Manganese(II) Complexes with 3,5–Dibromosalicylaldehyde: Characterization and Interaction Studies with DNA and Albumins
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization
2.2. Structure of the Complexes
2.2.1. Crystal Structure of Complex 2
2.2.2. Proposed Structures for Complexes 1 and 3–5
2.3. Interaction of the Complexes with CT DNA
2.4. Interaction of the Complexes with Albumins
3. Experimental Section
3.1. Materials–Instrumentation–Methods
3.2. Synthesis of the Complexes
3.2.1. Synthesis of [Mn(3,5-diBr-salo)2(CH3OH)2] (Complex 1)
3.2.2. Synthesis of Complexes [Mn(3,5-diBr-salo)2(N,N′-donor) (Complexes 2–5)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3,5-diBr–saloH | 3,5–dibromo–salicylaldehyde |
4-OMe–saloH | 4–methoxy–salicylaldehyde |
5-Br–saloH | 5–bromo–salicylaldehyde |
5-Cl–saloH | 5–chloro–salicylaldehyde |
5-NO2–saloH | 5–nitro–salicylaldehyde |
bipy | 2,2′–bipyridine |
bipyam | 2,2′–bipyridylamine |
BSA | bovine serum albumin |
CT | calf-thymus |
EB | ethidium bromide |
HSA | human serum albumin |
K | SA-binding constant |
Kb | DNA-binding constant |
Kq | quenching constant |
KSV | Stern–Volmer constant |
neoc | 2,9–dimethyl–1,10–phenanthroline |
phen | 1,10–phenanthroline |
RT | room-temperature |
SA | serum albumin |
saloH | salicylaldehyde |
X–saloH | substituted salicylaldehyde |
References
- Mullins, C.S.; Pecoraro, V.L. Reflections on Small Molecule Manganese Models That Seek to Mimic Photosynthetic Water Oxidation Chemistry. Coord. Chem. Rev. 2008, 252, 416–443. [Google Scholar] [CrossRef]
- Wu, A.J.; Penner-Hahn, J.E.; Pecoraro, V.L. Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. Chem. Rev. 2004, 104, 903–938. [Google Scholar] [CrossRef] [PubMed]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid. Med. Cell Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed]
- Krstic, N.S.; Nikolic, R.S.; Stankovic, M.N.; Nikolic, N.G.; Djordjevic, D.M. Coordination Compounds of M(II) Biometal Ions with Acid-Type Anti-Inflammatory Drugs as Ligands—A Review. Trop. J. Pharm. Res. 2015, 14, 337–349. [Google Scholar] [CrossRef]
- Peres, T.V.; Schettinger, M.R.C.; Chen, P.; Carvalho, F.; Avila, D.S.; Bowman, A.B.; Aschner, M. Manganese-Induced Neurotoxicity: A Review of Its Behavioral Consequences and Neuroprotective Strategies. BMC Pharmacol. Toxicol. 2016, 17, 57. [Google Scholar] [CrossRef]
- Eremina, J.A.; Ermakova, E.A.; Smirnova, K.S.; Klyushova, L.S.; Berezin, A.S.; Sukhikh, T.S.; Zubenko, A.A.; Fetisov, L.N.; Kononenko, K.N.; Lider, E.V. Cu(II), Co(II), Mn(II) Complexes with 5-Phenyltetrazole and Polypyridyl Ligands: Synthesis, Characterization and Evaluation of the Cytotoxicity and Antimicrobial Activity. Polyhedron 2021, 206, 115352. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Zaki, N.G.; Mahmoud, W.H.; El Kerdawy, A.M.; Mohamed, G.G. Synthesis, Structural Characterization, Density Functional Theory Calculations, and Antimicrobial, Anticancer, and Antimetastatic Properties of Nanosized Heteroleptic Complexes of Cocaine/TMEDA with d-Block Metal Ions. Appl. Organomet. Chem. 2021, 35, e6441. [Google Scholar] [CrossRef]
