Italian Contribution to the Recent Growth of the Luminescent 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complex Family
Abstract
1. Introduction
2. 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complexes with Chloride as Ancillary Ligand
3. 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complexes with Other Ancillary Ligands
3.1. Complexes Bearing Thiolates as Ancillary Ligands
3.2. Complexes Bearing Azides, Triazolates, and Acetylides as Ancillary Ligands
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Spin–orbit coupling |
NIR | Near infrared |
OLED | Organic light-emitting diode |
Φlum | Luminescence quantum yield |
TD | Time-dependent |
DFT | Density functional theory |
References
- Nalwa, H.S. Organometallic materials for nonlinear optics. Appl. Organomet. Chem. 1991, 5, 349–377. [Google Scholar] [CrossRef]
- Long, N.J. Organometallic Compounds for Nonlinear Optics-The Search for En-light-enment! Angew. Chem. Int. Ed. Engl. 1995, 34, 21–38. [Google Scholar] [CrossRef]
- Le Bozec, H.; Renouard, T. Dipolar and Non-Dipolar Pyridine and Bipyridine Metal Complexes for Nonlinear Optics. Eur. J. Inorg. Chem. 2000, 2000, 229–239. [Google Scholar] [CrossRef]
- Bella, S.D. Second-order nonlinear optical properties of transition metal complexes. Chem. Soc. Rev. 2001, 30, 355–366. [Google Scholar] [CrossRef]
- Pizzotti, M.; Ugo, R.; Roberto, D.; Bruni, S.; Fantucci, P.; Rovizzi, C. Organometallic Counterparts of Push−Pull Aromatic Chromophores for Nonlinear Optics: Push−Pull Heteronuclear Bimetallic Complexes with Pyrazine and trans -1,2-Bis(4-pyridyl)ethylene as Linkers. Organometallics 2002, 21, 5830–5840. [Google Scholar] [CrossRef]
- Coe, B.J.; Curati, N.R.M. Metal complexes for molecular electronics and photonics. Comments Inorg. Chem. 2004, 25, 147–184. [Google Scholar] [CrossRef]
- Powell, C.E.; Humphrey, M.G. Nonlinear optical properties of transition metal acetylides and their derivatives. Coord. Chem. Rev. 2004, 248, 725–756. [Google Scholar] [CrossRef]
- Maury, O.; Le Bozec, H. Molecular Engineering of Octupolar NLO Molecules and Materials Based on Bipyridyl Metal Complexes. Acc. Chem. Res. 2005, 38, 691–704. [Google Scholar] [CrossRef]
- Morrall, J.P.; Dalton, G.T.; Humphrey, M.G.; Samoc, M. Organotransition metal complexes for nonlinear optics. Adv. Organomet. Chem. 2007, 55, 61–136. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Marinotto, D.; Righetto, S.; Roberto, D.; Tavazzi, S.; Escadeillas, M.; Guerchais, V.; Le Bozec, H.; Boucekkine, A.; et al. Cyclometalated 4-Styryl-2-phenylpyridine Platinum(II) Acetylacetonate Complexes as Second-Order NLO Building Blocks for SHG Active Polymeric Films. Organometallics 2013, 32, 3890–3894. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Thirumoorthy, K.; Dragonetti, C.; Marinotto, D.; Righetto, S.; Colombo, A.; Haukka, M.; Palanisami, N. Ferrocene–quinoxaline Y-shaped chromophores as fascinating second-order NLO building blocks for long lasting highly active SHG polymeric films. Dalton Trans. 2016, 45, 11939–11943. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coord. Chem. Rev. 2017, 343, 185–219. [Google Scholar] [CrossRef]
- Attar, S.; Espa, D.; Artizzu, F.; Pilia, L.; Serpe, A.; Pizzotti, M.; Di Carlo, G.; Marchiò, L.; Deplano, P. Optically Multiresponsive Heteroleptic Platinum Dithiolene Complex with Proton-Switchable Properties. Inorg. Chem. 2017, 56, 6763–6767. [Google Scholar] [CrossRef] [PubMed]
- Durand, R.J.; Gauthier, S.; Achelle, S.; Groizard, T.; Kahlal, S.; Saillard, J.-Y.; Barsella, A.; Le Poul, N.; Robin Le Guena, F. Push–pull D–π-Ru–π-A chromophores: Synthesis and electrochemical, photophysical and second order nonlinear optical properties. Dalton Trans. 2018, 47, 3965–3975. [Google Scholar] [CrossRef] [PubMed]
- Attar, S.; Artizzu, F.; Marchik, L.; Espa, D.; Pilia, L.; Casula, M.F.; Serpe, A.; Pizzotti, M.; Orbelli Biroli, A.; Deplano, P. Uncommon Optical Properties and Silver-Responsive Turn-Off/On Luminescence in a PtII Heteroleptic Dithiolene Complex. Chem. Eur. J. 2018, 24, 10503–10512. [Google Scholar] [CrossRef]
- Fagnani, F.; Colombo, A.; Malandrino, G.; Dragonetti, C.; Pellegrino, A.L. Luminescent 1,10-Phenanthroline β-Diketonate Europium Complexes with Large Second-Order Nonlinear Optical Properties. Molecules 2022, 27, 6990. [Google Scholar] [CrossRef]
