A 4-Methylbenzoylhydrazine Pt(II) Complex Inhibits the Proliferation of Breast Cancer Cells by Regulating the Cell Cycle and Inducing Apoptosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Binding to DNA
2.3. Anti-Tumor Activity
2.4. Apoptosis Analysis
2.5. Cell Cycle Analysis
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Pt1 and Pt2
3.3. Crystal Structure Determination
3.4. Fluorescence Quenching of DNA
3.5. Anticancer Activity
3.6. Cell Apoptosis Assay
3.7. Cell Cycle Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDP | Cisplatin |
Pt2 | 4-Methylbenzoylhydrazide·dimethyl sulfoxide·dichloro platinum(II) complex |
Pt1 | Pt(DMSO)2Cl2 |
DMSO | Dimethyl sulfoxide |
EB | Ethidium bromide |
FITC | Fluorescein isothiocyanate |
References
- Cardoso, M.J.; Poortmans, P.; Senkus, E.; Gentilini, O.D.; Houssami, N. Breast cancer highlights from 2023: Knowledge to guide practice and future research. Breast 2024, 74, 103674. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, B.; Feizi, A.; Zamani-Alavijeh, F.; Shahnazi, H. Factors influencing breast cancer screening practices among women worldwide: A systematic review of observational and qualitative studies. BMC Womens Health 2024, 24, 268. [Google Scholar] [CrossRef] [PubMed]
- Liao, L. Inequality in breast cancer: Global statistics from 2022 to 2050. Breast 2025, 79, 103851. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Ehsan, A.N.; Wu, C.A.; Minasian, A.; Bass, M.; Sana, H.; Patel, A.; Pace, L.; Mekary, R.A.; Ranganathan, K. Evaluation of Financial Interventions in Breast Cancer Care Worldwide: A Systematic Review. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5683. [Google Scholar] [CrossRef]
- Meng, G.; Xu, H.; Yang, S.; Chen, F.; Wang, W.; Hu, F.; Zheng, G.; Guo, Y. Bibliometric analysis of worldwide research trends on breast cancer about inflammation. Front. Oncol. 2023, 13, 1166690. [Google Scholar] [CrossRef]
- De Schepper, M.; Vincent-Salomon, A.; Christgen, M.; Van Baelen, K.; Richard, F.; Tsuda, H.; Kurozumi, S.; Brito, M.J.; Cserni, G.; Schnitt, S.; et al. Results of a worldwide survey on the currently used histopathological diagnostic criteria for invasive lobular breast cancer. Mod. Pathol. 2022, 35, 1812–1820. [Google Scholar] [CrossRef]
- da Costa Nunes, G.G.; de Freitas, L.M.; Monte, N.; Gellen, L.P.A.; Santos, A.P.; de Moraes, F.C.A.; da Costa, A.C.A.; de Lima, M.C.; Fernandes, M.R.; Dos Santos, S.E.B.; et al. Genomic Variants and Worldwide Epidemiology of Breast Cancer: A Genome-Wide Association Studies Correlation Analysis. Genes 2024, 15, 145. [Google Scholar] [CrossRef]
- Song, D.; Wang, X.; Zhao, Z.; Yang, R.; Zhang, S.; Guo, Z. Targeting Ribosome Biogenesis for Cancer Therapy with Oral Platinum Complexes. JACS Au 2025, 5, 73–81. [Google Scholar] [CrossRef]
- Tong, K.M.; Toigo, J.; Wolf, M.O. Deep-blue phosphorescence from platinum(ii) bis(acetylide) complexes with sulfur-bridged dipyridyl ligands. Chem. Sci. 2025, 16, 5948–5956. [Google Scholar] [CrossRef]
- Kurochkin, I.Y.; Giricheva, N.I.; Ol’shevskaya, V.A.; Zaitsev, A.V.; Girichev, G.V.; Mitzel, N.W. Geometrical and Electronic Structure of Fluorinated and Non-Fluorinated Platinum(II) Tetraphenylporphyrin Complexes. Chemphyschem 2025, 26, e202400973. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; He, Y.; Feng, C.; Yuan, J.; Guo, Y.; Guo, Z.; Wang, X. Cellular Discrepancy of Platinum Complexes in Interfering with Mitochondrial DNA. ACS Cent. Sci. 2025, 11, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Bar, S.I.; Schleser, S.W.; Oberhuber, N.; Herrmann, A.; Schlotte, L.; Weber, S.E.; Schobert, R. Trans-[bis(benzimidazol-2-ylidene)dichlorido]platinum(II) complexes with peculiar modes of action and activity against cisplatin-resistant cancer cells. J. Inorg. Biochem. 2023, 238, 112028. [Google Scholar] [CrossRef]