- Archana, B.; Sreedaran, S. Synthesis, Characterization, DNA Binding and Cleavage Studies, in-Vitro Antimicrobial, Cytotoxicity Assay of New Manganese(III) Complexes of N-Functionalized Macrocyclic Cyclam Based Schiff Base Ligands. Polyhedron 2023, 231, 116269. [Google Scholar] [CrossRef]
- Bourouai, M.A.; Bouchoucha, A.; Si Larbi, K.; Cosnier, S.; Djebbar, S. Novel Mn(II) and Cu(II) Metal Complexes with Sulfa Drug-Derived Ligands as Potent Antimicrobial and Anticancer Agents: In Vitro Studies, ADMET Profile and Molecular Docking. Polyhedron 2024, 253, 116914. [Google Scholar] [CrossRef]
- Friaes, S.; Trigueiros, C.; Gomes, C.S.B.; Fernandes, A.R.; Lenis-Rojas, O.A.; Martins, M.; Royo, B. Antimicrobial Activity of Manganese(I) Tricarbonyl Complexes Bearing 1,2,3-Triazole Ligands. Molecules 2023, 28, 7453. [Google Scholar] [CrossRef]
- Saleem, S.; Parveen, B.; Abbas, K.; Iqbal, S.; Altaf, A.A.; Kausar, S. Synthesis, Structural Elucidation, Molecular Modeling and Antimicrobial Studies of Mn(II), Co(II), Ni(II), and Cu(II) Complexes Containing NO Donor Bidentate Schiff Base. Appl. Organomet. Chem. 2023, 37, e7234. [Google Scholar] [CrossRef]
- Swiderski, G.; Wojtulewski, S.; Kalinowska, M.; Swisłocka, R.; Wilczewska, A.Z.; Pietryczuk, A.; Cudowski, A.; Lewandowski, W. The Influence of Selected Transition Metal Ions on the Structure, Thermal and Microbiological Properties of Pyrazine-2-Carboxylic Acid. Polyhedron 2020, 175, 114173. [Google Scholar] [CrossRef]
- Jablonska-Wawrzycka, A.; Rogala, P.; Czerwonka, G.; Michalkiewicz, S.; Hodorowicz, M.; Galczynska, K.; Cieslak, B.; Kowalczyk, P. Tuning Anti-Biofilm Activity of Manganese(Ii) Complexes: Linking Biological Effectiveness of Heteroaromatic Complexes of Alcohol, Aldehyde, Ketone, and Carboxylic Acid with Structural Effects and Redox Activity. Int. J. Mol. Sci. 2021, 22, 4847. [Google Scholar] [CrossRef] [PubMed]
- Dimiza, F.; Hatzidimitriou, A.G.; Psomas, G. Manganese(II) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure and Biological Activity. Int. J. Mol. Sci. 2024, 25, 13457. [Google Scholar] [CrossRef] [PubMed]
- Sakthikumar, K.; Kabuyaya Isamura, B.; Krause, R.W.M. Exploring the Antioxidant, Antimicrobial, Cytotoxic and Biothermodynamic Properties of Novel Morpholine Derivative Bioactive Mn(II), Co(II) and Ni(II) Complexes—Combined Experimental and Theoretical Measurements towards DNA/BSA/SARS-CoV-2 3CLPro. RSC Med. Chem. 2023, 14, 1667–1697. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Sadler, P.J. Metals in Medicine. Angew. Chem. Int. Ed. 1999, 38, 1512–1531. [Google Scholar] [CrossRef]
- Elo, H.; Kuure, M.; Pelttari, E. Correlation of the Antimicrobial Activity of Salicylaldehydes with Broadening of the NMR Signal of the Hydroxyl Proton. Possible Involvement of Proton Exchange Processes in the Antimicrobial Activity. Eur. J. Med. Chem. 2015, 92, 750–753. [Google Scholar] [CrossRef]