- Prabu, S.; Fagnani, F.; Colombo, A.; Dragonetti, C.; Roberto, D.; Mathivathanan, L.; Palanisami, N. Effect of substitution on second-order nonlinear optical properties of ferrocene appended donor-π-acceptor Y-shaped trifluoromethyl imidazole chromophores. New J. Chem. 2024, 48, 14764–14772. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Vougioukalakis, G.C.; Philippopoulos, A.I.; Stergiopoulos, T.; Falaras, P. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells. Coord. Chem. Rev. 2011, 255, 2602–2621. [Google Scholar] [CrossRef]
- Dragonetti, C.; Colombo, A.; Magni, M.; Mussini, P.; Nisic, F.; Roberto, D.; Ugo, R.; Valore, A.; Valsecchi, A.; Salvatori, P.; et al. Thiocyanate-Free Ruthenium(II) Sensitizer with a Pyrid-2-yltetrazolate Ligand for Dye-Sensitized Solar Cells. Inorg. Chem. 2013, 52, 10723–10725. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Roberto, D.; Valore, A.; Biagini, P.; Melchiorre, F. A simple copper(I) complex and its application in efficient dye sensitized solar cells. Inorganica Chim. Acta 2013, 407, 204–209. [Google Scholar] [CrossRef]
- Sandroni, M.; Favereau, L.; Planchat, A.; Akdas-Kilig, H.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Le Bozec, H.; Boujtita, M.; Odobel, F.J. Heteroleptic copper(I)–polypyridine complexes as efficient sensitizers for dye sensitized solar cells. J. Mater. Chem. A 2014, 2, 9944–9947. [Google Scholar] [CrossRef]
- Malzner, F.J.; Prescimone, A.; Constable, E.C.; Housecroft, C.E.; Willgert, M. Exploring simple ancillary ligands in copper-based dye-sensitized solar cells: Effects of a heteroatom switch and of co-sensitization. J. Mater. Chem. A 2017, 5, 4671–4685. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photonics 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Fiorini, V.; Marchini, E.; Averardi, M.; Giorgini, L.; Muzzioli, S.; Dellai, A.; Argazzi, R.; Sanson, A.; Sangiorgi, N.; Caramori, S.; et al. New examples of Ru(ii)-tetrazolato complexes as thiocyanate-free sensitizers for dye-sensitized solar cells. Dalton Trans. 2020, 49, 14543–14555. [Google Scholar] [CrossRef] [PubMed]
- Tomar, N.; Agrawal, A.; Dhaka, V.S.; Surolia, P.K. Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends. Sol. Energy 2020, 207, 59–76. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A. Dye-sensitized solar cells strike back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef] [PubMed]
- Housecroft, C.E.; Constable, E.C. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem. Sci. 2022, 13, 1225–1262. [Google Scholar] [CrossRef]
- Fetouh, H.A.; Dissouky, A.E.; Salem, H.A.; Fathy, M.; Anis, B.; Kashyout, A.E.H. Synthesis, characterization and evaluation of new alternative ruthenium complex for dye sensitized solar cells. Sci. Rep. 2024, 14, 16718. [Google Scholar] [CrossRef]
- Adamovich, V.; Brooks, J.; Tamayo, A.; Alexander, A.M.; Djurovich, P.I.; D’Andrade, B.W.; Adachi, C.; Forrest, S.R.; Thompson, M.E. High efficiency single dopant white electrophosphorescent light emitting diodes. New J. Chem. 2002, 26, 1171–1178. [Google Scholar] [CrossRef]
- Sotoyama, W.; Satoh, T.; Sawatari, N.; Inoue, H. Efficient organic light-emitting diodes with phosphorescent platinum complexes containing N^C^N-coordinating tridentate ligand. Appl. Phys. Lett. 2005, 86, 153505–153507. [Google Scholar] [CrossRef]
- Cocchi, M.; Virgili, D.; Fattori, V.; Rochester, D.L.; Williams, J.A.G. N^C^N-Coordinated Platinum(II) Complexes as Phosphorescent Emitters in High-Performance Organic Light-Emitting Devices. Adv. Funct. Mater. 2007, 17, 285–289. [Google Scholar] [CrossRef]
- Wong, W.Y.; Ho, C.L. Heavy metal organometallic electrophosphors derived from multi-component chromophores. Chem. Soc. Rev. 2009, 253, 1709–1758. [Google Scholar] [CrossRef]
- Che, C.M.; Kwok, C.C.; Lai, S.W.; Rausch, A.F.; Finkenzeller, W.J.; Zhu, N.Y.; Yersin, H. Photophysical properties and OLED applications of phosphorescent platinum (II) Schiff base complexes. Chem. Eur. J. 2010, 16, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Wang, Q.; Wang, X.; Ho, C.-L.; Wong, W.-Y.; Ma, D.; Wang, L.; Line, Z. Metallophosphors of platinum with distinct main-group elements: A versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. J. Mater. Chem. 2010, 20, 7472–7484. [Google Scholar] [CrossRef]
