Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications
Conflicts of Interest
References
- Zhang, H.; Zhao, Z.; Wu, C. Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration. Adv. Sci. 2025, 12, e2415344. [Google Scholar] [CrossRef]
- Sharma, A.; Kokil, G.R.; He, Y.; Lowe, B.; Salam, A.; Altalhi, T.A.; Ye, Q.; Kumeria, T. Inorganic/Organic Combination: Inorganic Particles/Polymer Composites for Tissue Engineering Applications. Bioact. Mater. 2023, 24, 535. [Google Scholar] [CrossRef]
- Brokesh, A.M.; Gaharwar, A.K. Inorganic Biomaterials for Regenerative Medicine. ACS Appl. Mater. Interfaces 2020, 12, 5319. [Google Scholar] [CrossRef]
- dos Santos, V.I.; Chevalier, J.; Fredel, M.C.; Henriques, B.; Gremillard, L. Ceramics and Ceramic Composites for Biomedical Engineering Applications via Direct Ink Writing: Overall Scenario, Advances in the Improvement of Mechanical and Biological Properties and Innovations. Mater. Sci. Eng. R Rep. 2024, 161, 100841. [Google Scholar] [CrossRef]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J. Funct. Biomater. 2023, 14, 146. [Google Scholar] [CrossRef]
- Khan, T.; Vadivel, G.; Ramasamy, B.; Murugesan, G.; Sebaey, T.A. Biodegradable Conducting Polymer-Based Composites for Biomedical Applications—A Review. Polymers 2024, 16, 1533. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.P.; Gaharwar, A.K. Light-Responsive Inorganic Biomaterials for Biomedical Applications. Adv. Sci. 2020, 7, 2000863. [Google Scholar] [CrossRef] [PubMed]
- Huebsch, N.; Mooney, D.J. Inspiration and Application in the Evolution of Biomaterials. Nature 2009, 462, 426. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Feng, W.; Chen, Y. Two-dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications. Chem. Soc. Rev. 2021, 50, 11381. [Google Scholar] [CrossRef]
- Bhat, S.; Kumar, A. Biomaterials and Bioengineering Tomorrow’s Healthcare. Biomatter 2013, 3, e24717. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, Z.; Tang, R. Applications of Amorphous Inorganics as Novel Functional Materials. Mater. Chem. Front. 2024, 8, 1703. [Google Scholar] [CrossRef]
- Mao, W.; Yoo, H.S. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater. Res. 2024, 28, 0086. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, H.; Zeng, Z.; Zeng, Y.; Xie, T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater. Sci. Eng. 2021, 7, 5363. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, X.; Wu, Y.; Chen, X.; Feng, L.; Xie, N.; Shen, G. Nanotechnology’s Frontier in Combatting Infectious and Inflammatory Diseases: Prevention and Treatment. Signal Transduct. Target. Ther. 2024, 9, 34. [Google Scholar] [CrossRef]
- Liu, F.; Yao, S.; Li, J.; Huang, K.; Zhang, D.; Wong, T.M.; Tang, R.; Yeung, K.W.K.; Wu, J. Inorganic-organic Hybrid Metamaterials with Switchable High Stiffness and Elasticity. Nat. Commun. 2025, 16, 4423. [Google Scholar] [CrossRef]
- Zimina, T.M.; Sitkov, N.O.; Gareev, K.G.; Fedorov, V.; Grouzdev, D.; Koziaeva, V.; Gao, H.; Combs, S.E.; Shevtsov, M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. Biosensors 2022, 12, 789. [Google Scholar] [CrossRef]
- Trucillo, P. Biomaterials for Drug Delivery and Human Applications. Materials 2024, 17, 456. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, T.; Wang, H.; Wang, Z.; Hou, L.; Jiang, J.; Xu, T. Applications of Nanomaterial Technology in Biosensing. J. Sci. Adv. Mater. Devices 2024, 9, 100694. [Google Scholar] [CrossRef]
- Shi, S.; Vissapragada, R.; Abi Jaoude, J.; Huang, C.; Mittal, A.; Liu, E.; Zhong, J.; Kumar, V. Evolving Role of Biomaterials in Diagnostic and Therapeutic Radiation Oncology. Bioact. Mater. 2020, 5, 233. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Y.; Li, Y.; Kpegah, J.K.S.K.; Chen, S. Multifunctional Inorganic Biomaterials: New Weapons Targeting Osteosarcoma. Front. Mol. Biosci. 2023, 9, 1105540. [Google Scholar] [CrossRef]
