Metal Complexes Diversity: Synthesis, Conformation, and Bioactivity
- -
- Ralić et al. [22] investigate the biological targets of a [Pd(dach)Cl2] complex in HeLa cells, identifying proteins involved in ribosomal biogenesis and RNA splicing, thereby linking coordination chemistry with molecular biology.
- -
- Jevtović et al. [23] present a theoretical study on the effects of coordination atoms (O/S/N) on the structure, stability, and protein/DNA binding of nickel (II) complexes with pyridoxal-semi-, thiosemi-, and isothiosemicarbazone ligands.
- -
- Talebi et al. [24] describe the synthesis and structural characterization of a novel azide-bridged polymeric manganese (III) Schiff base complex derived from an allylamine-type ligand, revealing its unique structural and spectroscopic features.
- -
- Nowak et al. [25] report on thionitrosyl complexes of rhenium (II) and technetium (II) with PPh3 and chelating ligands, providing new insights into their reactivity and allowing new conclusions about similarities and differences in stability, reaction kinetics, and redox behavior between these 4d and 5d transition metals.
- -
- Kovačević et al. [26] investigate ferrocene-based conjugates with hydrophobic amino acids, focusing on their conformational, electrochemical, and antioxidative properties, and highlight their relevance to bioorganometallic chemistry.
- -
- Qiao et al. [27] examine NiFeSe complexes related to the active site of [NiFeSe]-hydrogenases, elucidate electronic and steric effects on oxygen reactivity, and clarify oxidative degradation mechanisms.
- -
- Sánchez López et al. [28] present the synthesis, properties, and electrochemistry of bis(iminophosphorane)pyridine iron (II) pincer complexes to enhance the understanding of pincer-type ligand systems.
- -
- Petkov et al. [29] study di- and trinuclear iron (III) monensinates with different bridging motifs, combining spectral and computational analyses to reveal their structural diversity and bonding characteristics.
Author Contributions
Conflicts of Interest
References
- Kroll, N.; Theilacker, K.; Schoknecht, M.; Baabe, D.; Wiedemann, D.; Kaupp, M.; Grohmann, A.; Hörner, G. Controlled Ligand Distortion and Its Consequences for Structure, Symmetry, Conformation, and Spin-State Preferences of Iron(II) Complexes. Dalton Trans. 2015, 44, 19232. [Google Scholar] [CrossRef]
- Pell, T.P.; Wilson, D.J.D.; Skelton, B.W.; Dutton, J.L.; Barnard, P.J. Heterobimetallic N-Heterocyclic Carbene Complexes: A Synthetic, Spectroscopic, and Theoretical Study. Inorg. Chem. 2016, 55, 6882. [Google Scholar] [CrossRef] [PubMed]
- Gunanathan, C.; Shimon, L.J.W.; Milstein, D. Direct Conversion of Alcohols to Acetals and H2 Catalyzed by an Acridine-Based Ruthenium Pincer Complex. J. Am. Chem. Soc. 2009, 131, 3146. [Google Scholar] [CrossRef]
- Madec, H.; Figueiredo, F.; Cariou, K.; Roland, S.; Sollogoub, M.; Gasser, G. Metal Complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem. Sci. 2022, 14, 409. [Google Scholar] [CrossRef]
- Lawrence, M.A.W.; Green, K.-A.; Nelson, P.N.; Lorraine, S.C. Review: Pincer ligands—tunable, versatile and applicable. Polyhedron 2018, 143, 11. [Google Scholar] [CrossRef]