- Cocchi, M.; Kalinowski, J.; Murphy, L.; Williams, J.A.G.; Fattori, V. Mixing of molecular exciton and excimer phosphorescence to tune color and efficiency of organic LEDs. Org. Electron. 2010, 11, 388–396. [Google Scholar] [CrossRef]
- Kalinowski, J.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Light-emitting devices based on organometallic platinum complexes as emitters. Coord. Chem. Rev. 2011, 255, 2401–2425. [Google Scholar] [CrossRef]
- Gildea, L.F.; Williams, J.A.G. Iridium and platinum complexes for OLEDs. In Organic Light-Emitting Diodes: Materials, Devices and Applications; Buckley, A., Ed.; Woodhead Publishing: Cambridge, UK, 2013; ISBN 9780857094254. [Google Scholar]
- Yang, X.; Yao, C.; Zhou, G. Highly Efficient Phosphorescent Materials Based on Platinum Complexes and Their Application in Organic Light-Emitting Devices (OLEDs). Platin. Met. Rev. 2013, 57, 2–16. [Google Scholar] [CrossRef]
- Cebrian, C.; Mauro, M. Recent advances in phosphorescent platinum complexes for organic light-emitting diodes. Beilstein J. Org. Chem. 2018, 14, 1459–1481. [Google Scholar] [CrossRef]
- Yang, X.; Guo, H.; Xu, X.; Sun, Y.; Zhou, G.; Ma, W.; Wu, Z. Enhancing Molecular Aggregations by Intermolecular Hydrogen Bonds to Develop Phosphorescent Emitters for High-Performance Near-Infrared OLEDs. Adv. Sci. 2019, 6, 1801930. [Google Scholar] [CrossRef]
- Chen, W.-C.; Sukpattanacharoen, C.; Chan, W.-H.; Huang, C.-C.; Hsu, H.-F.; Shen, D.; Hung, W.-Y.; Kungwan, N.; Escudero, D.; Lee, C.-S.; et al. Modulation of Solid-State Aggregation of Square-Planar Pt(II) Based Emitters: Enabling Highly Efficient Deep-Red/Near Infrared Electroluminescence. Adv. Funct. Mater. 2020, 30, 2002494. [Google Scholar] [CrossRef]
- Wei, Y.-C.; Wang, S.F.; Hu, Y.; Liao, L.-S.; Chen, D.-G.; Chang, K.-H.; Wang, C.-W.; Liu, S.-H.; Chan, W.-H.; Liao, J.-L.; et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photonics 2020, 14, 570–577. [Google Scholar] [CrossRef]
- Wang, S.-F.; Su, B.-K.; Wang, X.-Q.; Wei, Y.-C.; Kuo, K.-H.; Wang, C.-H.; Liu, S.-H.; Liao, L.-S.; Hung, W.-Y.; Fu, L.-W.; et al. Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window. Nat. Photonics 2022, 16, 843–850. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. TADF: Enabling luminescent copper(i) coordination compounds for light-emitting electrochemical cells. J. Mater. Chem. C 2022, 10, 4456–4482. [Google Scholar] [CrossRef]
- Haque, A.; El Moll, H.; Alenezi, K.M.; Khan, M.S.; Wong, W.Y. Functional Materials Based on Cyclometalated Platinum(II) β-Diketonate Complexes: A Review of Structure–Property Relationships and Applications. Materials 2021, 14, 4236. [Google Scholar] [CrossRef]
- Law, A.S.-Y.; Yeung, M.C.-L.; Yam, V.W.-W. Arginine-Rich Peptide-Induced Supramolecular Self-Assembly of Water-Soluble Anionic Alkynylplatinum(II) Complexes: A Continuous and Label-Free Luminescence Assay for Trypsin and Inhibitor Screening. ACS Appl. Mater. Interfaces 2017, 9, 41143–41150. [Google Scholar] [CrossRef]
- Ning, Y.Y.; Jin, G.Q.; Wang, M.X.; Gao, S.; Zhang, J.L. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr. Opin. Chem. Biol. 2022, 66, 102097–102107. [Google Scholar] [CrossRef]
- Minozzi, C.; Caron, A.; Grenier-Petel, J.-C.; Santandrea, J.; Collins, S.K. Heteroleptic Copper(I)-Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angew. Chem. Int. Ed. 2018, 57, 5477–5481. [Google Scholar] [CrossRef]
- Wang, C.; Guo, M.; Qi, R.; Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Visible-Light-Driven, Copper-Catalyzed Decarboxylative C(sp3)−H Alkylation of Glycine and Peptides. Angew. Chem. Int. Ed. 2018, 57, 15841–15846. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Saito, K.; Matsukawa, H.; Yanagida, S.; Ebina, M.; Maegawa, Y.; Inagaki, S.; Kobayashi, A.; Kato, M. Immobilization of luminescent Platinum(II) complexes on periodic mesoporous organosilica and their water reduction photocatalysis. J. Photochem. Photobiol. A Chem. 2018, 358, 334–344. [Google Scholar] [CrossRef]
- Casado-Sánchez, A.; Domingo-Legarda, P.; Cabrera, S.; Alemán, J. Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2-a]indoles via intermolecular [3+2] cycloaddition. Chem. Commun. 2019, 55, 11303–11306. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Zhou, B.; Luo, S.P.; Xu, Z.; Jin, H.; Liu, Y. P/N Heteroleptic Cu(I)-Photosensitizer-Catalyzed Deoxygenative Radical Alkylation of Aromatic Alkynes with Alkyl Aldehydes Using Dipropylamine as a Traceless Linker Agent. ACS Catal. 2020, 10, 7563–7572. [Google Scholar] [CrossRef]