- Velcheva, V.; Hegetschweiler, K.; Momekov, G.; Ivanova, S.; Ugrinov, A.; Morgenstern, B.; Gencheva, G. Platinum(IV) Complexes of the 1,3,5-Triamino Analogue of the Biomolecule Cis-Inositol Designed as Innovative Antineoplastic Drug Candidates. Pharmaceutics 2022, 14, 2057. [Google Scholar] [CrossRef]
- Di Pietro, M.L.; Stagno, C.; Efferth, T.; Omer, E.A.; D’Angelo, V.; Germano, M.P.; Cacciola, A.; De Gaetano, F.; Iraci, N.; Micale, N. Antileukemia Activity and Mechanism of Platinum(II)-Based Metal Complexes. Molecules 2022, 27, 9000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kang, T.; Wang, X.; Song, J.; Zhang, J.; Li, G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front. Pharmacol. 2022, 13, 1035217. [Google Scholar] [CrossRef]
- Zou, Q.; Chen, Y.; Liu, D.; Du, Q.; Zhang, C.; Mai, Q.; Wang, X.; Lin, X.; Chen, Q.; Wei, M.; et al. Cuproptosis inhibits tumor progression and enhances cisplatin toxicity in ovarian cancer. FASEB J. 2025, 39, e70484. [Google Scholar] [CrossRef]
- Li, S.; Zhang, D.; Li, Y.; Zhou, J.; Chen, J.; Zhang, Y. All-in-one multifunctional tri-block glycopolymers for targeted delivery of cisplatin and cancer chemotherapy. Colloids Surf. B Biointerfaces 2025, 252, 114639. [Google Scholar] [CrossRef]
- Imatsuji, S.; Ujie, Y.; Odake, H.; Imoto, M.; Itoh, S.; Tashiro, E. Cisplatin-induced activation of TGF-beta signaling contributes to drug resistance. Oncol. Res. 2023, 32, 139–150. [Google Scholar] [CrossRef]
- Prasad, R.; Prasad, S.B. Modulatory Effect of Rutin on the Antitumor Activity and Genotoxicity of Cisplatin in Tumor-Bearing Mice. Adv. Pharm. Bull. 2021, 11, 746–754. [Google Scholar] [CrossRef]
- Amini Chermahini, F.; Raeisi, E.; Aazami, M.H.; Mirzaei, A.; Heidarian, E.; Lemoigne, Y. Does Bromelain-Cisplatin Combination Afford In-Vitro Synergistic Anticancer Effects on Human Prostatic Carcinoma Cell Line, PC3? Galen Med. J. 2020, 9, e1749. [Google Scholar] [CrossRef] [PubMed]
- Su, D. MCM7 affects the cisplatin resistance of liver cancer cells and the development of liver cancer by regulating the PI3K/Akt signaling pathway. Immunopharmacol. Immunotoxicol. 2022, 44, 17–27. [Google Scholar] [CrossRef]
- Zhong, T.; Yu, J.; Pan, Y.; Zhang, N.; Qi, Y.; Huang, Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv. Healthc. Mater. 2023, 12, e2300253. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.A.V.; Silva, D.; Marques, M.P.M.; Batista de Carvalho, L.A.E. Platinum-based chemotherapy: Trends in organic nanodelivery systems. Nanoscale 2024, 16, 14640–14686. [Google Scholar] [CrossRef]
- Faderin, E.; Iorkula, T.H.; Aworinde, O.R.; Awoyemi, R.F.; Awoyemi, C.T.; Acheampong, E.; Chukwu, J.U.; Agyemang, P.; Onaiwu, G.E.; Ifijen, I.H. Platinum nanoparticles in cancer therapy: Chemotherapeutic enhancement and ROS generation. Med. Oncol. 2025, 42, 42. [Google Scholar] [CrossRef]
- Helleman, J.; Burger, H.; Hamelers, I.H.; Boersma, A.W.; de Kroon, A.I.; Stoter, G.; Nooter, K. Impaired cisplatin influx in an A2780 mutant cell line: Evidence for a putative, cis-configuration-specific, platinum influx transporter. Cancer Biol. Ther. 2006, 5, 943–949. [Google Scholar] [CrossRef]