- Vigueras, G.; Markova, L.; Novohradsky, V.; Marco, A.; Cutillas, N.; Kostrhunova, H.; Kasparkova, J.; Ruiz, J.; Brabec, V. A photoactivated Ir(iii) complex targets cancer stem cells and induces secretion of damage-associated molecular patterns in melanoma cells characteristic of immunogenic cell death. Inorg. Chem. Front. 2021, 8, 4696. [Google Scholar] [CrossRef]
- Prieto Otoya, T.D.; McQuaid, K.T.; Cardin, C.J. Structural Insights into G-quadruplex Binding by Metal Complexes: Implications for Drug Design. Med. Chem. Res. 2024, 33, 2001. [Google Scholar] [CrossRef]
- Patil, S.A.; Patil, S.A.; Patil, R.; Keri, R.S.; Budagumpi, S.; Balakrishna, G.R.; Tacke, M. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs. Future Med. Chem. 2015, 7, 1305. [Google Scholar] [CrossRef] [PubMed]
- Heffern, M.C.; Reichova, V.; Coomes, J.L.; Harney, A.S.; Bajema, E.A.; Meade, T.J. Tuning Cobalt(III) Schiff-Base Complexes as Activated Protein Inhibitors. Inorg. Chem. 2015, 54, 9066. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Gust, R. Metal N-heterocyclic Carbene Complexes as Potential Antitumor Metallodrugs. Chem. Soc. Rev. 2013, 42, 755. [Google Scholar] [CrossRef]
- Murillo, M.I.; Gaiddon, C.; Le Lagadec, R. Targeting the Intracellular Redox Balance by Metal Complexes towards Anticancer Therapy. Front. Chem. 2022, 10, 967337. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.S.A.; Abdelkarim, A.T.; El-Sherif, A.A.; Mahmoud, W.H. Metal complexes featuring a quinazoline schiff base ligand and glycine: Synthesis, characterization, DFT and molecular docking analyses revealing their potent antibacterial, anti-helicobacter pylori, and Anti-COVID-19 activities. BMC Chem. 2024, 18, 150. [Google Scholar] [CrossRef]
- Ceramella, J.; Catalano, A.; Mariconda, A.; D’Amato, A.; Aquila, S.; Saturnino, C.; Rosano, C.; Sinicropi, M.S.; Longo, P. Silver N-Heterocyclic Carbene (NHC) Complexes as Antimicrobial and/or Anticancer Agents. Pharmaceuticals 2025, 18, 9. [Google Scholar] [CrossRef]
- Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921. [Google Scholar] [CrossRef] [PubMed]
- Renfrew, A.K. Transition-Metal Complexes with Bioactive Ligands: Mechanisms for Selective Ligand Release and Applications for Drug Delivery. Metallomics 2014, 6, 1324. [Google Scholar] [CrossRef]
- Catalano, A.; Mariconda, A.; Sinicropi, M.S.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Longo, P. Biological Activities of Ruthenium NHC Complexes: An update. Antibiotics 2023, 12, 365. [Google Scholar] [CrossRef] [PubMed]
- Eren, N.; Fadaei-Tirani, F.; Severin, K. Stepwise Synthesis of Heterotrimetallic Fe(II)/Pd(II)/Au(I) Coordination Cages. Inorg. Chem. Front. 2024, 11, 3263. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, Y.; Xiao, X.; Chen, X.; Hu, M.; Geng, X.; Wang, Z.; Zhao, J. Recent development of the transition metal complexes showing strong absorption of visible light and long-lived triplet excited state: From molecular structure design to photophysical properties and applications. Coord. Chem. Rev. 2020, 417, 213371. [Google Scholar] [CrossRef]
- Fujisawa, K.; Ishikawa, Y.; Miyashita, Y.; Okamoto, K.-I. Pyrazolate-bridged group 11 metal(I) complexes: Substituent effects on the supramolecular structures and physicochemical properties. Inorg. Chim. Acta 2010, 363, 2977. [Google Scholar] [CrossRef]