- Domingo-Legarda, P.; Casado-Sánchez, A.; Marzo, L.; Alemán, J.; Cabrera, S. Photocatalytic Water-Soluble Cationic Platinum(II) Complexes Bearing Quinolinate and Phosphine Ligands. Inorg. Chem. 2020, 59, 13845–13857. [Google Scholar] [CrossRef] [PubMed]
- Neerathilingam, N.; Prasanth, K.; Anandhan, R. Substituent-controlled selective synthesis of 1,2-diketones and internal alkynes from terminal alkynes and arylboronic acids via α-stilbene radicals obtained from heteroleptic Cu(I) complexes under visible light. Green Chem. 2022, 24, 8685–8690. [Google Scholar] [CrossRef]
- Gómez de Segura, D.; Corral-Zorzano, A.; Alcolea, E.; Moreno, M.T.; Lalinde, E. Phenylbenzothiazole-Based Platinum(II) and Diplatinum(II) and (III) Complexes with Pyrazolate Groups: Optical Properties and Photocatalysis. Inorg. Chem. 2024, 63, 1589–1606. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, C.; Li, F. Phosphorescent heavy-metal complexes for bioimaging. Chem. Soc. Rev. 2011, 40, 2508–2524. [Google Scholar] [CrossRef]
- Baggaley, E.; Weinstein, J.A.; Williams, J.A.G. Lighting the way to see inside the live cell with luminescent transition metal complexes. Coord. Chem. Rev. 2012, 256, 1762–1785. [Google Scholar] [CrossRef]
- Baggaley, E.; Botchway, S.W.; Haycock, J.W.; Morris, H.; Sazanovich, I.V.; Williams, J.A.G.; Weinstein, J.A. Long-lived metal complexes open up microsecond lifetime imaging microscopy under multiphoton excitation: From FLIM to PLIM and beyond. Chem. Sci. 2014, 5, 879–886. [Google Scholar] [CrossRef]
- Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N.S.; De Cola, L. When self-assembly meets biology: Luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 2014, 43, 4144–4166. [Google Scholar] [CrossRef]
- Lee, L.C.-C.; Lo, K.K.-W. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem. Rev. 2024, 124, 8825–9014. [Google Scholar] [CrossRef]
- Mitra, K.; Lyons, C.E.; Hartman, M.C.T. A platinum(II) complex of heptamethine cyanine for photoenhanced cytotoxicity and cellular imaging in near-IR light. Angew. Chem. Int. Ed. 2018, 57, 10263–10267. [Google Scholar] [CrossRef] [PubMed]
- Yam, V.W.-W.; Law, A.S.-Y. Luminescent d8 metal complexes of platinum(II) and gold(III): From photophysics to photofunctional materials and probes. Coord. Chem. Rev. 2020, 414, 213298. [Google Scholar] [CrossRef]
- Law, A.S.-Y.; Lee, L.C.-C.; Lo, K.K.-W.; Yam, V.W.-W. Aggregation and supramolecular self-assembly of low-energy red luminescent alkynylplatinum(II) complexes for RNA detection, nucleolus imaging, and RNA synthesis inhibitor screening. J. Am. Chem. Soc. 2021, 143, 5396–5405. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Chan, M.H.-Y.; Pan, M.; Li, Y.; Yam, V.W.-W. Supramolecular Assembly of Organoplatinum(II) Complexes for Subcellular Distribution and Cell Viability Monitoring with Differentiated Imaging. Angew. Chem. 2022, 61, e202210703. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Zhang, Z.; Fei, Y.; Ye, R.; Law, A.S.-Y.; Mao, Z.-W.; Liu, J.; Li, Y.; Yam, V.W.-W. Rational design of platinum(II) complexes with orthogonally oriented triazolyl ligand with emission enhancement characteristics for cancer chemotherapy in vivo. Sci. China 2023, 66, 2878–2884. [Google Scholar] [CrossRef]
- Berrones Reyes, J.; Sherin, P.S.; Sarkar, A.; Kuimova, M.K.; Vilar, R. Platinum(II)-based optical probes for imaging quadruplex DNA structures via phosphorescence lifetime imaging microscopy. Angew. Chem. Int. Ed. 2023, 62, e202310402. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xu, B.; Xu, Y.; Yue, L.; Chen, J.; Xie, G.; Zhao, J. Reblooming of the cis-bis(2-phenylpyridine) platinum(II) complex: Synthesis updating, aggregation-induced emission, electroluminescence, and cell imaging. Inorg. Chem. 2023, 62, 19142–19152. [Google Scholar] [CrossRef]
- Clancy, E.; Ramadurai, S.; Needham, S.R.; Baker, K.; Eastwood, T.A.; Weinstein, J.A.; Mulvihill, D.P.; Botchway, S.W. Fluorescence and phosphorescence lifetime imaging reveals a significant cell nuclear viscosity and refractive index changes upon DNA damage. Sci. Rep. 2023, 13, 422. [Google Scholar] [CrossRef]
