Photocatalysis Kinetic Investigation
2.3.5. Photocatalysis Mechanism
2.3.6. Photoluminescence (PL) Analysis
3. Experiments
3.1. Starting Materials
3.2. Characterization Techniques
3.3. Fabrication of Recycled Hydroxyapatite (GHAP)
3.4. Fabrication of Biogenic Silver Nanoparticles Decorated with Hydroxyapatite (Ag@GHAP)
3.5. Photocatalytic Experiments
3.6. Antioxidant Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lunetta, E.; Messina, M.; Cacciotti, I. Doped hydroxyapatite bioceramic from food wastes for orthopedic applications. J. Am. Ceram. Soc. 2025, 108, e70002. [Google Scholar] [CrossRef]
- Nassar, A.M.; Arafa, W.A.; Ashammari, K.; Moustafa, S.; Alsirhani, A.M.; Hasaneen, M.F. A new green catalyst and antimicrobial agent derived from eco-friendly products of camel bones: Synthesis and physicochemical characterization. Biomass Convers. Biorefinery 2024, 15, 13589–13607. [Google Scholar]
- Okpe, P.C.; Folorunso, O.; Aigbodion, V.S.; Obayi, C. Hydroxyapatite synthesis and characterization from waste animal bones and natural sources for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35440. [Google Scholar] [CrossRef]
- Pu’ad, N.M.; Haq, R.A.; Noh, H.M.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Synthesis method of hydroxyapatite: A review. Mater. Today Proc. 2020, 29, 233–239. [Google Scholar]
- Prakash, M.; Rajan, H.K.; Chandraprabha, M.N.; Shetty, S.; Mukherjee, T.; Girish Kumar, S. Recent developments in green synthesis of hydroxyapatite nanocomposites: Relevance to biomedical and environmental applications. Green Chem. Lett. Rev. 2024, 17, 2422409. [Google Scholar] [CrossRef]
- Alanazi, A.H.; Arafa, W.A.; Moustafa, S.M.; Alsohaimi, I.H.; Elnasr, T.A.S.; Halawani, R.F.; Al Zbedy, A.S.; Nassar, A.M. Green extraction of biomass from waste goat bones for applications in catalysis, wastewater treatment, and water disinfection. J. Hazard. Mater. Adv. 2025, 18, 100645. [Google Scholar] [CrossRef]
- Alam, M.K.; Hossain, M.S.; Kawsar, M.; Bahadur, N.M.; Ahmed, S. Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: A review. RSC Adv. 2024, 14, 3548–3559. [Google Scholar] [CrossRef]
- Sadat-Shojai, M.; Khorasani, M.T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013, 9, 7591–7621. [Google Scholar] [CrossRef]
- Otsuka, Y.; Rawal, A.; Koshy, P.; Ben-Nissan, B.; Kono, H.; Kikuchi, M. Structural transformations in mechanochemically-synthesized strontium-doped hydroxyapatite. Ceram. Int. 2025, 51, 28073–28082. [Google Scholar]
- Kowalska, K.; Skwarek, E. Physicochemical Analysis of Composites Based on Yellow Clay, Hydroxyapatite, and Clitoria ternatea L. Obtained via Mechanochemical Method. Materials 2025, 18, 3011. [Google Scholar] [CrossRef]
- Naubnome, V.; Prihanto, A.; Schmahl, W.W.; Pusparizkita, Y.M.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Chemical precipitation of nanocrystalline hydroxyapatite with calcium carbonate derived from green mussel shell wastes and several phosphorus sources. Case Stud. Chem. Environ. Eng. 2025, 11, 101154. [Google Scholar] [CrossRef]
- Kawsar, M.; Hossain, M.S.; Bahadur, N.M.; Islam, D.; Ahmed, S. Crystalline structure modification of hydroxyapatite via a hydrothermal method using different modifiers. Mater. Adv. 2025, 6, 3889–3902. [Google Scholar] [CrossRef]
