Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation
Abstract
1. Introduction
2. Experiment
2.1. Chemicals
2.2. Synthesis of Photocatalysts
2.2.1. Synthesis of Bi2MoO6 (BMO)
2.2.2. Synthesis of Bi-Enriched Bi2O3 (BBO)
2.2.3. Synthesis of Bi2O3/Bi2MoO6 (BBO/BMO) Heterojunction
2.3. Characterizations
2.4. Photocatalytic Activity Evaluation
2.4.1. Degradation Experiments
2.4.2. Active Species Trapping Experiments
3. Results and Discussion
3.1. Morphology and Structural Characterization
3.1.1. SEM and TEM
3.1.2. XRD
3.1.3. N2 Adsorption–Desorption Isotherms
3.2. Surface Chemical States and Electron Distribution
3.3. Photoelectrochemical and Photoluminescence Properties
3.4. Assessment of Catalytic Activity
3.5. Exploration of the Catalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Z.K.; Ma, Y.F.; Zhu, J.Y.; Zeng, C.Y.; Liu, Y.F.; Zhang, Z.L. Enhanced oxidation of sulfonamides by low-valent Cu-based sludge biochar activating ferrate (VI): The roles of valence-dependent activation pathways. Appl. Catal. B Environ. Energy 2025, 371, 125208. [Google Scholar] [CrossRef]
- Zhang, J.L.; Gou, S.T.; Yang, Z.; Li, C.L.; Wang, W.H. Photocatalytic degradation of sulfamethoxazole over S-scheme Fe2O3/g-C3N4 photocatalyst under visible light. Water Cycle 2023, 5, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.H.; Lian, X.Y.; Dong, S.A.; Li, H.; Xu, K.Z. Efficient activation of peroxydisulfate by g-C3N4/Bi2MoO6 nanocomposite for enhanced organic pollutants degradation through non-radical dominated oxidation processes. J. Colloid Interface Sci. 2022, 607, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Wang, C.C.; Liu, Y.P.; Cai, M.J.; Wang, Y.N.; Zhang, H.Q.; Guo, Y.; Zhao, W.; Wang, Z.H.; Chen, X.B. Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chem. Eng. J. 2022, 429, 132519. [Google Scholar] [CrossRef]
- Zhu, C.X.; Wang, Y.J.; Qiu, L.Y.; Liu, Y.Q.; Li, H.B.; Yu, Y.S.; Li, J.M.; Yang, W.W. 3D hierarchical Fedoped Bi4O5I2 microflowers as an efficient Fenton photocatalyst for tetracycline degradation over a wide pH range. Sep. Purif. Technol. 2022, 290, 120878. [Google Scholar] [CrossRef]
- Wu, Z.H.; Shen, J.; Li, W.L.; Li, J.S.; Xia, D.H.; Xu, D.F.; Zhang, S.Y.; Zhu, Y.F. Electron self-sufficient core-shell BiOCl@Fe-BiOCl nanosheets boosting Fe (III)/Fe (II) recycling and synergetic photocatalysis-Fenton for enhanced degradation of phenol. Appl. Catal. B Environ. Energy 2023, 330, 122642. [Google Scholar] [CrossRef]
- Shen, H.D.; Fu, F.; Xue, W.W.; Yang, X.X.; Ajmal, S.; Zhen, Y.Z.; Guo, L.; Wang, D.J.; Chi, R. In situ fabrication of Bi2MoO6/Bi2MoO6-x homojunction photocatalyst for simultaneous photocatalytic phenol degradation and Cr(VI) reduction. J. Colloid Interface Sci. 2021, 599, 741–751. [Google Scholar] [CrossRef]
- Hu, C.; Cao, J.; Jia, X.M.; Sun, H.Y.; Lin, H.L.; Chen, S.F. Difunctional Ni2P decorated novel Z-scheme BiVO4/g-C3N4 heterojunction for achieving highly efficient CO2 reduction and tetracycline oxidation. Appl. Catal. B Environ. Energy. 2023, 337, 122957. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, M.Q.; Hao, J.Y.; Zheng, S.L.; Yang, Y.; Yao, T.J.; Wang, Y. Construction of Z-scheme heterojunction by coupling Bi2Sn2O7 and BiOBr with abundant oxygen vacancies: Enhanced photodegradation performance and mechanism insight. J. Colloid Interface Sci. 2022, 612, 550–561. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, S.; Liu, X.W.; Sun, M.T.; Cao, J.Z.; Wang, J.; Wang, S.H.; Wen, T.; Wang, X.K. Oxygen defects-induced charge transfer in Bi7O9I3 for enhancing oxygen activation and visiblelight degradation of BPA. Chemosphere 2022, 286, 131783. [Google Scholar] [CrossRef]