- Doherty, R.E.; Sazanovich, I.V.; McKenzie, L.K.; Stasheuski, A.S.; Coyle, R.; Baggaley, E.; Bottomley, S.; Weinstein, J.A.; Bryant, H.E. Photodynamic killing of cancer cells by a platinum(II) complex with cyclometallating ligand. Sci. Rep. 2016, 6, 22668. [Google Scholar] [CrossRef]
- Chatzisideri, T.; Thysiadis, S.; Katsamakas, S.; Dalezis, P.; Sigala, I.; Lazarides, T.; Nikolakaki, E.; Trafalis, D.; Gederaas, O.A.; Lindgren, M.; et al. Synthesis and biological evaluation of a platinum(II)-c(RGDyK) conjugate for integrin-targeted photodynamic therapy. Eur. J. Med. Chem. 2017, 141, 221–231. [Google Scholar] [CrossRef]
- Shi, H.; Clarkson, G.J.; Sadler, P.J. Dual action photosensitive platinum(II) anticancer prodrugs with photoreleasable azide ligands. Inorganica Chim. Acta 2019, 489, 230–235. [Google Scholar] [CrossRef]
- McKenzie, L.K.; Bryant, H.E.; Weinstein, J.A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 2019, 379, 2–29. [Google Scholar] [CrossRef]
- Scoditti, S.; Dabbish, E.; Russo, N.; Mazzone, G.; Sicilia, E. Anticancer activity, DNA binding, and photodynamic properties of a NˆCˆN-coordinated Pt(II) complex. Inorg. Chem. 2021, 60, 10350–10360. [Google Scholar] [CrossRef] [PubMed]
- De Soricellis, G.; Fagnani, F.; Colombo, A.; Dragonetti, C.; Roberto, D. Exploring the potential of NˆCˆN cyclometalated Pt(II) complexes bearing 1,3-di(2-pyridyl)benzene derivatives for imaging and photodynamic therapy. Inorg. Chim. Acta 2022, 541, 121082. [Google Scholar] [CrossRef]
- Upadhyay, A.; Nepalia, A.; Bera, A.; Saini, D.K.; Chakravarty, A.R. A Platinum(II) boron-dipyrromethene complex for cellular imaging and mitochondria-targeted photodynamic therapy in red light. Chem. Asian J. 2023, 18, e202300667. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, D.J.; Echavarren, A.M.; Ramirez de Arellano, M.C. Divergent Behavior of Palladium(II) and Platinum(II) in the Metalation of 1,3-Di(2-pyridyl)benzene. Organometallics 1999, 18, 3337–3341. [Google Scholar] [CrossRef]
- Williams, J.A.G.; Beeby, A.; Davies, S.; Weinstein, J.A.; Wilson, C. An Alternative Route to Highly Luminescent Platinum(II) Complexes: Cyclometalation with N-C-N-Coordinating Dipyridylbenzene Ligands. Inorg. Chem. 2003, 42, 8609–8611. [Google Scholar] [CrossRef]
- Williams, J.A.G. Photophysics and photochemistry of coordination compounds: Platinum. Top. Curr. Chem. 2007, 281, 205–268. [Google Scholar] [CrossRef]
- Williams, J.A.G. The coordination chemistry of dipyridylbenzene: N-deficient terpyridine or panacea for brightly luminescent metal complexes? Chem. Soc. Rev. 2009, 38, 1783–1801. [Google Scholar] [CrossRef]
- Rochester, D.L.; Develay, S.; Zális, S.; Williams, J.A.G. Localised to intraligand charge-transfer states in cyclometalated platinum complexes: An experimental and theoretical study into the influence of electron-rich pendants and modulation of excited states by ion binding. Dalton Trans. 2009, 1728–1741. [Google Scholar] [CrossRef]
- Sotoyama, W.; Satoh, T.; Sato, H.; Matsuura, A.; Sawatari, N. Excited States of Phosphorescent Platinum(II) Complexes Containing N∧C∧N-Coordinating Tridentate Ligands: Spectroscopic Investigations and Time-Dependent Density Functional Theory Calculations. J. Phys. Chem. A 2005, 109, 9760–9766. [Google Scholar] [CrossRef] [PubMed]
- Pander, P.; Zaytsev, A.V.; Sil, A.; Williams, J.A.G.; Lanoe, P.-H.; Kozhevnikov, V.N.; Dias, F.B. The role of dinuclearity in promoting thermally activated delayed fluorescence (TADF) in cyclometallated, N^C^N-coordinated platinum(II) complexes. J. Mater. Chem. C 2021, 9, 10276–10287. [Google Scholar] [CrossRef]
- Wang, Z.; Turner, E.; Mahoney, V.; Madakuni, S.; Groy, T.; Li, J. Facile Synthesis and Characterization of Phosphorescent Pt(N∧C∧N)X Complexes. Inorg. Chem. 2010, 49, 11276–11286. [Google Scholar] [CrossRef] [PubMed]
- Tarran, W.A.; Freeman, G.R.; Murphy, L.; Benham, A.M.; Kataky, R.; Williams, J.A.G. Platinum(II) Complexes of N^C^N-Coordinating 1,3-Bis(2-pyridyl)benzene Ligands: Thiolate Coligands Lead to Strong Red Luminescence from Charge-Transfer States. Inorg. Chem. 2014, 53, 5738–5749. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, W.; Che, C.-M. Luminescent Pincer-Type Cyclometalated Platinum(II) Complexes with Auxiliary Isocyanide Ligands: Phase-Transfer Preparation, Solvatomorphism, and Self-Aggregation. Organometallics 2013, 32, 350–353. [Google Scholar] [CrossRef]