- Kharbikar, B.N.; Mohindra, P.; Desai, T.A. Biomaterials to Enhance Stem Cell Transplantation. Cell Stem Cell 2022, 29, 692. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Recent Advances in Biomaterials for 3D Scaffolds: A Review. Bioact. Mater. 2019, 4, 271. [Google Scholar] [CrossRef]
- Richbourg, N.R.; Peppas, N.A.; Sikavitsas, V.I. Tuning the Biomimetic Behavior of Scaffolds for Regenerative Medicine Through Surface Modifications. J. Tissue Eng. Regen. Med. 2019, 13, 1275. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Rout, S.; Parmanik, A.; Satapathy, B.S.; Pattnaik, S.; Maharana, L.; Nayak, A.K. Inorganic Biomaterials for Ocular Drug Delivery: A Comprehensive Review. J. Drug Deliv. Sci. Technol. 2025, 106, 106667. [Google Scholar] [CrossRef]
- Murali, A.; Brokesh, A.M.; Cross, L.M.; Kersey, A.L.; Jaiswal, M.K.; Singh, I.; Gaharwar, A. Inorganic Biomaterials Shape the Transcriptome Profile to Induce Endochondral Differentiation. Adv. Sci. 2024, 11, e2402468. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, J.; Zhu, Y.; Wu, C. Inorganic-based Biomaterials for Rapid Hemostasis and Wound Healing. Chem. Sci. 2022, 14, 29–53. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, A. Biomaterials and Therapeutic Applications. IOP Conf. Ser. Mater. Sci. Eng. 2016, 108, 012021. [Google Scholar] [CrossRef]
- Dai, T.; He, W.; Yao, C.; Ma, X.; Ren, W.; Mai, Y.; Wu, A. Applications of Inorganic Nanoparticles in the Diagnosis and Therapy of Atherosclerosis. Biomater. Sci. 2020, 8, 3784–3799. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Liu, X. Advancing Biomaterials of Human Origin for Tissue Engineering. Prog. Polym. Sci. 2016, 53, 86. [Google Scholar] [CrossRef]
- Kim, H.-S.; Baby, T.; Lee, J.-H.; Shin, U.S.; Kim, H.-W. Biomaterials-Enabled Electrical Stimulation for Tissue Healing and Regeneration. Med-X 2024, 2, 7. [Google Scholar] [CrossRef]
- Alshangiti, D.M.; El-Damhougy, T.K.; Zaher, A.; Madani, M.; Mohamady Ghobashy, M. Revolutionizing Biomedicine: Advancements, Applications, and Prospects of Nanocomposite Macromolecular Carbohydrate-based Hydrogel Biomaterials: A Review. RSC Adv. 2023, 13, 35251. [Google Scholar] [CrossRef]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R.; Gaharwar, A.K. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef]
- Saikia, N. Inorganic-Based Nanoparticles and Biomaterials as Biocompatible Scaffolds for Regenerative Medicine and Tissue Engineering: Current Advances and Trends of Development. Inorganics 2024, 12, 292. [Google Scholar] [CrossRef]
- Ma, J.; Wu, C. Bioactive Inorganic Particles-based Biomaterials for Skin Tissue Engineering. Exploration 2022, 2, 20210083. [Google Scholar] [CrossRef]
- Song, P.; Zhou, D.; Wang, F.; Li, G.; Bai, L.; Su, J. Programmable Biomaterials for Bone Regeneration. Mater. Today Bio. 2024, 29, 101296. [Google Scholar] [CrossRef]
- Lombardo, D.; Calandra, P.; Kiselev, M.A. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020, 25, 5624. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef] [PubMed]
- Mitić, Ž.; Stolić, A.; Stojanović, S.; Najman, S.; Ignjatović, N.; Nikolić, G.; Trajanović, M. Instrumental Methods and Techniques for Structural and Physicochemical Characterization of Biomaterials and Bone Tissue: A Review. Mater. Sci. Eng. C 2017, 79, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Alu, A.; Liu, H.; Shi, Y.; Wei, X.; Cai, L.; Wei, Y. Biomaterial-assisted Biotherapy: A Brief Review of Biomaterials Used in Drug Delivery, Vaccine Development, Gene Therapy, and Stem Cell Therapy. Bioact. Mater. 2022, 17, 29–48. [Google Scholar] [CrossRef]