- Liu, K.; Fu, T.; Wang, L.X.; Yan, J.Y.; Sun, J.; Zhang, J.W.; Wei, X.L.; Tong, Z.F.; Zhang, H.B. Unique roles of exfoliated bentonite in S-scheme BiOBr/Bi2MoO6 heterojunction for boosted ciprofloxacin degradation. Sep. Purif. Technol. 2023, 323, 124427. [Google Scholar] [CrossRef]
- Wang, L.X.; Sun, J.; Shi, J.W.; Huang, T.; Liu, K.; Tong, Z.F.; Zhang, H.B. Reinforced built-in electric field and mediated schottky barrier height via carbon quantum dots electronic bridges on BiOBr/Ti3C2 for efficient photocatalytic quinolone antibiotics degradation. Chem. Eng. J. 2024, 500, 157168. [Google Scholar] [CrossRef]
- He, Z.Y.; Zhang, W.K.; Xie, X.; Guo, J.H.; Zhang, X.Y.; Wang, J.Y. Preparation and photoelectrochemical properties of TiO2/ZnO nanorod heterojunction arrays. J. Nanopart. Res. 2023, 25, 226. [Google Scholar] [CrossRef]
- Jia, T.; Wu, J.; Ji, Z.H.; Peng, C.; Liu, Q.Z.; Shi, M.; Zhu, J.; Wang, H.N.; Liu, D.J.; Zhou, M. Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation. Appl. Catal. B Environ. Energy 2021, 284, 119727. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Wang, G.H.; Wang, K.; Li, J.M.; Zhao, L. In situ irradiated XPS investigation on S-scheme TiO2/Bi2S3 photocatalyst with high interfacial charge separation for highly efficient photothermal catalytic CO2 reduction. J. Mater. Sci. Technol. 2024, 189, 86–95. [Google Scholar] [CrossRef]
- Wang, L.B.; Cheng, B.; Zhang, L.Y.; Yu, J.G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef]
- Lei, B.; Cui, W.; Sheng, J.P.; Wang, H.; Chen, P.; Li, J.Y.; Sun, Y.J.; Dong, F. Synergistic effects of crystal structure and oxygen vacancy on Bi2O3 polymorphs: Intermediates activation, photocatalytic reaction efficiency, and conversion pathway. Sci. Bull. 2020, 65, 467–476. [Google Scholar] [CrossRef]
- Xie, X.Q.; Hassan, Q.U.; Lu, H.; Rao, F.; Gao, J.Z.; Zhu, G.Q. In situ construction of oxygen-vacancy-rich Bi0@Bi2WO6-x microspheres with enhanced visible light photocatalytic for NO removal. Chin. Chem. Lett. 2021, 32, 2038–2042. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Wu, L.S.; Liang, L.W.; Liu, D.; Luo, J.J.; Lv, Q.F.; Liang, L.L.; Deng, H.T. Construction of BiOCOOH/BiMoO Z-scheme heterojunction for visible-light-driven photocatalytic degradation of ciprofloxacin: Performance and mechanistic insights. J. Alloys Compd. 2024, 1008, 176682. [Google Scholar] [CrossRef]
- Liao, G.F.; Li, C.X.; Liu, S.Y.; Fang, B.Z.; Yang, H.M. Emerging frontiers of Z-scheme photocatalytic systems. Trends Chem. 2021, 4, 111–127. [Google Scholar] [CrossRef]
- Ji, T.; Ha, E.N.; Wu, M.Z.; Hu, X.; Wang, J.; Sun, N.G.; Li, S.J.; Hu, J.Q. Controllable Hydrothermal Synthesis and Photocatalytic Performance of Bi2MoO6 Nano/Microstructures. Catalysts 2020, 10, 1161. [Google Scholar] [CrossRef]