- Pelttari, E.; Karhumaki, E.; Langshaw, J.; Perakyla, H.; Elo, H. Antimicrobial Properties of Substituted Salicylaldehydes and Related Compounds. Z. Naturforschung C 2007, 62, 487–497. [Google Scholar] [CrossRef]
- Bountagkidou, O.G.; Ordoudi, S.A.; Tsimidou, M.Z. Structure–Antioxidant Activity Relationship Study of Natural Hydroxybenzaldehydes Using in Vitro Assays. Food Res. Int. 2010, 43, 2014–2019. [Google Scholar] [CrossRef]
- Kordestani, N.; Rudbari, H.A.; Fernandes, A.R.; Raposo, L.R.; Baptista, P.V.; Ferreira, D.; Bruno, G.; Bella, G.; Scopelliti, R.; Braun, J.D.; et al. Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes. ACS Comb. Sci. 2020, 22, 89–99. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, Z.; Liu, Y.; Lu, Y.; Chen, K.; Zhu, W. Halogen Bond: Its Role beyond Drug–Target Binding Affinity for Drug Discovery and Development. J. Chem. Inf. Model. 2014, 54, 69–78. [Google Scholar] [CrossRef]
- Varadwaj, P.R.; Varadwaj, A.; Marques, H.M. Halogen Bonding: A Halogen-Centered Noncovalent Interaction Yet to Be Understood. Inorganics 2019, 7, 40. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, Y.; Zhu, W. Nonbonding Interactions of Organic Halogens in Biological Systems: Implications for Drug Discovery and Biomolecular Design. Phys. Chem. Chem. Phys. 2010, 12, 4543–4551. [Google Scholar] [CrossRef] [PubMed]
- Ntanatsidis, S.; Perontsis, S.; Konstantopoulou, S.; Kalogiannis, S.; Hatzidimitriou, A.G.; Papadopoulos, A.N.; Psomas, G. Manganese(II) Complexes of Substituted Salicylaldehydes and α-Diimines: Synthesis, Characterization and Biological Activity. J. Inorg. Biochem. 2022, 227, 111693. [Google Scholar] [CrossRef] [PubMed]
- Stamou, P.; Hatzidimitriou, A.G.; Psomas, G. Manganese(II) Complexes with 5–Nitro–2–Hydroxy–Benzaldehyde or Substituted 2–Hydroxy–Phenones: Structure and Interaction with Bovine Serum Albumin and Calf–Thymus DNA. J. Inorg. Biochem. 2022, 235, 111923. [Google Scholar] [CrossRef]
- Feng, D.; Wang, B.; Wang, L.; Abraham, N.; Tao, K.; Huang, L.; Shi, W.; Dong, Y.; Qu, Y. Pre-Ischemia Melatonin Treatment Alleviated Acute Neuronal Injury after Ischemic Stroke by Inhibiting Endoplasmic Reticulum Stress-Dependent Autophagy via PERK and IRE1 Signalings. J. Pineal Res. 2017, 62, e12395. [Google Scholar] [CrossRef]
- Thapa, K.; Khan, H.; Singh, T.G.; Kaur, A. Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. J. Mol. Neurosci. 2021, 71, 1725–1742. [Google Scholar] [CrossRef]
- Zianna, A.; Geromichalou, E.; Geromichalos, G.; Fiotaki, A.M.; Hatzidimitriou, A.G.; Kalogiannis, S.; Psomas, G. Zinc(II) Complexes of 3,5–Dibromo–Salicylaldehyde and α–Diimines: Synthesis, Characterization and in Vitro and in Silico Biological Profile. J. Inorg. Biochem. 2022, 226, 111659. [Google Scholar] [CrossRef]
- Christidou, A.; Zavalani, K.; Hatzidimitriou, A.G.; Psomas, G. Copper(II) Complexes with 3,5–Dihalogeno–Salicylaldehydes: Synthesis, Structure and Interaction with DNA and Albumins. J. Inorg. Biochem. 2023, 238, 112049. [Google Scholar] [CrossRef]
- Psarras, G.I.; Zianna, A.; Hatzidimitriou, A.G.; Psomas, G. Coordination Compounds of Nickel(II) with 3,5–Dibromo–Salicylaldehyde: Structure and Interaction with Biomolecules. Inorganics 2024, 12, 138. [Google Scholar] [CrossRef]