- Oopkaew, L.; Injongkol, Y.; Kungwan, N.; Rungrotmongkol, T. Theoretical investigation of structure and electronic properties in Cisplatin-citrate complexes. J. Comput. Chem. 2025, 46, e27511. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, Y.; Ren, C.; Xiong, S.; Guo, X.; Zhao, Z.; Guo, L.; Huang, Z. Construction of Cisplatin-18-Crown-6 Complexes Through Supramolecular Chemistry to Improve Solubility, Stability, and Antitumor Activity. Int. J. Mol. Sci. 2024, 25, 13411. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. [Google Scholar] [CrossRef]
- Li, K.; Li, J.; Li, Z.; Men, L.; Zuo, H.; Gong, X. Cisplatin-based combination therapies: Their efficacy with a focus on ginsenosides co-administration. Pharmacol. Res. 2024, 203, 107175. [Google Scholar] [CrossRef]
- Fu, S.; Liu, J.; Li, C.; Wei, J.; Yue, H.; Yang, A.; Wang, K.; Wu, Y.; Hou, Y.; Zhao, Y. Structure-based drug design, synthesis, and biological evaluation of novel 1,3,5-triazine or pyrimidine derivatives containing benzoyl hydrazine moiety as PI3Kα selective inhibitors. Bioorg. Chem. 2023, 140, 106738. [Google Scholar] [CrossRef] [PubMed]
- Ai, W.; Zuo, Z. Synthesis, optimization and antitumor activity evaluation of sulfonyl benzoyl hydrazide derivatives as novel human LSD1 inhibitors. Bioorg. Med. Chem. Lett. 2024, 114, 129982. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Liang, J.W.; Mohamed, O.K.; Zhang, T.J.; Lu, G.Q.; Meng, F.H. Design, synthesis and biological evaluation of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)benzoyl hydrazide derivatives as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur. J. Med. Chem. 2018, 154, 267–279. [Google Scholar] [CrossRef]
- Ciccarone, F.; De Falco, P.; Ciriolo, M.R. Aconitase 2 sensitizes MCF-7 cells to cisplatin eliciting p53-mediated apoptosis in a ROS-dependent manner. Biochem. Pharmacol. 2020, 180, 114202. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- Özdemir, D.; Ağca, C.A. AZD1390, an Ataxia telangiectasia mutated inhibitor, enhances cisplatin mediated apoptosis in breast cancer cells. Exp. Cell Res. 2025, 444, 114382. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Kar, K.; Barua, A.; Ghosh, D.; Kabi, B.; Dewan, K.; Chandra, A. A significantly non-toxic novel Cobalt(III) Schiff base complex induces apoptosis via G2-M cell cycle arrest in human breast cancer cell line MCF-7. Life Sci. 2022, 308, 120963. [Google Scholar] [CrossRef]
- Fatehi, R.; Rashedinia, M.; Akbarizadeh, A.R.; Zamani, M.; Firouzabadi, N. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem. Biophys. Res. Commun. 2023, 644, 130–139. [Google Scholar] [CrossRef]
- Paramanantham, A.; Kim, M.J.; Jung, E.J.; Kim, H.J.; Chang, S.H.; Jung, J.M.; Hong, S.C.; Shin, S.C.; Kim, G.S.; Lee, W.S. Anthocyanins Isolated from Vitis coignetiae Pulliat Enhances Cisplatin Sensitivity in MCF-7 Human Breast Cancer Cells through Inhibition of Akt and NF-κB Activation. Molecules 2020, 25, 3623. [Google Scholar] [CrossRef]
- Limburg, B. An Extension of the Stern-Volmer Equation for Thermally Activated Delayed Fluorescence (TADF) Photocatalysts. J. Phys. Chem. Lett. 2024, 15, 10495–10499. [Google Scholar] [CrossRef]
- Ngo, A.N.; Murowchick, J.; Gounev, A.D.; Gounev, T.K.; Youan, B.C. Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles. AAPS PharmSciTech 2023, 24, 143. [Google Scholar] [CrossRef] [PubMed]