- Kuwabara, J.; Yamaguchi, K.; Yamawaki, K.; Yasuda, T.; Nishimura, Y.; Kanbara, T. Modulation of the Emission Mode of a Pt(II) Complex via Intermolecular Interactions. Inorg. Chem. 2017, 56, 8726–8729. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yamawaki, K.; Kimura, T.; Kuwabara, J.; Yasuda, T.; Nishimura, Y.; Kanbara, T. Multi-molecular emission of a cationic Pt(II) complex through hydrogen bonding interactions. Dalton Trans. 2018, 47, 4087–4092. [Google Scholar] [CrossRef]
- Pander, P.; Zaytsev, A.V.; Sil, A.; Williams, J.A.G.; Kozhevnikov, V.N.; Dias, F.B. Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(II) complex. J. Mater. Chem. C 2022, 10, 4851–4860. [Google Scholar] [CrossRef]
- Shen, Y.; Kong, X.; Yang, F.; Bian, H.-D.; Cheng, G.; Cook, T.R.; Zhang, Y. Deep Blue Phosphorescence from Platinum Complexes Featuring Cyclometalated N-Pyridyl Carbazole Ligands with Monocarborane Clusters (CB11H12−). Inorg. Chem. 2022, 61, 16707–16717. [Google Scholar] [CrossRef]
- Maganti, T.; Venkatesan, K. The Search for Efficient True Blue and Deep Blue Emitters: An Overview of Platinum Carbene Acetylide Complexes. ChemPlusChem 2022, 87, e202200014. [Google Scholar] [CrossRef]
- Nguyen, Y.H.; Dang, V.Q.; Soares, J.V.; Wu, J.I.; Teets, T.S. Efficient blue-phosphorescent trans-bis(acyclic diaminocarbene) platinum(II) acetylide complexes. Chem. Sci. 2023, 14, 4857–4862. [Google Scholar] [CrossRef] [PubMed]
- Rausch, A.F.; Murphy, L.; Williams, J.A.G.; Yersin, H. Improving the Performance of Pt(II) Complexes for Blue Light Emission by Enhancing the Molecular Rigidity. Inorg. Chem. 2012, 51, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.; Brulatti, P.; Fattori, V.; Cocchi, M.; Williams, J.A.G. Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs. Chem. Commun. 2012, 48, 5817–5819. [Google Scholar] [CrossRef]
- Farley, S.J.; Rochester, D.L.; Thompson, A.L.; Howard, J.A.K.; Williams, J.A.G. Controlling Emission Energy, Self- Quenching, and Excimer Formation in Highly Luminescent N^C^N-Coordinated Platinum(II) Complexes. Inorg. Chem. 2005, 44, 9690–9703. [Google Scholar] [CrossRef] [PubMed]
- De Soricellis, G.; Carboni, B.; Guerchais, V.; Williams, J.A.G.; Marinotto, D.; Colombo, A.; Dragonetti, C.; Fagnani, F.; Fantacci, S.; Roberto, D. New members of the family of highly luminescent 1,3-bis(4-phenylpyridin-2-yl)-4,6-difluorobenzene platinum(II) complexes: Exploring the effect of substituents on the 4-phenylpyridine unit. Dalton Trans. 2025. [Google Scholar] [CrossRef]
- De Soricellis, G.; Guerchais, V.; Colombo, A.; Dragonetti, C.; Fagnani, F.; Roberto, D.; Marinotto, D. Effect of the substitution of the mesityl group with other bulky substituents on the luminescence performance of [Pt(1,3-bis(4-mesityl-pyridin-2-yl)-4,6-difluoro-benzene)Cl]. Molecules 2025, 30, 1498. [Google Scholar] [CrossRef]
- Colombo, A.; De Soricellis, G.; Dragonetti, C.; Fagnani, F.; Roberto, D.; Carboni, B.; Guerchais, V.; Roisnel, T.; Cocchi, M.; Fantacci, S.; et al. Introduction of a mesityl substituent on pyridyl rings as a facile strategy for improving the performance of luminescent 1,3-bis-(2-pyridyl)benzene platinum(ii) complexes: A springboard for blue OLEDs. J. Mater. Chem. C 2024, 12, 9702–9715. [Google Scholar] [CrossRef]
- Colombo, A.; De Soricellis, G.; Fagnani, F.; Dragonetti, C.; Cocchi, M.; Carboni, B.; Guerchais, V.; Marinotto, D. Introduction of a triphenylamine substituent on pyridyl rings as a springboard for a new appealing brightly luminescent 1,3-di-(2-pyridyl)benzene platinum(II) complex family. Dalton Trans. 2022, 51, 12161–12169. [Google Scholar] [CrossRef]
- Dell’Acqua, R.M.; Fagnani, F.; Wojciechowska, M.; Marinotto, D.; Colombo, G.; Dalle-Donne, I.; Trylska, J.; Cauteruccio, S.; Colombo, A. Highly phosphorescent N^C^N platinum(ii)-peptide nucleic acid conjugates: Synthesis, photophysical studies and hybridization behaviour. Dalton Trans. 2025, 54, 3314–3322. [Google Scholar] [CrossRef]
- Dragonetti, C.; Fagnani, F.; Marinotto, D.; di Biase, A.; Roberto, D.; Cocchi, M.; Fantacci, S.; Colombo, A. First member of an appealing class of cyclometalated 1,3-di-(2-pyridyl)benzene platinum(II) complexes for solution-processable OLEDs. J. Mater. Chem. C 2020, 8, 7873–7881. [Google Scholar] [CrossRef]