- Córdova-Udaeta, M.; Kim, Y.; Yasukawa, K.; Kato, Y.; Fujita, T.; Dodbiba, G. Study on the synthesis of hydroxyapatite under highly alkaline conditions. Ind. Eng. Chem. Res. 2021, 60, 4385–4396. [Google Scholar] [CrossRef]
- Janakiraman, K.; Swamiappan, S. Synthesis of hydroxyapatite via sol–gel combustion route: A comparative analysis of single and mixed fuels. Mater. Lett. 2024, 357, 135731. [Google Scholar]
- Aizawa, M.; Hanazawa, T.; Itatani, K.; Howell, F.S.; Kishioka, A. Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique. J. Mater. Sci. 1999, 34, 2865–2873. [Google Scholar] [CrossRef]
- Suba Sri, M.; Usha, R. An insightful overview on osteogenic potential of nano hydroxyapatite for bone regeneration. Cell Tissue Bank. 2025, 26, 13. [Google Scholar] [CrossRef] [PubMed]
- Avşar, C.; Ertunç, S. Development of industrial waste management approaches for adaptation to circular economy strategy: The case of phosphogypsum-derived hydroxyapatite. J. Mater. Cycles Waste Manag. 2024, 26, 2770–2780. [Google Scholar] [CrossRef]
- Patil, S.; Thanikodi, S.; Palaniyappan, S.; Giri, J.; Hourani, A.O.; Azizi, M. Sustainable synthesis of marine-derived hydroxyapatite for biomedical applications: A systematic review on extraction methods and bioactivity. Adv. Manuf. Polym. Compos. Sci. 2025, 11, 2508547. [Google Scholar] [CrossRef]
- Castro, M.A.M.; Morais, D.F.S.; Oliveira, R.A.; Teodoro, M.D.; Silva, U.C.; Motta, F.V.; Bomio, M.R.D. Study of the influence of phase transformations of the biogenic Hydroxyapatite/Nb2O5 heterostructure on the photodegradation of different dye mixtures under sunlight irradiation. Mater. Sci. Semicond. Process. 2025, 192, 109400. [Google Scholar]
- Fatimah, I.; Audita, R.; Purwiandono, G.; Hidayat, H.; Sagadevan, S.; Oh, W.C.; Doong, R.A. In-situ synthesis of hydroxyapatite-supported Ag3PO4 using cockle (Anadara granosa) shell as photocatalyst in rhodamine B photodegradation and antibacterial agent. Case Stud. Chem. Environ. Eng. 2024, 10, 100797. [Google Scholar]
- Algethami, J.S.; Hassan, M.S.; Alorabi, A.Q.; Alhemiary, N.A.; Fallatah, A.M.; Alnaam, Y.; Almusabi, S.; Amna, T. Manganese ferrite–hydroxyapatite nanocomposite synthesis: Biogenic waste remodeling for water decontamination. Nanomaterials 2022, 12, 1631. [Google Scholar] [CrossRef]
- da Silva, J.S.; Machado, T.R.; Trench, A.B.; Silva, A.D.; Teodoro, V.; Vieira, P.C.; Martins, T.A.; Longo, E. Enhanced photocatalytic and antifungal activity of hydroxyapatite/α-AgVO3 composites. Mater. Chem. Phys. 2020, 252, 123294. [Google Scholar]
- Romolini, G.; Gambucci, M.; Ricciarelli, D.; Tarpani, L.; Zampini, G.; Latterini, L. Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochem. Photobiol. Sci. 2021, 20, 1161–1172. [Google Scholar]
- Chawhuaveang, D.D.; Lam, W.Y.H.; Chu, C.H.; Yu, O.Y. The preventive effect of silver diamine fluoride-modified salivary pellicle on dental erosion. Dent. Mater. 2025, 41, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Salman, A.J.; Albusalih, D.; Jasim, T.A.; Radhi, N.S.; Al-Khafaji, Z.; Falah, M. Identify in Vitro Behaviour of Composite Coating Hydroxyapatite-Nano Silver on Titanium Substrate by Electrophoretic Technic for Biomedical Applications. J. Adv. Res. Micro Nano Engieering 2024, 28, 14–29. [Google Scholar] [CrossRef]