- Papadopoulos, Z.; Hatzidimitriou, A.G.; Psomas, G. Iron(III) Complexes with Substituted Salicylaldehydes: Synthesis, Interaction with DNA and Serum Albumins, and Antioxidant Activity. Molecules 2025, 30, 2383. [Google Scholar] [CrossRef]
- Zianna, A.; Geromichalos, G.; Fiotaki, A.M.; Hatzidimitriou, A.G.; Kalogiannis, S.; Psomas, G. Palladium(II) Complexes of Substituted Salicylaldehydes: Synthesis, Characterization and Investigation of Their Biological Profile. Pharmaceuticals 2022, 15, 886. [Google Scholar] [CrossRef] [PubMed]
- Aryaeifar, M.; Rudbari, H.A.; Moreno-Pineda, E.; Cuevas-Vicario, J.V.; Paul, S.; Schulze, M.; Wernsdorfer, W.; Lloret, F.; Moini, N.; Blacque, O. Synthesis, Characterization and Magnetic Properties of Halogenated Tetranuclear Cubane-like Nickel(II) Complexes. New J. Chem. 2024, 48, 3603–3613. [Google Scholar] [CrossRef]
- Geary, W.J. The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Chiswell, B.; McKenzie, E.D.; Lindoy, L.F. 41 Manganese. Compr. Coord. Chem. 1987, 4, 1–122. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. In Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 1–408. [Google Scholar] [CrossRef]
- Papadopoulos, C.D.; Lalia-Kantouri, M.; Jaud, J.; Hatzidimitriou, A.G. Substitution Effect on New Co(II) Addition Compounds with Salicylaldehydes and the Nitrogenous Bases Phen or Neoc: Crystal and Molecular Structures of [CoII(5-NO2-Salicylaldehyde)2(Phen)], [CoII(5-CH3-Salicylaldehyde)2(Neoc)] and [CoII(5-Cl-Salicylaldehyde)2(Neoc)]. Inorganica Chim. Acta 2007, 360, 3581–3589. [Google Scholar] [CrossRef]
- Zianna, A.; Vradi, E.; Hatzidimitriou, A.G.; Kalogiannis, S.; Psomas, G. Zinc(II) Complexes of 3-Bromo-5-Chloro-Salicylaldehyde: Characterization and Biological Activity. Dalton Trans. 2022, 51, 17629–17641. [Google Scholar] [CrossRef]
- Zianna, A.; Sumar Ristovic, M.; Psomas, G.; Hatzidimitriou, A.; Coutouli-Argyropoulou, E.; Lalia-Kantouri, M. Cadmium(II) Complexes of 5-Nitro-Salicylaldehyde and α -Diimines: Synthesis, Structure and Interaction with Calf-Thymus DNA. J. Coord. Chem. 2015, 68, 4444–4463. [Google Scholar] [CrossRef]
- Hadjiliadis, N.D.; Sletten, E. Metal Complex-DNA Interactions; Hadjiliadis, N., Sletten, E., Eds.; Wiley: New York, NY, USA, 2009; ISBN 978-1-405-17629-3. [Google Scholar]
- Rehman, S.U.; Sarwar, T.; Husain, M.A.; Ishqi, H.M.; Tabish, M. Studying Non-Covalent Drug–DNA Interactions. Arch. Biochem. Biophys. 2015, 576, 49–60. [Google Scholar] [CrossRef]
- Zeglis, B.M.; Pierre, V.C.; Barton, J.K. Metallo-Intercalators and Metallo-Insertors. Chem. Commun. 2007, 44, 4565–4579. [Google Scholar] [CrossRef]
- Pyle, A.M.; Rehmann, J.P.; Meshoyrer, R.; Kumar, C.V.; Turro, N.J.; Barton, J.K. Mixed-Ligand Complexes of Ruthenium(II): Factors Governing Binding to DNA. J. Am. Chem. Soc. 2002, 111, 3051–3058. [Google Scholar] [CrossRef]