- Fagnani, F.; Colombo, A.; Dragonetti, C.; Roberto, D.; Marinotto, D. The intriguing effect of thiolates as co-ligands in platinum(II) complexes bearing a cyclometalated 1,3-di(2-pyridyl)benzene. Inorganica Chim. Acta 2022, 532, 120744. [Google Scholar] [CrossRef]
- Roberto, D.; Colombo, A.; Dragonetti, C.; Fagnani, F.; Cocchi, M.; Marinotto, D. A Novel Class of Cyclometalated Platinum(II) Complexes for Solution-Processable OLEDs. Molecules 2022, 27, 5171. [Google Scholar] [CrossRef] [PubMed]
- Fagnani, F.; Colombo, A.; Dragonetti, C.; Roberto, D.; Marinotto, D. New members of a class of cyclometalated 1,3-di-(2-pyridyl)benzene platinum(II) complexes bearing a tetrazole-thiolate ancillary ligand. Inorganica Chim. Acta 2023, 550, 121446. [Google Scholar] [CrossRef]
- Peng, K.; Mawamba, V.; Schulz, E.; Löhr, M.; Hagemann, C.; Schatzschneider, U. IClick Reactions of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes: Metal-Dependent Preference for N1 vs N2 Triazolate Coordination and Kinetic Studies with 1H and 19F NMR Spectroscopy. Inorg. Chem. 2019, 58, 11508–11521. [Google Scholar] [CrossRef]
- Peng, K.; Moreth, D.; Schatzschneider, U. CNN Coordination Accelerates the iClick Reaction of Square-Planar Palladium(II) and Platinum(II) Azido Complexes with Electron-Poor Alkynes and Enables Cycloaddition with Terminal Alkynes. Organometallics 2021, 40, 2584–2593. [Google Scholar] [CrossRef]
- Fagnani, F.; De Soricellis, G.; Colombo, A.; Dragonetti, C.; Roberto, D.; di Biase, A.; Fantacci, S.; Marinotto, D. Photophysical investigation of highly phosphorescent N^C^N platinum(II) azido complexes and their triazole derivatives. Dye. Pigment. 2024, 225, 112064. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Fagnani, F.; Roberto, D.; Guerchais, V.; Roisnel, T.; Fantacci, S.; Marinotto, D. Multifunctional Organometallic Compounds: An Interesting Luminescent NLO-Active Alkynylplatinum (II) Complex. Eur. J. Inorg. Chem. 2024, 27, e202400478. [Google Scholar] [CrossRef]
Complex R = | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b Monomer [Excimer/Aggregate] c | c/M a | Φlum d [Aerated] | τ/µs | knr e/s−1 | kr e/s−1 |
---|---|---|---|---|---|---|---|
1 | 277 [5.7] 308 [3.4] 340 [1.4] 382 [2.1] 471 [0.28] | 480 [~704] | 5 · 10−6 | 0.89 [0.28] | 3.5 | 3.1 · 104 | 2.5 · 105 |
2 · 10−4 | 0.53 [0.22] | 0.93 | 5.1 · 105 | 5.7 · 105 | |||
2 | 280 [50] 312 [38] 341 [17] 383 [23] 470 [0.31] | 480 [~697] | 5 · 10−6 | 0.89 [0.26] | 3.91 | 2.8 · 104 | 2.3 · 105 |
2 · 10−4 | 0.57 [0.23] | 1.17 | 3.7 · 105 | 4.9 · 105 | |||
3 | 278 [35] 311 [24] 340 [11] 382 [16] 470 [0.22] | 478 [~690] | 5 · 10−6 | 0.95 [0.21] | 3.96 | 1.3 · 104 | 2.4 · 105 |
2 · 10−4 | 0.54 [0.17] | 2.11 | 2.2 · 105 | 2.6 · 105 | |||
4 | 263 [23] 287 [15] 376 [7.8] 438 [0.18] 467 [0.12] | 471 [~680] | 5 · 10−6 | 0.97 [0.18] | 4.8 | 6.3 · 103 | 2.0 · 105 |
2 · 10−4 | 0.62 [0.12] | 2.4 | 1.6 · 105 | 2.6 · 105 | |||
5 | 238 [39] 264 [38] 335 [16] 377 [14] 467 [0.21] | 471 [~680] | 5 · 10−6 | 0.98 [0.16] | 4.5 | 4.4 · 103 | 2.2 · 105 |
2 · 10−4 | 0.85 [0.13] | 4.0 | 3.7 · 104 | 2.1 · 105 | |||
6 | 293 [45] 423 [56] | 562 [~696] | 5 · 10−6 | 0.90 [0.059] | 104 | 9.6 · 103 | 8.7 · 103 |
2 · 10−4 | 0.66 [0.026] | 4.3 | 7.7 · 104 | 1.5 · 105 |
Complex R, R’ = | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b Monomer [Excimer/Aggregate] c | c/M a | Φlum d [Aerated] | τ/µs | knr e/s−1 | kr e/S−1 |
---|---|---|---|---|---|---|---|
6 R = F R’ = H | 293 [45] 423 [56] | 562 [~696] | 2 · 10−6 | 0.90 [0.059] | 104 | 96 · 102 | 8.7 · 103 |
2 · 10−4 | 0.66 [0.026] | 4.3 | 7.7 · 104 | 1.5 · 105 | |||
7 R = H R’ = | 296 [75] 425 [71] 502 [0.7] | 561 [~704] | 2 · 10−6 | 0.88 [0.051] | 6.6 | 1.8 · 104 | 1.3 · 105 |
2 · 10−4 | 0.70 [0.032] | 3.0 | 1.0 · 105 | 2.3 · 105 | |||
8 R = H R’ = | 295 [59] 424 [80] 495 [1.0] | 549 [~727] | 2 · 10−6 | 0.89 [<0.01] | 50 | 2.2 · 103 | 1.8 · 104 |
2 · 10−4 | 0.44 [<0.01] | 16 | 3.5 · 104 | 2.8 · 104 |
Complex | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b Monomer [Excimer/Aggregate] c | c/M | Φlum d [Aerated] | τ/µs | knr e/s−1 | kr e/s−1 |
---|---|---|---|---|---|---|---|