- Cecot, G.; Doll, M.T.; Planes, O.M.; Ramorini, A.; Scopelliti, R.; Fadaei-Tirani, F.; Severin, K. Cages vs. Prisms: Controlling the Formation of Metallosupramolecular Architectures with Ligand Side-Chains. Eur. J. Inorg. Chem. 2019, 2019, 2972. [Google Scholar] [CrossRef]
- Kostova, I. Homo- and Hetero-Multinuclear Iridium (III) Complexes with Cytotoxic Activity. Inorganics 2025, 13, 156. [Google Scholar] [CrossRef]
- Ralić, V.; Davalieva, K.; Gemović, B.; Senćanski, M.; Nešić, M.D.; Žakula, J.; Stepić, M.; Petković, M. [Pd(dach)Cl2] Complex Targets Proteins Involved in Ribosomal Biogenesis, and RNA Splicing in HeLa Cells. Inorganics 2025, 13, 215. [Google Scholar] [CrossRef]
- Jevtovic, V.; Rakić, A.; Alshammari, O.A.O.; Alhar, M.S.; Alenezi, T.; Rakic, V.; Dimić, D. Theoretical Study of the Effects of Different Coordination Atoms (O/S/N) on Crystal Structure, Stability, and Protein/DNA Binding of Ni(II) Complexes with Pyridoxal-Semi, Thiosemi, and Isothiosemicarbazone Ligand Systems. Inorganics 2024, 12, 251. [Google Scholar] [CrossRef]
- Talebi, A.; Salehi, M.; Jesus, A.J.L.; Kubicki, M.; Fausto, R.; Golbedaghi, R. A New Azide Bridged Polymeric Manganese (III) Schiff Base Complex with an Allylamine-Derived Ligand: Structural Characterization and Activity Spectra. Inorganics 2024, 12, 234. [Google Scholar] [CrossRef]
- Nowak, D.; Hagenbach, A.; Sawallisch, T.E.; Abram, U. Thionitrosyl Complexes of Rhenium and Technetium with PPh3 and Chelating Ligands—Synthesis and Reactivity. Inorganics 2024, 12, 210. [Google Scholar] [CrossRef]
- Kovačević, M.; Roca, S.; Jadreško, D.; Mrvčić, J.; Hanousek Čiča, K.; Čakić Semenčić, M.; Barišić, L. Conformational, Electrochemical, and Antioxidative Properties of Conjugates of Different Ferrocene Turn-Inducing Scaffolds with Hydrophobic Amino Acids. Inorganics 2024, 12, 195. [Google Scholar] [CrossRef]
- Qiao, Y.; Xu, E.; Hao, Y.; Yang, X.; Ni, M. Electronic and Steric Effects on Oxyge Reactivities of NiFeSe Complexes Related to O2-Damaged [NiFeSe]-Hydrogenases’Active Site. Inorganics 2024, 12, 163. [Google Scholar] [CrossRef]
- Sánchez López, N.; Nunez Bahena, E.; Ryabov, A.D.; Sutra, P.; Igau, A.; Le Lagadec, R. Synthesis, Properties, and Electrochemistry of bis(iminophosphorane)pyridine Iron(II) Pincer Complexes. Inorganics 2024, 12, 115. [Google Scholar] [CrossRef]
- Petkov, N.; Tadjer, A.; Simova, S.; Cherkezova-Zheleva, Z.; Paneva, D.; Stoyanova, R.; Kukeva, R.; Dorkov, P.; Pantcheva, I. Synthesis, Spectral Characterization, and Structural Modelling of Di- and Trinuclear Iron(III) Monensinates with Different Bridging Patterns. Inorganics 2024, 12, 114. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roca, S.; Kovačević, M. Metal Complexes Diversity: Synthesis, Conformation, and Bioactivity. Inorganics 2026, 14, 17. https://doi.org/10.3390/inorganics14010017
Roca S, Kovačević M. Metal Complexes Diversity: Synthesis, Conformation, and Bioactivity. Inorganics. 2026; 14(1):17. https://doi.org/10.3390/inorganics14010017
Chicago/Turabian StyleRoca, Sunčica, and Monika Kovačević. 2026. "Metal Complexes Diversity: Synthesis, Conformation, and Bioactivity" Inorganics 14, no. 1: 17. https://doi.org/10.3390/inorganics14010017
APA StyleRoca, S., & Kovačević, M. (2026). Metal Complexes Diversity: Synthesis, Conformation, and Bioactivity. Inorganics, 14(1), 17. https://doi.org/10.3390/inorganics14010017