- Aly, R.M. Current State of Stem Cell-based Therapies: An Overview. Stem Cell Investig. 2020, 7, 8. [Google Scholar] [CrossRef]
- Jarrige, M.; Frank, E.; Herardot, E.; Martineau, S.; Darle, A.; Benabides, M.; Domingues, S.; Chose, O.; Habeler, W.; Lorant, J.; et al. The Future of Regenerative Medicine: Cell Therapy Using Pluripotent Stem Cells and Acellular Therapies Based on Extracellular Vesicles. Cells 2021, 10, 240. [Google Scholar] [CrossRef]
- Lele, M.; Kapur, S.; Hargett, S.; Sureshbabu, N.M.; Gaharwar, A.K. Global Trends in Clinical Trials Involving Engineered Biomaterials. Sci. Adv. 2024, 10, eabq0997. [Google Scholar] [CrossRef]
- Cuperová, I.; Fujda, M.; Kočiško, R.; Petroušek, P.; Molčanová, Z.; Matvija, M.; Džunda, R.; Ballóková, B.; Csík, D.; Gáborová, K.; et al. Significant Enhancement of Strength and Ductility in Bioresorbable Zn–0.1Mg Alloy via ECAP Processing. Inorganics 2025, 13, 193. [Google Scholar] [CrossRef]
- Kurjan, J.; Jendželovsk, Z.; Dečmanov., V.; Vilkov, M.; Ćirković, K.; Radojević, I.; Liteck, M.; Jendželovský, R.; Potočň.k, I. The Coumarin-Based Silver(I) Complex Showed Enhanced Antitumor and Antimicrobial Activity than Ligand Itself. Inorganics 2025, 13, 164. [Google Scholar] [CrossRef]
- Yaman, K.; Demir, N.; Arslan, U.; Çiftçi, N. Antimicrobial, Optical, and Mechanical Properties of Saliva-Contaminated Silver–Zeolite Nanoparticle-Incorporated Dental Acrylic Resins. Inorganics 2024, 12, 258. [Google Scholar] [CrossRef]
- Marabello, D.; Benzi, P.; Canepa, C.; Cioci, A. Ca-, Li-, and Cu-Salicylatoborates for Potential Applications in Neutron Capture Therapy: A Computational Method for the Preliminary Discrimination of the More Promising Compounds. Inorganics 2025, 13, 136. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.; Liu, C.; Chen, R.; Jiang, T.; Hailili, Y.; Bahetibieke, T.; Tang, X.; Wang, M. Preparation of Ca-Mg Double-Doped Mesoporous Silica Nanoparticles and Their Drug- Loading and Drug-Releasing Properties. Inorganics 2025, 13, 12. [Google Scholar] [CrossRef]
- Liu, C.; Tang, X.; Huang, G. Biodegradable Ca2+ Doped Mesoporous Silica Nanoparticles Promote Chemotherapy Synergism with Calcicoptosis and Activate Anti-Tumor Immunity. Inorganics 2024, 12, 152. [Google Scholar] [CrossRef]
- Barnash, Y.; Jovanović, S.; Jovanović, Z.; Kamanina, N. Electrical Features of Liquid Crystal Composition Doped with Cobalt Ferrite: Possible Sensing Applications. Inorganics 2025, 13, 107. [Google Scholar] [CrossRef]
- Giacomet, M.M.; Buzzetti, P.H.M.; Junior, O.O.S.; Martins, A.F.; Bonafe, E.G.; Monteiro, J.P. Portable Electrochemical Immunosensor Based on a Gold Microblobs-Optimized Screen- Printed Electrode for SARS-CoV-2 Diagnosis. Inorganics 2024, 12, 252. [Google Scholar] [CrossRef]
- Ntoupis, V.; Michail, C.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Valais, I. Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range. Inorganics 2024, 12, 230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saikia, N. Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications. Inorganics 2025, 13, 260. https://doi.org/10.3390/inorganics13080260
Saikia N. Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications. Inorganics. 2025; 13(8):260. https://doi.org/10.3390/inorganics13080260
Chicago/Turabian StyleSaikia, Nabanita. 2025. "Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications" Inorganics 13, no. 8: 260. https://doi.org/10.3390/inorganics13080260
APA StyleSaikia, N. (2025). Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications. Inorganics, 13(8), 260. https://doi.org/10.3390/inorganics13080260