10 | 260 [68.7] 326 [7.7] 380 [5.3] | 492 [~644] | 6.0 · 10−6 | 0.87 [0.55] | 16.9 | 7.6 · 103 | 5.1 · 104 |
8.2 · 10−4 | 0.60 [0.37] | 16.3 | 2.5 · 104 | 3.7 · 104 |
Complex R, Y = | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b monomer [Excimer/Aggregate] c | c/M | Φlum d [Aerated] | τ/µs | knr e/s−1 | kr e/s−1 |
---|---|---|---|---|---|---|---|
11 R = mesityl Y = T1 | 240 [35] 293 [25] 389 [5.2] | 498 [~650] | 1 · 10−6 | 0.90 [0.05] | 7.39 | 1.38 · 104 | 1.23 · 105 |
2 · 10−4 | 0.12 [0.03] | 0.73 (72.11%) 2.43 (27.89%) | - | - | |||
12 R = methyl Y = T1 | 237 [40] 292 [28] 389 [7.3] | 504 [~663] | 5 · 10−6 | 0.42 [0.05] | 7.90 | 7.3 · 104 | 5.3 · 104 |
2 · 10−4 | 0.14 [0.02] | 0.72 | 1.2 · 106 | 1.9 · 105 | |||
13 R = 2-thienyl Y = T1 | 232 [32] 297 [47] 411 [6.1] | 545 [~661] | 5 · 10−6 | 0.93 [0.03] | 19.2 | 3.0 · 104 | 4.8 · 104 |
2 · 10−4 | 0.18 [0.03] | 1.85 | 4.4. · 105 | 1.0 · 105 | |||
14 R = mesityl Y = SAc | 241 [12] 292 [8.4] 391 [2.2] | 499 | 5 · 10−6 | 0.23 | 7.61 | 1.0 · 105 | 3.0 · 104 |
2 · 10−4 | 0.03 | 0.24 (50.25%) 3.10 (49.75%) | - | - |
Complex | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b Monomer [Excimer/Aggregate] | c/M c | Φlum/% d [Aerated] | τ/µs | knr e/s−1 | kr e/s−1 |
---|---|---|---|---|---|---|---|
15 R = mesityl | 238 [52] 293 [35] 380 [7.0] 408 [6.1] | 498 [~677] | 1 · 10−6 | 0.55 [0.035] | 7.7 | 5.8 · 104 | 7.1 · 104 |
2 · 10−4 | 0.15 [0.031] | - | - | - | |||
16 R = methyl | 236 [33] 283 [20] 380 [4.1] 410 [3.5] | 503 [~683] | 1 · 10−6 | 0.65 [0.025] | 7.9 | 4.4 · 104 | 8.2 · 104 |
2 · 10−4 | 0.088 [0.021] | - | - | - | |||
17 R = 2-thienyl | 238 [40] 297 [48] 381 [4.9] 415 [5.3] | 545 [~684] | 1 · 10−6 | 0.89 [0.030] | 19.1 | 6.0 · 103 | 4.7 · 104 |
2 · 10−4 | 0.095 [0.024] | - | - | - | |||
18 R = 4-NPh2-phenyl | 253 [15] 292 [14] 408 [1.7] | 556 [~681] | 1 · 10−6 | 0.72 [0.025] | 13.6 | 2.1 · 104 | 5.3 · 104 |
2 · 10−4 | 0.093 [0.020] | - | - | - |
Complex R, Y = | λmax, abs/nm [ε/103 M−1 cm−1] | λmax, em/nm b Monomer [Excimer/Aggregate] c | c/M | Φlum d [Aerated] | τ/µs | knr e/s−1 | kr e/s−1 |
---|---|---|---|---|---|---|---|
19 R = mesityl Y = N3 | 251 [37] 293 [24] 381 [5.6] 412 [5.7] | 500 [~703] | 3 · 10−6 | 0.87 [0.059] | 7.48 | 1.7 · 104 | 1.2 · 105 |
2 · 10−4 | 0.25 [0.030] | 1.38 | 1.8 · 105 | 5.4 · 105 | |||
20 R = methyl Y = N3 | 236 [30] 260 [22] 291 [18] 381 [5.7] 407 [5.3] | 504 [~687] | 1 · 10−6 | 0.66 [0.04] | 8.07 | 4.2 · 104 | 8.2 · 104 |
2 · 10−4 | 0.18 [0.03] | 0.87 | 2.1 · 105 | 9.4 · 105 | |||
21 R = 2-thienyl Y = N3 | 255 [27] 297 [40] 381 [3.9] 436 [6.3] | 547 [~686] | 5 · 10−6 | 0.79 [0.022] | 17.8 | 1.2 · 104 | 4.4 · 104 |
2 · 10−4 | 0.20 [0.017] | 6.58 | 3.0 · 104 | 1.2 · 105 | |||
22 R = mesityl Y = Trz | 247 [50] 293 [34] 377 [7.5] 395 [6.8] | 498 [~634] | 4 · 10−6 | 0.96 [0.067] | 7.44 | 5.4 · 103 | 1.3 · 105 |
2 · 10−4 | 0.73 [0.056] | 6.52 | 1.1 · 105 | 4.1 · 104 | |||
23 R = 2-thienyl Y = Trz | 251 [32] 297 [42] 404 [6.5] | 543 582 [~684] | 4 · 10−6 | 0.94 [0.17] | 18.1 | 3.3 · 103 | 5.2 · 104 |
2 · 10−4 | 0.37 [0.011] | 9.81 | 3.8 · 104 | 6.4 · 104 | |||
24 | 289 [39] 377 [8.0] | 501 [~700] | 1 · 10−5 | 0.43 [0.048] | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombo, A.; Dragonetti, C.; Fagnani, F.; Marinotto, D.; Roberto, D. Italian Contribution to the Recent Growth of the Luminescent 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complex Family. Inorganics 2025, 13, 221. https://doi.org/10.3390/inorganics13070221
Colombo A, Dragonetti C, Fagnani F, Marinotto D, Roberto D. Italian Contribution to the Recent Growth of the Luminescent 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complex Family. Inorganics. 2025; 13(7):221. https://doi.org/10.3390/inorganics13070221
Chicago/Turabian StyleColombo, Alessia, Claudia Dragonetti, Francesco Fagnani, Daniele Marinotto, and Dominique Roberto. 2025. "Italian Contribution to the Recent Growth of the Luminescent 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complex Family" Inorganics 13, no. 7: 221. https://doi.org/10.3390/inorganics13070221
APA StyleColombo, A., Dragonetti, C., Fagnani, F., Marinotto, D., & Roberto, D. (2025). Italian Contribution to the Recent Growth of the Luminescent 1,3-Bis(Pyridin-2-yl)benzene Platinum(II) Complex Family. Inorganics, 13(7), 221. https://doi.org/10.3390/inorganics13070221