- Saha, A.; Kim, Y.; Kim, K.K.; Kim, Y.J.; Byon, H.R.; Hong, S. Nanoscale study on noninvasive prevention of dental erosion of enamel by silver diamine fluoride. Biomater. Res. 2024, 28, 0103. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Ghegoiu, L.; Buton, N.; Motelica-Heino, M. Copper doped hydroxyapatite nanocomposite thin films: Synthesis, physico–chemical and biological evaluation. Biometals 2024, 37, 1487–1500. [Google Scholar]
- Bhushan, S.; Singh, S.; Maiti, T.K.; Chaudhari, L.R.; Joshi, M.G.; Dutt, D. Silver-doped hydroxyapatite laden chitosan–gelatin nanocomposite scaffolds for bone tissue engineering: An in-vitro and in-ovo evaluation. J. Biomater. Sci. Polym. Ed. 2024, 35, 206–227. [Google Scholar]
- Sebastiammal, S.; Fathima, A.S.L.; Al-Ghanim, K.A.; Nicoletti, M.; Baskar, G.; Iyyappan, J.; Govindarajan, M. Synthesis and characterisation of magnesium-wrapped hydroxyapatite nanomaterials for biomedical applications. Surf. Interfaces 2024, 44, 103779. [Google Scholar] [CrossRef]
- Kucukosman, O.K.; Pourmostafa, A.; Dogan, E.; Bensalem, A. Balancing antibacterial activity and toxicity in silver-loaded hydroxyapatite: The impact of the silver nanoparticle incorporation method. J. Mater. Chem. B 2025, 13, 9954–9967. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Kumawat, G.; Khandelwal, M.; Khangarot, R.K.; Saharan, V.; Nigam, S.; Harish. Phyco-synthesis of silver nanoparticles by environmentally safe approach and their applications. Sci. Rep. 2024, 14, 9568. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.M.; Nassar, A.M.; Ibrahim, N.M.; Elsaman, A.M.; Rashad, M.M. An easy synthesis of nanostructured magnetite-loaded functionalized carbon spheres and cobalt ferrite. J. Coord. Chem. 2013, 66, 4387–4398. [Google Scholar] [CrossRef]
- Atta, A.; Al-Harbi, N.; Alotaibi, B.M.; Uosif, M.A.M.; Abdeltwab, E. Structural characteristics and dielectric properties of irradiated polyvinyl alcohol/sodium iodide composite films. Inorg. Chem. Commun. 2024, 159, 111651. [Google Scholar]
- Alotaibi, B.M.; Altuijri, R.; Atta, A.; Abdeltwab, E.; Abdelhamied, M.M. Fabrication, structure and optical characteristics of CuO/polymer nanocomposites materials for optical devices. Int. J. Polym. Anal. Charact. 2024, 29, 562–572. [Google Scholar] [CrossRef]
- Garibay-Alvarado, J.A.; Garcia-Zamarron, D.J.; Silva-Holguín, P.N.; Donohue-Cornejo, A.; Cuevas-González, J.C.; Espinosa-Cristóbal, L.F.; Ruíz-Baltazar, Á.d.J.; Reyes-López, S.Y. Polymer-Based Hydroxyapatite–Silver Composite Resin with Enhanced Antibacterial Activity for Dental Applications. Polymers 2024, 16, 2017. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Predoi, D.; Iconaru, S.L.; Predoi, M.V.; Rokosz, K.; Raaen, S.; Negrila, C.C.; Buton, N.; Ghegoiu, L.; Badea, M.L. Physico-Chemical and Biological Features of Fluorine-Substituted Hydroxyapatite Suspensions. Materials 2024, 17, 3404. [Google Scholar]
- Nashaat, S.M.; Enan, E.T.; El-Din, A.S.S.; Abdelaziz, D. Developing a novel therapeutic and bioactive resin-based root canal sealer incorporated with silver polydopamine-modified hydroxyapatite fillers. BMC Oral Health 2025, 25, 1133. [Google Scholar]
- Keser, S.; Yıldız, A.; Barzinjy, A.A.; Kareem, R.O.; Mahmood, B.K.; Agid, R.S.; Ates, T.; Temüz, M.M.; Koytepe, S.; İnce, T.; et al. Effects of pyrocatechol on the computational, structural, spectroscopic and thermal properties of silver-modified hydroxyapatite. J. Aust. Ceram. Soc. 2025, 61, 1681–1694. [Google Scholar] [CrossRef]