- Bian, Y.; Ma, Y.J.; Shang, Y.Y.; Tan, P.F.; Pan, J. Self-integrated beta-Bi2O3/Bi2O2.33@Bi2O2CO3 ternary composites: Formation mechanism and visible light photocatalytic activity. Appl. Surf. Sci. 2018, 430, 613–624. [Google Scholar] [CrossRef]
- Luo, H.D.; Dong, S.A.; Chen, S.H.; Zhao, F.Q.; Xu, K.Z. Novel FeOOH-decorated La-doped Bi4O5I2 microspheres for boosting photocatalysis-Fenton synergy degradation of emerging contaminants. Sep. Purif. Technol. 2025, 354, 128681. [Google Scholar] [CrossRef]
- Wei, K.L.; Wang, B.L.; Hu, J.M.; Chen, F.M.; Hao, Q.; He, G.N.; Wang, Y.Z.; Li, W.; Liu, J.M.; He, Q.Y. Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core–shell structure. RSC Adv. 2019, 20, 11377–11384. [Google Scholar] [CrossRef]
- Ai, L.L.; Feng, L.J.; Wang, L.X.; Li, Y.C.; Tan, C.; Zha, M.N.; Jia, D.Z.; Guo, N.N. S-scheme Bi2MoO6/BiOBr heterostructure for effective removal of dye: Synergistic mechanism insight of adsorption-photocatalysis. Environ. Res. 2025, 275, 121301. [Google Scholar] [CrossRef]
- Zha, Y.X.; He, X.Y.; Wang, Y.D.; Chen, W.Y.; Chen, L.; Chen, L.G.; Wang, S.X.; Yan, B.Y.; Ma, B.R.; Li, J.C. Visible-light-response Fe-doped BiOCl microspheres with efficient photocatalysis-Fenton degradation of antibiotics. J. Water Process. Eng. 2024, 67, 106225. [Google Scholar] [CrossRef]
- Lian, X.Y.; Xue, W.H.; Dong, S.A.; Liu, E.Z.; Li, H.; Xu, K.Z. Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. J. Hazard. Mater. 2021, 412, 125217. [Google Scholar] [CrossRef]
- You, Y.; Wang, S.B.; Xiao, K.; Ma, T.Y.; Zhang, Y.H.; Huang, H.W. Z-Scheme g-C3N4/Bi4NbO8Cl Heterojunction for Enhanced Photocatalytic Hydrogen Production. ACS Sustain. Chem. Eng. 2018, 6, 16219–16227. [Google Scholar] [CrossRef]
- Song, Z.Z.; Gao, H.Y.; Li, J.Y.; Zhao, Z.L.; Zhang, W.J.; Wang, D.S. Slag-based Z-scheme heterojunction visible light-driven photocatalyst for efficient degradation of tetracycline antibiotics in water. J. Water Process. Eng. 2025, 71, 107195. [Google Scholar] [CrossRef]
- Jin, X.L.; Cao, J.; Wang, H.Q.; Lv, C.D.; Xie, H.Q.; Su, F.Y.; Li, X.; Sun, R.X.; Shi, S.K.; Dang, M.F.; et al. Realizing improved CO2 photoreduction in Z-scheme Bi4O5Br2/AgBr heterostructure. Appl. Surf. Sci. 2022, 598, 153758. [Google Scholar] [CrossRef]
- Wang, G.A.; Huo, T.T.; Deng, Q.H.; Yu, F.; Xia, Y.G.; Li, H.P.; Hou, W.G. Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation. Appl. Catal. B Environ. Energy 2022, 310, 121319. [Google Scholar] [CrossRef]
- Han, T.Y.; Chen, Y.G.; Shi, H.F. Construction of a Bi2MoO6/CoOx/Au system with a dual-channel charge transfer path for enhanced tetracycline degradation. Catal. Sci. Technol. 2022, 12, 5565–5574. [Google Scholar] [CrossRef]
- Zhou, Y.D.; Wang, Z.T.; Zhang, Z.; Cao, W.; Zhang, H.X. Co/N-doped hierarchical porous carbon as an efficient catalyst for the degradation of Arsenazo III. J. Environ. Chem. Eng. 2025, 13, 115557. [Google Scholar] [CrossRef]
- Miao, C.R.; Huang, W.J.; Li, K.N.; Yang, Y.H. Highly efficient removal of adsorbed cationic dyes by dual-network chitosan-based hydrogel. Environ. Res. 2024, 263, 120195. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.F.; Mu, Q.; Kimura, H.; Du, W.; Hou, C.X. Vignesh Murugadoss, Maoxia He, Oxidative degradation of phenols and substituted phenols in the water and atmosphere: A review. Adv. Compos. Hybrid Mater. 2022, 5, 627–640. [Google Scholar] [CrossRef]