Name | Pt1 | Pt2 |
---|---|---|
Empirical formula | C4H12Cl2O2PtS2 | C10H16Cl2N2O2PtS |
Formula weight | 422.254 | 494.3 |
Temperature/K | 298.15 | 293(2) |
Crystal system | monoclinic | monoclinic |
Space group | P21/n | C2/c |
a/Å | 8.6702(7) | 26.8905(15) |
b/Å | 13.6085(8) | 14.0404(6) |
c/Å | 9.5202(8) | 8.7553(5) |
α/° | 90 | 90 |
β/° | 106.178(9) | 95.597(6) |
γ/° | 90 | 90 |
Volume/Å3 | 1078.79(15) | 3289.8(3) |
Z | 4 | 8 |
ρcalcg/cm3 | 2.6 | 1.996 |
μ/mm−1 | 13.841 | 8.977 |
F(000) | 781.7 | 1872 |
Crystal size/mm3 | 0.21 × 0.19 × 0.18 | 0.18 × 0.19 × 0.19 |
Radiation | Mo Kα (λ = 0.71073) | Mo Kα (λ = 0.71073) |
2θ range for data collection/° | 7.46 to 49.98 | 7.438 to 49.98 |
Index ranges | −10 ≤ h ≤ 10, −10 ≤ k ≤ 17, −12 ≤ l ≤ 7 | −31 ≤ h ≤ 31, −16 ≤ k ≤ 16, −10 ≤ l ≤ 10 |
Reflections collected | 4697 | 17,409 |
Independent reflections | 1889 [Rint = 0.0447, Rsigma = 0.0726] | 2833 [Rint = 0.0599, Rsigma = 0.0417] |
Data/restraints/parameters | 1889/0/104 | 2833/0/166 |
Goodness-of-fit on F2 | 0.93 | 1.034 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0409, wR2 = 0.0912 | R1 = 0.0328, wR2 = 0.0735 |
Final R indexes [all data] | R1 = 0.0472, wR2 = 0.0967 | R1 = 0.0413, wR2 = 0.0771 |
Largest diff. peak/hole/e Å−3 | 3.23/−2.31 | 0.95/−0.85 |
IC50 (μM) | |||||
---|---|---|---|---|---|
MCF-7 | HepG-2 | NCI-H460 | T24 | A549 | |
K2PtCl4 | >50 | >50 | >50 | >50 | >50 |
DDP | 15.6 ± 0.2 | 17.4 ± 0.1 | 19.7 ± 0.2 | 18.6 ± 0.2 | 20.4 ± 0.2 |
Pt1 | 28.7 ± 0.3 | 22.1 ± 0.2 | 25.9 ± 0.1 | 27.5 ± 0.2 | 29.1 ± 0.2 |
Pt2 | 12.5 ± 0.1 *** | 20.9 ± 0.2 *** | 14.6 ± 0.1 *** | 15.3 ± 0.1 ** | 16.7 ± 0.1 *** |
Benzoylhydrazide | 35.9 ± 0.2 | 48.5 ± 0.4 | 26.4 ± 0.3 | 41.3 ± 0.1 | 40.8 ± 0.3 |
MCF-7 Cell Line | ||||
---|---|---|---|---|
Live Cells | Early Apoptotic Cells | Late Apoptotic Cells | Necrotic Cells | |
Control | 96.2% | 3.49% | 0.141% | 0.141% |
DDP | 75.7% | 14.9% | 5.88% | 3.53% |
Pt1 | 86.1% | 8.28% | 2.92% | 2.65% |
Pt2 | 61.2% | 18.3% | 13.3% | 7.18% |
Benzoylhydrazide | 87.8% | 7.20% | 2.68% | 2.35% |
MCF-7 Cell Line | |||
---|---|---|---|
G1 | G2 | S | |
Control | 61.07% | 20.93% | 18.00% |
DDP | 36.84% | 53.50% | 9.66% |
Pt1 | 44.22% | 41.99% | 13.79% |
Pt2 | 33.60% | 49.47% | 16.93% |
Benzoylhydrazide | 49.46% | 25.79% | 24.76% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Bai, X.; Li, Y.; Chen, K. A 4-Methylbenzoylhydrazine Pt(II) Complex Inhibits the Proliferation of Breast Cancer Cells by Regulating the Cell Cycle and Inducing Apoptosis. Inorganics 2025, 13, 177. https://doi.org/10.3390/inorganics13060177
Wang H, Bai X, Li Y, Chen K. A 4-Methylbenzoylhydrazine Pt(II) Complex Inhibits the Proliferation of Breast Cancer Cells by Regulating the Cell Cycle and Inducing Apoptosis. Inorganics. 2025; 13(6):177. https://doi.org/10.3390/inorganics13060177
Chicago/Turabian StyleWang, Huiping, Xianguang Bai, Yarui Li, and Kexin Chen. 2025. "A 4-Methylbenzoylhydrazine Pt(II) Complex Inhibits the Proliferation of Breast Cancer Cells by Regulating the Cell Cycle and Inducing Apoptosis" Inorganics 13, no. 6: 177. https://doi.org/10.3390/inorganics13060177
APA StyleWang, H., Bai, X., Li, Y., & Chen, K. (2025). A 4-Methylbenzoylhydrazine Pt(II) Complex Inhibits the Proliferation of Breast Cancer Cells by Regulating the Cell Cycle and Inducing Apoptosis. Inorganics, 13(6), 177. https://doi.org/10.3390/inorganics13060177