- Keser, S.; Firat, M.; Barzinjy, A.A.; Kareem, R.O.; Ates, T.; Ates, B.; Tekin, S.; Sandal, S.; Özcan, I.; Bulut, N.; et al. Impact of quercetin and gallic acid on the electronic, structural, spectroscopic, thermal properties and in vitro bioactivity of silver-modified hydroxyapatite. Mater. Chem. Phys. 2025, 339, 130751. [Google Scholar] [CrossRef]
- Dhafer, C.E.B.; Nassar, A.M.; Alanazi, A.H.; Alotaibi, N.F.; Ali, H.M.; Hasaneen, M.F.; Moustafa, S.M. Synthesis, Structure, Thermal, and Optical Analysis of Ag@ MgO/ZnO: A Promising Nanocomposite for Antimicrobial and Antioxidant Applications. ChemistrySelect 2025, 10, e03173. [Google Scholar]
- Yilmaz, P.; Demirhan, E.; Ozbek, B. Eco-Friendly Fabrication of Bioactive Chitosan-Hydroxyapatite Sponge-Like Scaffolds Functionalized with Ficus carica Linn Leaf Extract for Enhanced Antioxidant and Antimicrobial Properties. Food Biosci. 2025, 69, 106901. [Google Scholar] [CrossRef]
- Raghavendra, N.; Nayak, S.G.; Bandiwaddar, K.T.; Kulkarni, D. Decoration of silver nanoparticles over Galphimia gracilis leaves extract and assessment of their antioxidant properties. Pharmacol. Res.-Nat. Prod. 2025, 8, 100348. [Google Scholar] [CrossRef]
- Alshahrani, A.A.; Alqarni, L.S.; Alghamdi, M.D.; Alotaibi, N.F.; Moustafa, S.M.; Nassar, A.M. Phytosynthesis via wasted onion peel extract of samarium oxide/silver core/shell nanoparticles for excellent inhibition of microbes. Heliyon 2024, 10, e24815. [Google Scholar] [CrossRef]
- Gogoi, P.; Deb, S. Silver nanoparticles decorated wide band gap MoS2 nanosheet: Enhanced optical and electrical properties. Plasmonics 2025, 20, 575–583. [Google Scholar] [CrossRef]
- Ounas, A.; Ait Baha, A.; Izghri, Z.; Idouhli, R.; Tabit, K.; Yaacoubi, A.; Abouelfida, A.; Bacaoui, A. Biochar/Zeolite-Supported TiO2 Nanocatalyst for the Photodegradation of Organic Pollutants in Aqueous Media. Chem. Afr. 2025, 8, 3139–3150. [Google Scholar]
- Toan, H.P.; Luu, T.A.; Nguyen, D.V.; Nguyen, M.C.; Phan, P.D.M.; Nguyen, N.L.; Van Nguyen, T.; Hoang, L.H.; Binh, T.H.; Dong, C.; et al. Unlocking the Origin of Enhanced Piezo-Photocatalytic Performance via Thermodynamic Insights: A Study of Surface Active-Site Engineering in ZnO. Small 2025, 21, e2412719. [Google Scholar] [PubMed]
- Matinise, N.; Botha, N.; Fall, A.; Maaza, M. Enhanced photocatalytic degradation of methylene blue using zinc vanadate nanomaterials with structural and electrochemical properties. Sci. Rep. 2025, 15, 26333. [Google Scholar] [CrossRef]
- Gaber, M.M.; Shokry, H.; Hassanin, A.H.; Awad, S.; Samy, M.; Elkady, M. Novel palm peat lignocellulosic adsorbent derived from agricultural residues for efficient methylene blue dye removal from textile wastewater. Appl. Water Sci. 2025, 15, 32. [Google Scholar] [CrossRef]
- Lianmawii, L.; Singh, N.M. Photoluminescence and photocatalytic degradation of methylene blue and methyl red using Pr3+ doped CdS nanoparticles. Russ. J. Phys. Chem. B 2024, 18, 325–342. [Google Scholar] [CrossRef]
- Fouda, S.R.; Hassan, S.A. Impact of LaZnFe2O4 supported NiWO4@D400-MMT@CMS/MMA nanocomposites as a catalytic system in remediation of dyes from wastewater. Sci. Rep. 2024, 14, 11644. [Google Scholar] [CrossRef] [PubMed]
- Koppala, S.; Xia, Y.; Zhang, L.; Peng, J.; Chen, Z.; Xu, L. Hierarchical ZnO/Ag nanocomposites for plasmon-enhanced visible-light photocatalytic performance. Ceram. Int. 2019, 45, 15116–15121. [Google Scholar] [CrossRef]