- Yang, B.W.; Zheng, L.H.; Cheng, Z.W.; Fan, M.H.; Hao, J.M.; Ma, Q. Enhancing Fe(II) generation via graphene oxide to activate peroxydisulfate for phenol degradation: Mechanism, molecular descriptors, and environmental application. Carbon 2025, 237, 120124. [Google Scholar] [CrossRef]
- Gao, W.W.; He, Z.P.; Wang, Y.H.; Li, W.; Zhang, Z.F.; Su, T.; Bai, R.; Yang, Y.L. Enhanced persulfate-assisted photocatalytic degradation of phenol by Ag/ZnFe2O4 composite. J. Alloys Compd. 2025, 1010, 177578. [Google Scholar] [CrossRef]
- Han, Z.Y.; Liu, Y.G.; Zhang, R.X.; Shi, J.L.; Jia, Y.B.; Liu, X.C.; Jiang, H.Y. One-Pot Synthesis of C@BiOBr for Efficient Photocatalytic Degradation of Phenol. Langmuir 2024, 40, 15847–15856. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Yao, B.H.; Xu, T.T.; Ma, M.M. Effect and Study of Reducing Agent NaBH4 on Bi/BiOBr/CdS Photocatalyst. Mater. Lett. 2020, 259, 126874. [Google Scholar] [CrossRef]
- Huang, F.X.; Wang, F.; Liu, Y.; Guo, L.J. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO2 to CH3CH2COOH. Adv. Mater. 2025, 37, 2416708. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Fang, Q.; Yang, X.; Zuo, S.W.; Cheng, T.; Yamauchi, Y.; Tang, J. Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/Cu2O with Ag Single Atoms to Drive CO2 Electroreduction. Adv. Mater. 2025, 37, 2411498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhai, M.M.; Liu, J.; Xu, J.X.; Lin, H.F.; Xing, J.; Wang, L. Anchoring Ag Atom on Carbon Vacancy Enriched Carbon Nitride to Synergistically Promote CO2 Photoredution with Water. Adv. Funct. Mater. 2025, 35, 2413232. [Google Scholar] [CrossRef]
- Bian, Z.Y.; Lu, B.B.; Yang, Y.J.; Zhang, Q. Bi/BiVO4 tailoring molecular oxygen activation for SPR-promoted photocatalytic contaminant removal. Surf. Interfaces. 2024, 47, 104210. [Google Scholar] [CrossRef]
- Soomro, M.Y.; Balouch, A.; Alveroglu, E.; Larik, R.; Shah, K.; Chang, S.A. Fe/Ni bimetallic magnetic nano-alloy (INBMNA): An efficient heterogeneous catalyst for photo-Fenton-like degradation of phenol in aqueous environment. Environ. Pollut. 2024, 360, 124635. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Zhou, J.; Nie, C.; Li, W.; Li, D.; Zhang, Y.; Ao, Z. Insights into Mn-doped biochar induce peroxymonosulfate activation for phenol degradation: The overlooked significance of C-O-Mn. J. Hazard. Mater. 2025, 492, 138031. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.X.; Li, X.H.; Wu, M.; Ding, H.; Li, X.B. A type II heterojunction α-Fe2O3/g-C3N4 for the heterogeneous photo-Fenton degradation of phenol. RSC Adv. 2022, 14, 8300–8309. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Lei, J.; Liu, Y.; Zhang, J. Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2. Appl. Catal. B Environ. Energy. 2019, 241, 367–374. [Google Scholar] [CrossRef]
- Huang, W.X.; Shao, H.J.; Song, M.Z.; Yang, Z.Z.; Li, G.B.; Liao, X.Y. Perylene diimides coated Fe-MOFs as acid-tolerant photo-Fenton catalyst for phenol removal. Appl. Surf. Sci. 2021, 547, 149222. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Huang, X.Y. Hydroxylamine hydrochloride-driven activation of NiFe2O4 for the degradation of phenol via peroxymonosulfate. Environ. Res. 2024, 263, 120057. [Google Scholar] [CrossRef]