- Wolfe, A.; Shimer, G.H.; Meehan, T. Polycyclic Aromatic Hydrocarbons Physically Intercalate into Duplex Regions of Denatured DNA. Biochemistry 1987, 26, 6392–6396. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulou, A.; Dendrinou-Samara, C.; Pantazaki, A.A.; Alexiou, M.; Nordlander, E.; Kessissoglou, D.P. Synthesis, Structure and Interactions with DNA of Novel Tetranuclear, [Mn4(II/II/II/IV)] Mixed Valence Complexes. J. Inorg. Biochem. 2008, 102, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Anaya, L.; Rinaudo, M.; Martinez, F. Conformation and Rheological Properties of Calf-Thymus DNA in Solution. Polymers 2016, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 0387312781. [Google Scholar]
- Heller, D.P.; Greenstock, C.L. Fluorescence Lifetime Analysis of DNA Intercalated Ethidium Bromide and Quenching by Free Dye. Biophys. Chem. 1994, 50, 305–312. [Google Scholar] [CrossRef]
- He, X.M.; Carter, D.C. Atomic Structure and Chemistry of Human Serum Albumin. Nature 1992, 358, 209–215. [Google Scholar] [CrossRef]
- Olson, R.E.; Christ, D.D. Chapter 33. Plasma Protein Binding of Drugs. Annu. Rep. Med. Chem. 1996, 31, 327–336. [Google Scholar] [CrossRef]
- Stella, L.; Capodilupo, A.L.; Bietti, M. A Reassessment of the Association between Azulene and [60]Fullerene. Possible Pitfalls in the Determination of Binding Constants through Fluorescence Spectroscopy. Chem. Commun. 2008, 39, 4744–4746. [Google Scholar] [CrossRef]
- Laitinen, O.H.; Hytonen, V.P.; Nordlund, H.R.; Kulomaa, M.S. Genetically Engineered Avidins and Streptavidins. Cell. Mol. Life Sci. 2006, 63, 2992–3017. [Google Scholar] [CrossRef]
- Reichmann, M.E.; Rice, S.A.; Thomas, C.A.; Doty, P. A Further Examination of the Molecular Weight and Size of Desoxypentose Nucleic Acid. J. Am. Chem. Soc. 1954, 76, 3047–3053. [Google Scholar] [CrossRef]
- Apex2, Version 2 User Manual, M86–E01078; Bruker Analytical X–Ray Systems, Inc.: Madison, WI, USA, 2006.
- SADABS: Area–Detector Absorption Correction; Siemens Industrial Automation, Inc.: München, Germany, 1996.
- Palatinus, L.; Chapuis, G. SUPERFLIP—A Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Crystallogr. 2003, 36, 1487. [Google Scholar] [CrossRef]
- de Meulenaer, J.; Tompa, H. The Absorption Correction in Crystal Structure Analysis. Acta Crystallogr. 1965, 19, 1014–1018. [Google Scholar] [CrossRef]
- Watkin, D.J.; Cooper, R.I. Why Direct and Post-Refinement Determinations of Absolute Structure May Give Different Results. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 661–683. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Zhang, H.-M.; Zhang, G.-C.; Tao, W.-H.; Tang, S.-H. Interaction of the Flavonoid Hesperidin with Bovine Serum Albumin: A Fluorescence Quenching Study. J. Lumin. 2007, 126, 211–218. [Google Scholar] [CrossRef]
Bond | Length (Å) | Bond | Length (Å) |
---|---|---|---|
Mn1—O1 | 2.250(6) | Mn1—O4 | 2.091(6) |
Mn1—O2 | 2.105(6) | Mn1—N1 | 2.137(7) |
Mn1—O3 | 2.281(6) | Mn1—N2 | 2.157(7) |
Bond | Angle (°) | Bond | Angle (°) |
O1—Mn1—O2 | 84.0(2) | O2—Mn1—O3 | 89.3(2) |
O1—Mn1—O3 | 82.8(2) | O2—Mn1—O4 | 87.9(2) |
O1—Mn1—O4 | 157.1(2) | O2—Mn1—N1 | 172.7(3) |