- Mol, B.; Joy, L.K.; Thomas, H.; Thomas, V.; Joseph, C.; Narayanan, T.N.; Al-Harthi, S.; Unnikrishnan, N.V.; Anantharaman, M.R. Evidence for enhanced optical properties through plasmon resonance energy transfer in silver silica nanocomposites. Nanotechnology 2016, 27, 085701. [Google Scholar] [CrossRef]
- Mahanti, M.; Basak, D. Highly enhanced UV emission due to surface plasmon resonance in Ag–ZnO nanorods. Chem. Phys. Lett. 2012, 542, 110–116. [Google Scholar] [CrossRef]
- Arif, S.; Fatima, H.; Tahir, J.; Anwar, M.S. Doped hydroxyapatite photocatalyst for efficient degradation of Methylene blue dye. Inorg. Chem. Commun. 2025, 172, 113684. [Google Scholar] [CrossRef]
- Manikandan, K.; Kumar, N.D.; Velmurugan, R.; Gokulnath, M.; Parvathy, S.; Ayyar, M.; Swaminathan, M.; Prabhu, P.; Alhuthali, A.M.S.; Abdellattif, M.H.; et al. Enhanced efficiency of zinc oxide hydroxyapatite nanocomposite in photodegradation of methylene blue, ciprofloxacin, and in wastewater treatment. Sci. Rep. 2025, 15, 31819. [Google Scholar] [CrossRef]
- Junnarkar, M.V.; Sawant, P.V.; Parekar, M.A.; Kardile, A.V.; Thorat, A.B.; Joshi, R.P.; Mene, R.U. Silver-blend hydroxyapatite bio-ceramics for enhanced photocatalytic degradation of methylene blue. Acad. Mater. Sci. 2024, 1. [Google Scholar] [CrossRef]
- Shalan, A.E.; Afifi, M.; El-Desoky, M.M.; Ahmed, M.K. Electrospun nanofibrous membranes of cellulose acetate containing hydroxyapatite co-doped with Ag/Fe: Morphological features, antibacterial activity and degradation of methylene blue in aqueous solution. New J. Chem. 2021, 45, 9212–9220. [Google Scholar] [CrossRef]
- Kumar, R.; Shikha, D. Thrombogenicity, DPPH assay, and MTT assay of sol–gel derived 3% silver-doped hydroxyapatite for hard tissue implants. Int. J. Appl. Ceram. Technol. 2025, 22, e14884. [Google Scholar] [CrossRef]
- Kumar, R.; Shikha, D.; Sinha, S.K. DPPH radical scavenging assay: A tool for evaluating antioxidant activity in 3% cobalt–Doped hydroxyapatite for orthopaedic implants. Ceram. Int. 2024, 50, 13967–13973. [Google Scholar] [CrossRef]
- Nassar, A.M.; Alanazi, A.H.; Alzaid, M.M.; Moustafa, S. Harnessing wasted mushroom peel aqueous extract for mycogenic synthesis of zinc oxide nanoparticles for solar photocatalysis and antimicrobial applications. Biomass Convers. Biorefinery 2025, 15, 20991–21006. [Google Scholar] [CrossRef]
- Alqarni, L.S.; Alghamdi, M.D.; Alshahrani, A.A.; Alotaibi, N.F.; Moustafa, S.M.; Ashammari, K.; Alruwaili, I.A.; Nassar, A.M. Photocatalytic degradation of rhodamine-B and water densification via eco-friendly synthesized Cr2O3 and Ag@Cr2O3 using garlic peel aqueous extract. Nanomaterials 2024, 14, 289. [Google Scholar] [CrossRef]
- Bilel, H.; Abdelzaher, H.M.; Moustafa, S.M. Biochemical profile, antioxidant effect and antifungal activity of Saudi Ziziphus spina-christi L. for vaginal lotion formulation. Plant Sci. Today 2023, 10, 22–29. [Google Scholar]
- Aldogman, B.; Bilel, H.; Moustafa, S.M.N.; Elmassary, K.F.; Ali, H.M.; Alotaibi, F.Q.; Hamza, M.; Abdelgawad, M.A.; El-Ghorab, A.H. Investigation of chemical compositions and biological activities of Mentha suaveolens L. from Saudi Arabia. Molecules 2022, 27, 2949. [Google Scholar] [CrossRef] [PubMed]