- Gao, S.J.; Liu, W.F.; Wang, M.L.; Fu, D.J.; Zhao, Z.B.; Liu, X.G. In situ self-grown synthesis of c-MOF@NiO heterostructure anchored to c-MOF/rGA particle electrode: Promoting sustained and efficient degradation of phenol in coking wastewater. Appl. Catal. B Environ. Energy 2025, 365, 124911. [Google Scholar] [CrossRef]
- Zhu, D.D.; Zhou, Q.X. Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Appl. Catal. B Environ. Energy 2020, 281, 119474. [Google Scholar] [CrossRef]
- Huang, T.; Zhu, J.D.; Ge, S.Z.; Guo, T.Y.; Jiang, C.W.; Xie, L. Synthesis of novel CdSe QDs/BiFeO3 composite catalysts and its application for the photo-Fenton catalytic degradation of phenol. J. Environ. Chem. Eng. 2020, 8, 104384. [Google Scholar] [CrossRef]
- Mao, J.; Quan, X.; Wang, J.; Gao, C.; Chen, S.; Yu, H.T.; Zhang, Y.B. Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants. Front. Environ. Sci. Eng. 2018, 12. [Google Scholar] [CrossRef]
- Hu, Z.C.; Zhang, W.Q.; Liu, Z.C.; Zhang, X.; Wang, X.M. Construction of CoFe2O4/TiO2@C S-scheme heterojunction and removal of phenol by activated peroxymonosulfate. J. Alloys Compd. 2025, 1022, 179992. [Google Scholar] [CrossRef]
- Fan, X.L.; Cao, Q.Q.; Meng, F.Y.; Song, B.; Bai, Z.Q.; Zhao, Y.; Chen, D.D.; Zhou, Y.; Song, M. A Fenton-like system of biochar loading Fe–Al layered double hydroxides (FeAl-LDH@BC)/H2O2 for phenol removal. Chemosphere 2021, 266, 128992. [Google Scholar] [CrossRef]
- Wei, X.P.; Wu, H.H.; He, G.P.; Guan, Y.F. Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: Importance of visible light irradiation and intermediates. J. Hazard. Mater. 2017, 321, 408–416. [Google Scholar] [CrossRef]
- Qian, X.F.; Ren, M.; Zhu, Y.; Yue, D.T.; Han, Y.; Jia, J.P.; Zhao, Y.X. Visible Light Assisted Heterogeneous Fenton-Like Degradation of Organic Pollutant via α-FeOOH/Mesoporous Carbon Composites. Environ. Sci. Technol. 2017, 51, 3993–4000. [Google Scholar] [CrossRef]
- Fu, Y.L.; Xie, L.T.; Li, J.; Li, X.G.; Su, M.S.; Liu, Y.T.; Yan, L.G. Simultaneous solar-driven interfacial evaporation and phenol degradation using three-dimensional MoS2-melamine foam. Chem. Eng. J. 2024, 500, 156929. [Google Scholar] [CrossRef]
Samples | SBET m2/g | VP cm3/g | dP nm |
---|---|---|---|
BMO | 36.45 | 0.126 | 13.84 |
BBO | 27.51 | 0.112 | 16.35 |
BBO/BMO | 81.27 | 0.211 | 10.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Wang, S.; Wan, P.; Cai, H.; Pan, M.; Wang, W. Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation. Inorganics 2025, 13, 227. https://doi.org/10.3390/inorganics13070227
Cai C, Wang S, Wan P, Cai H, Pan M, Wang W. Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation. Inorganics. 2025; 13(7):227. https://doi.org/10.3390/inorganics13070227
Chicago/Turabian StyleCai, Congyu, Shuwen Wang, Pingping Wan, Haoying Cai, Minhui Pan, and Weiwei Wang. 2025. "Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation" Inorganics 13, no. 7: 227. https://doi.org/10.3390/inorganics13070227
APA StyleCai, C., Wang, S., Wan, P., Cai, H., Pan, M., & Wang, W. (2025). Three-Dimensional Bi-Enriched Bi2O3/Bi2MoO6 Z-Scheme Heterojunction: Augmented Photocatalytic Phenol Degradation. Inorganics, 13(7), 227. https://doi.org/10.3390/inorganics13070227