O1—Mn1—N1 | 90.4(2) | O2—Mn1—N2 | 92.1(2) |
O1—Mn1—N2 | 105.5(3) | O4—Mn1—N1 | 99.0(2) |
O3—Mn1—O4 | 75.7(2) | O4—Mn1—N2 | 96.1(2) |
O3—Mn1—N1 | 94.7(2) | N1—Mn1—N2 | 84.8(3) |
O3—Mn1—N2 | 171.6(3) |
Compound | λmax(nm) (ΔA/Aο (%)) a, Δλ (nm) b) | Κb (M−1) |
---|---|---|
3,5-diBr-saloH [30] | 337 (<−50, elimination); 427 (>+50, 0) | 3.71(±0.14) × 105 |
[Mn(3,5-diBr-salo)2(CH3OH)2], 1 | 425 (+11, −1) | 1.12(±0.32) × 105 |
[Mn(3,5-diBr-salo)2(bipyam)], 2 | 315 (+2, 0); 425 (+13, 0) | 3.54(±0.42) × 105 |
[Mn(3,5-diBr-salo)2(bipy)], 3 | 425 (+18, −2) | 6.58(±0.53) × 105 |
[Mn(3,5-diBr-salo)2(phen)], 4 | 300 (+2, 0); 425 (+11, −2) | 5.25(±0.45) × 105 |
[Mn(3,5-diBr-salo)2(neoc)], 5 | 425 (+12, 0) | 1.73(±0.42) × 105 |
Compound | ΔI/Io (%) | Ksv (M−1) | Kq (M−1s−1) |
---|---|---|---|
3,5-diBr-saloH [30] | 56.3 | 3.95(±0.10) × 104 | 1.72(±0.04) × 1012 |
[Mn(3,5-diBr-salo)2(CH3OH)2], 1 | 54.3 | 1.09(±0.03) × 105 | 4.72(±0.12) × 1012 |
[Mn(3,5-diBr-salo)2(bipyam)], 2 | 54.3 | 4.15(±0.05) × 104 | 1.80(±0.02) × 1012 |
[Mn(3,5-diBr-salo)2(bipy)], 3 | 53.1 | 4.14(±0.01) × 104 | 1.80(±0.04) × 1012 |
[Mn(3,5-diBr-salo)2(phen)], 4 | 50.7 | 3.19(±0.09) × 104 | 1.39(±0.04) × 1012 |
[Mn(3,5-diBr-salo)2(neoc)], 5 | 52.4 | 3.83(±0.08) × 104 | 1.67(±0.35) × 1012 |
Compound | Kq (BSA) (M−1s−1) | K(BSA) (M−1) | Kq (HSA) (M−1s−1) | K(HSA) (M−1) |
---|---|---|---|---|
3,5-diBr-saloH [30] | 3.65(±0.25) × 1013 | 2.97(±0.16) × 106 | 1.72(±0.06) × 1013 | 4.04(±0.30) × 105 |
Complex 1 | 4.42(±0.26) × 1013 | 2.12(±0.06) × 106 | 1.24(±0.04) × 1013 | 1.45(±0.07) × 106 |
Complex 2 | 3.18(±0.19) × 1013 | 1.36(±0.03) × 106 | 6.29(±0.32) × 1012 | 8.18(±0.25) × 105 |
Complex 3 | 1.81(±0.10) × 1013 | 9.86(±0.28) × 105 | 7.52(±0.30) × 1012 | 4.28(±0.09) × 105 |
Complex 4 | 1.24(±0.05) × 1013 | 1.71(±0.05) × 106 | 1.93(±0.10) × 1013 | 9.05(±0.33) × 105 |
Complex 5 | 3.01(±0.12) × 1013 | 7.49(±0.23) × 105 | 8.57(±0.21) × 1012 | 2.77(±0.05) × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodoulou, V.; Zianna, A.; Hatzidimitriou, A.G.; Psomas, G. Manganese(II) Complexes with 3,5–Dibromosalicylaldehyde: Characterization and Interaction Studies with DNA and Albumins. Inorganics 2025, 13, 263. https://doi.org/10.3390/inorganics13080263
Theodoulou V, Zianna A, Hatzidimitriou AG, Psomas G. Manganese(II) Complexes with 3,5–Dibromosalicylaldehyde: Characterization and Interaction Studies with DNA and Albumins. Inorganics. 2025; 13(8):263. https://doi.org/10.3390/inorganics13080263
Chicago/Turabian StyleTheodoulou, Vasia, Ariadni Zianna, Antonios G. Hatzidimitriou, and George Psomas. 2025. "Manganese(II) Complexes with 3,5–Dibromosalicylaldehyde: Characterization and Interaction Studies with DNA and Albumins" Inorganics 13, no. 8: 263. https://doi.org/10.3390/inorganics13080263
APA StyleTheodoulou, V., Zianna, A., Hatzidimitriou, A. G., & Psomas, G. (2025). Manganese(II) Complexes with 3,5–Dibromosalicylaldehyde: Characterization and Interaction Studies with DNA and Albumins. Inorganics, 13(8), 263. https://doi.org/10.3390/inorganics13080263