- Bień, D.; Lange, A.; Matuszewski, A.; Ostrowska, A.; Klimek, M.; Batorska, M.; Jaworski, S. Biocompatibility and antioxidant effects of hydroxyapatite-quercetin composites: In vitro and in ovo studies. Sci. Rep. 2025, 15, 31532. [Google Scholar] [CrossRef] [PubMed]















| NPs | 2θ (°) | FWHM (Rad) | (D) [nm] | Average (D) [nm] | (δ) [10−4 Lines/nm2] | (M) |
|---|---|---|---|---|---|---|
| GHAP | 31.75 | 0.01396 | 10.4 | 10.2 | 99.46 | 0.73 |
| 32.31 | 0.01571 | 09.2 | ||||
| 33.87 | 0.01571 | 09.6 | ||||
| 39.82 | 0.01222 | 12.4 | ||||
| Ag@GHAP | 38.81 | 0.01047 | 14.03 | 15.6 | 45.29 | 0.45 |
| 45.05 | 0.01222 | 12.29 | ||||
| 78.08 | 0.00873 | 20.47 | ||||
| 65.18 | 0.01047 | 15.72 |
| Sample | Concentration (mg/mL) | Antioxidant Activity (%) | IC50 (mg/mL) Half-Maximal Inhibitory Concentration |
|---|---|---|---|
| Ag@GHAP | 5 | 77 | 2.95 |
| 4 | 66 | ||
| 2 | 45 | ||
| GHAP | 5 | 7 | 36.83 |
| 4 | 5 | ||
| 2 | 3 | ||
| Ascorbic Acid | 5 | 98 | 1.03 |
| 4 | 98 | ||
| 2 | 98 |
| Hydroxyapatite Composites | Synthetic Method | Application | Reference |
|---|---|---|---|
| Cu-doped hydroxyapatite | Coprecipitation | Photocatalytic removal of methylene blue dye (80% in 160 min), the light source: sun light exposure. | [54] |
| ZnO/Hydroxyapatite | Simple precipitation | Photocatalytic removal of 10 ppm methylene blue dye (96.6% in 30 min), the light source: UV-A irradiation (365 nm). | [55] |
| Ag/Hydroxyapatite | Wet chemical precipitation/ion-exchange methods | Photocatalytic removal of 10 ppm methylene blue dye (97% in 60 min), the light source: sun light irradiation. | [56] |
| Ag/Fe/Hydroxyapatite/cellulose acetate | Electrospinning technique | Photocatalytic degradation of methylene blue dye. | [57] |
| Ag/Hydroxyapatite | Sol-gel method | Antioxidant activity, DPPH assay. | [58] |
| Co/Hydroxyapatite | Sol-gel method | Antioxidant activity, DPPH assay, IC50 value 20.85. | [59] |
| Ag/Hydroxyapatite | Biogenic via recycling of goat bone | Photocatalytic removal of methylene blue dye (99.15% in 100 min), the light source: sun light. | Current work |
| Antioxidant activity, DPPH assay, IC50 value 2.949. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Alanazi, A.H.; Atta, A.; Bilel, H.; Halawani, R.F.; Aloufi, F.A.; Al Zbedy, A.S.; Nassar, A.M. Biogenic Fabrication of Ag-NPs@Hydroxyapatite from Goat Bone Waste: A Sustainable Route for Photocatalytic and Antioxidant Applications. Inorganics 2026, 14, 2. https://doi.org/10.3390/inorganics14010002
Alanazi AH, Atta A, Bilel H, Halawani RF, Aloufi FA, Al Zbedy AS, Nassar AM. Biogenic Fabrication of Ag-NPs@Hydroxyapatite from Goat Bone Waste: A Sustainable Route for Photocatalytic and Antioxidant Applications. Inorganics. 2026; 14(1):2. https://doi.org/10.3390/inorganics14010002
Chicago/Turabian StyleAlanazi, Ahmed Hamad, Ali Atta, Hallouma Bilel, Riyadh F. Halawani, Fahed A. Aloufi, Amnah Salem Al Zbedy, and Amr Mohammad Nassar. 2026. "Biogenic Fabrication of Ag-NPs@Hydroxyapatite from Goat Bone Waste: A Sustainable Route for Photocatalytic and Antioxidant Applications" Inorganics 14, no. 1: 2. https://doi.org/10.3390/inorganics14010002
APA StyleAlanazi, A. H., Atta, A., Bilel, H., Halawani, R. F., Aloufi, F. A., Al Zbedy, A. S., & Nassar, A. M. (2026). Biogenic Fabrication of Ag-NPs@Hydroxyapatite from Goat Bone Waste: A Sustainable Route for Photocatalytic and Antioxidant Applications. Inorganics, 14(1), 2. https://doi.org/10.3390/inorganics14010002

